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Virtualization, User Association, and Rate
Maximization for Massive MIMO SD-RAN with

Limited Fronthaul Resources
Homa Eghbali

Abstract—To facilitate the dynamic management of massive
multiple-input multiple-output (MIMO) networks, centralized
control of network resources via a software-defined network
(SDN)-enabled control plane is required. The central controller is
connected to the massive MIMO base stations (BSs) via fronthaul
interfaces. In software-defined radio access networks (SD-RANs),
the capacity of the fronthaul interfaces can be considerably less
than the data rate required by the user equipments (UEs). This
makes the fronthaul transmission the performance bottleneck of
the SD-RAN. Motivated by this practical concern, we investigate
the performance of fronthaul compression for massive MIMO
SD-RAN, considering both perfect training and pilot contam-
ination. We formulate a novel virtualization, user association,
and rate maximization (VARM) problem based on a hybrid
virtualization and compression (HVC) scheme that maximizes the
aggregate data rate of the UEs while prioritizing services for the
virtualized UEs. We use a Stackelberg game to characterize the
resource consumption and BS association strategies of virtualized
and non-virtualized UEs as well as the optimal compression noise
levels. Numerical results show that compared to the conventional
maximum peak rate association strategy, our proposed scheme
provides higher aggregate user rate while guaranteeing the UEs
their preferred quality of service (QoS).

Index Terms: SDN, massive MIMO, limited fronthaul
resources, Stackelberg game.

I. INTRODUCTION

To accommodate the surging demand for wireless data and
multimedia applications, mobile operators must find solutions
to provide customers with seamless and better quality of expe-
rience (QoE). Massive multiple-input multiple-output (MIMO)
communication has the potential to improve the capacity
of the future fifth generation (5G) mobile networks [1]. In
massive MIMO, a large number of antennas simultaneously
serve a number of users in the same time-frequency slot.
The transmitted signals are combined in the air such that
the random effects of small scale fading can be averaged
out [2]. Considering a network architecture with massive
MIMO base stations (BSs) that are overlaying with many
small cells, one of the key system optimization problems is
the optimal association of user equipments (UEs) to BSs such
that the throughput of the radio access network (RAN) is
maximized. Gotsis et al. in [3] investigated the problem of
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user association in a massive MIMO dense network. They
formulated a problem that maximizes the worst rate across
all UEs. Xu et al. in [4] developed centralized and distributed
association algorithms for cell association in a massive MIMO
enabled heterogeneous network.

Further performance enhancement of 5G mobile net-
works requires joint centralized control of resources through
software-defined networking (SDN). The SDN paradigm has
been incorporated in different wireless networking projects as
a key enabler to simplify the provisioning, management, and
reconfiguration of mobile networks. As an example, the Mo-
bileFlow project [5] proposed to incorporate SDN principles
into the 3rd Generation Partnership Project (3GPP) evolved
packet core mobile carrier networks. We envision software-
defined (SD)-RAN as a crucial element of future 5G standards
that facilitates dynamic implementation in software of func-
tions such as user association and virtualization of network
resources in software through advanced signal processing and
fronthaul1 traffic engineering techniques.

Despite its advantages, SD-RAN also comes with its own
challenges. An important prerequisite for the effective central-
ized processing in the SD-RAN are high bandwidth and low
latency fronthaul interfaces connecting the BSs to the central
controller. Unfortunately, practical fronthaul implementation
are capacity and time-delay constrained. Due to limited fiber
resources, deploying a large number of fiber interfaces that
directly connect the SD-RAN controller to the BSs is dif-
ficult to achieve for most operators. As a result, fronthaul
transmission can be the performance bottleneck of centralized
implementations such as SD-RAN [6].

To overcome the practical concerns regarding fiber fron-
thaul transmission of SD-RAN, various solutions have been
proposed. Compression and large-scale pre-coding/de-coding
can reduce consumption of fiber resources. Samardzija et al.
in [7] employed redundancy removal in the spectral domain,
block scaling, and non-uniform quantization to effectively
reduce the amount of data transferred between the BSs and
RAN controller. Nanba et al. in [8] proposed a compression
scheme for baseband signals in centralized RAN to reduce

1It is the common nomenclature to refer to the interfaces with more
stringent requirements on synchronization and latency as fronthaul interfaces.
We use the term fronthaul to refer to the interfaces connecting the BSs
to the SD-RAN controller. We use the term backhaul to refer to the links
connecting the SD-RAN controller to the aggregation network and the mobile
core network. The aggregation network provides connectivity to the adjacent
RANs and the mobile core network. The mobile core network provides routing
services to the geographically separated RANs in far locations and the Internet.
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fiber consumption. They reported little loss of information
under 50% compression ratio with an error vector magnitude
(EVM) close to zero. The compression algorithm proposed in
[9] can reduce the Long Term Evolution (LTE) traffic carried
over the common public radio interface (CPRI) from 18 Gbps
to 8 Gbps, and achieve a 44% compression ratio.

To further enhance SD-RAN deployments, real-time net-
work virtualization solutions can be employed where network
resources are managed as logical services, rather than physical
resources. BS virtualization schemes are proposed to dynam-
ically allocate the resources of BSs to meet the real-time
demands of UEs [10]. By implementing virtualization for SD-
RANs, real-time radio and fronthaul resources can be allocated
on-demand and dynamically to the UEs. In this context,
virtualized services are the radio and fronthaul resources that
are reserved by the SD-RAN controller for the UEs to meet
their minimum rate requirements. Non-virtualized services are
the radio and fronthaul resources that are allocated to the
UEs to provide them with best effort services. Furthermore,
virtualized and non-virtualized UEs are the UEs which receive
virtualized and non-virtualized services from the SD-RAN
controller, respectively.

To the best of our knowledge, the problem of network utility
maximization, virtualization, and user association for massive
MIMO SD-RANs with the consideration of limited radio and
fronthaul resources has not been discussed in the literature yet.
To study utility maximization for massive MIMO SD-RANs,
an expression for the achievable ergodic rate of the virtual-
ized and non-virtualized UEs must be computed. To provide
virtualization for massive MIMO SD-RANs and reserve the
limited radio and fronthaul resources for the virtualized UEs,
virtualized UEs must be prioritized over the non-virtualized
UEs. To support user association for massive MIMO SD-
RANs, we need to determine the fraction of transmission
resources (time-frequency slots) over which the virtualized and
non-virtualized UEs can be served by the BSs.

In this paper, we formulate a novel virtualization, user
association, and rate maximization (VARM) problem for the
downlink transmission of massive MIMO SD-RANs with
limited radio and fronthaul resources. Since the existing works
on user association for massive MIMO [3], [4], [11] assume
that the network channel state information (CSI) is perfectly
known, we derive asymptotic bounds on the achievable er-
godic rate of virtualized and non-virtualized UEs for both
perfect channel training and pilot contamination. These closed-
form bounds do not depend only on the small-scale channel
fading or the identity of the UEs. Instead, they depend on
the large-scale channel fading and the number of UEs that
are associated with the serving BSs. To further provide the
virtualized UEs with higher quality of service (QoS) levels,
we propose a hybrid virtualization and compression (HVC)
method in which the SD-RAN controller transmits direct (non-
compressed) messages to the virtualized UEs. The remaining
radio and fronthaul resources are used to carry compressed
data messages for the non-virtualized UEs. Furthermore, to
allocate network resources to the virtualized UEs first, we
decouple the VARM problem into two subproblems, one for
virtualized UEs and one for non-virtualized UEs. These two

subproblems are inter-related. In particular, the amount of
interference experienced by the non-virtualized UEs due to
the transmissions of the SD-RAN BSs to the virtualized UEs
(and vice-versa) is the coupling parameter between the two
sub-problems. This motivates the formulation of a two-stage
Stackelberg game model to capture the interaction between the
virtualized and non-virtualized UEs. In the first stage of the
game, the virtualized UEs determine their association strategy
as well as the amount of virtualized resources they want to use.
In the second stage, the non-virtualized UEs determine their
association strategy, the amount of non-virtualized resources
they want to use, as well as the BS fronthaul noise compression
levels. Thereby, the virtualized UEs are the leaders and the
non-virtualized UEs are the followers of the game. The follow-
ers make their decisions according to the association/allocation
strategy of the virtualized UEs. The main contributions of this
work are as follows:

• We investigate the application of the compression-after-
precoding technique for massive MIMO SD-RANs and
derive the closed-form expressions as well as asymptotic
bounds for the achievable ergodic rates of the UEs,
considering both perfect training and pilot contamination.

• We formulate the VARM problem for SD-RAN while
taking into account the limited resources of radio links
and fronthaul interfaces.

• We propose the HVC technique which provides non-
compressed services to the virtualized UEs as well as
compressed and best effort services to the non-virtualized
UEs.

• We decouple VARM into two subproblems, one for
virtualized UEs and one for non-virtualized UEs. Since
the virtualized UEs must be prioritized over the non-
virtualized UEs, we use a Stackelberg game model to
characterize the interplay between the optimal strategies
of the virtualized UEs and the non-virtualized UEs.

• The VARM problem for virtualized and non-virtualized
services is non-linear and computationally intractable.
We use an exact reformulation technique to transform
each subproblem into a linear form and obtain the global
optimal solution with reasonable complexity.

• We provide numerical results to corroborate the effec-
tiveness of the proposed HVC technique for massive
MIMO SD-RAN. Numerical results show that our scheme
outperforms the maximum peak rate association scheme
[11], in which UEs are associated to the BS that provides
them with the maximum rate.

• Furthermore, our results reveal that the aggregate achiev-
able rate of the UEs follows a diminishing return pattern
with respect to the maximum number of served UEs per
BS.

The rest of this paper is organized as follows: We present
the network model in Section II. VARM formulation for
virtualized and non-virtualized services and its solution via the
two-stage Stackelberg game model are presented in Section III.
Numerical results are presented in Section IV. Conclusions
are drawn in Section V. Throughout this paper, we use the
following notations: Boldface upper case letters denote matri-
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ces. Boldface lower case letters denote column vectors. Italics
denote scalars. (a, b, c) denotes a column vector with three
elements. [a b c] denotes a row vector with three elements.
a [i] denotes the ith element of vector a. A∗, AT , and AH

represent the conjugate, transpose, and Hermitian transpose of
matrix A, respectively. IM and 0M,N denote the M by M
identity matrix and the M by N zero matrix, respectively.
CN×M denotes the set of all N ×M matrices with complex
entries. |·| and ‖·‖p denote the absolute value of a complex
scalar and the lp-norm of a vector, respectively. tr (.) denotes
the trace operator.

a.s.→ denotes the almost sure convergence .
χ2
S denotes a Chi-square random variable with S degrees of

freedom. CN
(
µ, σ2

)
denotes a circularly symmetric complex

Gaussian random variable with mean µ and variance σ2.

II. NETWORK MODEL

We consider an SD-RAN providing cellular services to an
LTE macrocell comprising a set of small cells L = {1, . . . , L}.
In the following, we simply refer to these small cells as
cells. This network architecture is motivated by cell split,
an advanced technique for capacity improvement, where a
macrocell is split into smaller cells, as is currently practiced
in the context of the 3GPP Release 12 small-cell densification
enhancement [12]. Cell l ∈ L comprises Ml BSs and Nl single
antenna UEs. Fig. 1 shows an example of an SD-RAN. The
fronthaul part links the BSs to the SD-RAN controller. The
backhaul connects the SD-RAN controller with the mobile
core network. We assume that all BSs belong to the same
service provider and all UEs are the subscribers of this service
provider. We use the notations ml ∈ Ml = {1, . . . ,Ml} and
nl ∈ Nl = {1, . . . , Nl} to index the BSs and UEs in cell
l ∈ L, respectively.

Each BS schedules transmission over contiguous time-
frequency slots called resource blocks (RBs). Each RB com-
prises a block of orthogonal frequency division multiplexing
subcarriers and symbols. Let Aml

denote the number of
antennas at BS ml. In the massive MIMO regime, independent
data streams are simultaneously transmitted to multiple UEs
on the same RB. Let Bml

denote the number of downlink data
streams that BS ml can transmit on a given RB. The wireless
channel is modeled as block-fading including both large-scale
and small-scale fading effects. Let hml,nl

∈ CAml
×1 denote

the uplink channel between BS ml and UE nl located in
cell l ∈ L. The vector hml,nl

=
√
βml,nl

h̃ml,nl
comprises

the large-scale fading coefficient βml,nl
and the small-scale

fading vector h̃ml,nl
. The large-scale fading βml,nl

depends
on the distance between the BS ml and UE nl and includes
the effects of pathloss and shadowing. βml,nl

is assumed to
remain constant for a large number of RBs. The small-scale
fading vector h̃ml,nl

[i], i ∈ {1, . . . , Aml
}, is modeled as

Rayleigh fading and is assumed to remain constant within a
RB but change from one RB to the next. We refer to the
massive MIMO regime as the case where Aml

is at least an
order of magnitude greater than the number of UEs served
by BS ml, i.e., 1 � Bml

� Aml
. In the following, we

study uplink training and channel estimation for SD-RAN.
The channel statistics provided in Section II-A will be used

API
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Fig. 1. System model of massive MIMO SD-RAN scenario.
in Section II-B2 to characterize the asymptotic performance
of the SD-RAN with imperfect channel estimates caused by
pilot contamination.

A. Uplink Training and Channel Estimation

The large-scale amplitude coefficients βml,nl
, ml ∈

Ml, nl ∈ Nl, l ∈ L are assumed to be known to the local
BSs. However, the small-scale coefficient vectors h̃ml,nl

are
not known to the local BSs and must be estimated by local
BS ml for downlink communications to UE nl. We adopt a
block-ergodic channel model, in which the small-scale fading
channel coefficients are constant within the coherence period
of the channel but vary in an ergodic fashion across a large
number of coherence periods. We further assume uniform
power allocation across the downlink data streams [11]. BS ml

employs reverse training and channel reciprocity to estimate
the downlink CSI to UE nl. We denote the channel estimate
from BS ml to UE nl by ĥml,nl

∈ CAml
×1. In order to analyze

the achievable rate for downlink transmission, we consider two
scenarios: (a) perfect training where all UEs in the system
transmit orthogonal pilot sequences and large pilot powers
in the training phase such that ĥml,nl

= h̃ml,nl
, and (b)

imperfect training where the pilot signals used in a cell are
orthogonal, but all cells reuse the same set of orthogonal pilot
sequences which causes pilot contamination [13].

Let gnl
∈ C1×α denote the pilot sequence of length α.√

αgnl
is the pilot signal transmitted by UE nl located in

cell l. We have gnl
gHnl

= 1, and gn′lg
H
nl

= 0, for nl, n′l ∈ Nl,
nl 6= n′l. Let pα denote the power of the pilot signal of
length α. We consider the channel training phase where
the channel estimates in each cell are corrupted by pilot
contamination from adjacent cells. We can statistically
characterize the minimum mean-squared error (MMSE)
estimate ĥml,nl

and the estimation error êml,nl
as ĥml,nl

∈

CN

0Aml
,

αpαβ̃ml,nl
(gnl

)

1 + αpα
L∑
j=1

β̃ml,nj (gnl
)

IAml

 and êml,nl
∈

CN

0Aml
,

1− αpαβ̃ml,nl
(gnl

)

1 + αpα
L∑
j=1

β̃ml,nj
(gnl

)

 IAml

,

respectively. Here, β̃ml,nj
(gnl

) denotes the large-scale
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channel coefficient between BS ml and UE nj from cell j
that uses the pilot signal gnl

, i.e., the same pilot signal as
UE nl in cell l. Note that in the context of massive MIMO,
to account for the effect of pilot contamination, we enforce
the cellular concept by specifying the geographical locations
of different cells. In the following, we characterize the
performance behavior of SD-RAN in downlink transmission
with perfect training and pilot contamination, respectively.

B. Performance of SD-RAN in Downlink Data Transmission

We initially assume that all BSs are transmitting to every UE
in the macrocell. The resulting signal-to-interference and noise
ratio (SINR) and rate expressions provide an insight regarding
the large-scale behavior of the system and help to deduce
the achievable rate of the UEs when each BS only transmits
to the group of UEs that it is associated to. For notational

convenience, we define ABSl
=

Ml∑
ml=1

Aml
as the total number

of transmitting BS antennas in cell l, and ABS =
L∑
l=1

ABSl
as

the total number of transmitting BS antennas in the system.
Moreover, we denote the total number of UEs in the system

by N =
L∑
l=1

Nl and the total number of BSs in the system by

M =
L∑
l=1

Ml.

Let vector x = (x1, . . . , xN ) ∈ CN×1 contain the
data symbols intended for all UEs in the system. Assum-
ing simple matched filter (MF) precoding, let dnl′ ,ml

= h̃ml,nl′ [1]∥∥∥h̃ml,nl′

∥∥∥ , . . . , h̃ml,nl′ [Aml
]∥∥∥h̃ml,nl′

∥∥∥
 ∈ CAml

×1 denote the

beamforming vector at BS ml for the data symbols intended
for UE nl′ . We choose MF precoding since the matrix in-
versions required for zero-forcing (ZF) and MMSE precoding
schemes are computationally expensive for the large number
of users and antennas of massive MIMO systems. Let dnl′ =(
dnl′ ,1

, . . . ,dnl′ ,M

)
∈ CABS×1 denote the precoding vector

from the antennas of all BSs for the data symbols intended for
UE nl′ . Let D = [d1 . . .dN ] ∈ CABS×N denote the matrix
containing the precoding coefficients for the antennas of all
BSs for the data symbols intended for all UEs in the system.
The precoded vector transmitted from all BSs in the SD-RAN
can be expressed as

s = Dx, (1)

where s = (s1, . . . , sM ) ∈ CABS×1, and sml
∈ CAml

×1

denotes the precoded vector for BS ml. sml
can be obtained

as
sml

= Eml
Dx, (2)

where Eml
∈ CAml

×ABS =0
Aml
×

ml−1∑
k=1

Ak

, IAml
×Aml

,0
Aml
×
(
ABS−

ml∑
k=1

Ak

)
.

We assume that each BS ml and the SD-RAN controller are
connected by a pair of fronthaul interfaces with a fixed capac-
ity denoted by Cml

bps/Hz. One interface is for the downlink

transmission between the SD-RAN controller and BS ml.
The other interface is for uplink transmission. For downlink
transmission, the SD-RAN controller generates the baseband
uncompressed in-phase and quadrature (IQ) precoded data
samples which are then compressed by a compression mod-
ule. The compressed IQ samples are transferred through the
fronthaul interfaces to the BSs. In the BSs, the compressed
IQ samples are decompressed through the decompression
module. After decompression, the receiving BSs up-convert
the decompressed baseband signals and transmit them to the
UEs. The compression and decompression processing at the
SD-RAN and the BSs effectively reduces the amount of data
transferred through the bandwidth limited fronthaul interfaces.
The proposed compression and decompression in SD-RAN is
illustrated in Fig. 2. The compression module implemented in
the SD-RAN controller consists of three steps: (a) removal
of redundancies in the spectral domain; (b) block scaling;
and (c) quantization. In the quantization step, the IQ samples
are quantized using a quantizer with resolution less than the
original bandwidth of the IQ data samples. This procedure
introduces quantization noises. In order to model the effect of
compression on the fronthaul interfaces, using standard rate
distortion considerations, we adopt a Gaussian test channel
and express the quantized signal received by BS ml as

ŝml
= sml

+ ẽml
, (3)

where ŝml
is the output signal after the compression and

decompression processing performed at the SD-RAN con-
troller and BS ml, respectively, and ẽml

∈ CAml
×1 de-

notes the compression noise which can be modeled as a
complex Gaussian vector distributed as CN (0,Ωml

), where
Ωml

= E
[
(̂sml

− sml
) (̂sml

− sml
)
H
]

constitutes the average
squared error distortion between ŝml

and sml
. The compres-

sion error vector ẽml
is independent of sml

[14]. We assume
independent quantization at each BS. This can be realized
by using separate quantizers for the signals of different BSs
[15]. We note that the possibility to leverage quantization
noise correlation across different BSs using joint quantization
techniques is explored in [6], [14]. In this work, however, we
relax this point of complication as the implementation of joint
quantization methods in large-scale massive MIMO SD-RANs
requires the processing of very large channel matrices, leading
to high computational complexity and channel estimation
overhead [16]. We further assume Ωml

= Ωml
IAml

[17],
where Ωml

denotes the quantization noise level per massive
MIMO BS ml. This is a reasonable assumption since the
antennas of the massive MIMO BSs are closely positioned
and have comparable system level characteristics. Considering
(3), we realize that the design of the fronthaul compression for
SD-RAN is equivalent to the optimization of the quantization
noise variances Ωml

per BS. Let p denote the amount of
power allocated to each UE from each BS. In here, we assume
uniform power allocation across users. Moreover, we assume
that the power of the transmitted beamforming vectors of BS
ml cannot exceed Pml

. That is,

tr
(
pEml

DDHET
ml

+ pΩml
I
)
≤ Pml

, (4)
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Fig. 2. SD-RAN system with fronthaul compression.
where Eml

D =
[

d1,ml
. . . dN,ml

]
∈ CAml

×N . As
can be observed from (4), the quantization noise variances
directly affect the transmit power of the BSs. Moreover,
the rate allocated to the fronthaul interface of BS ml is
equal to I (̂sml

; sml
), i.e., the mutual information between the

precoded vector sml
and the output vector ŝml

. I (̂sml
; sml

)
characterizes the relationship between the quantization noise
level Ωml

and the fronthaul capacity Cml
as follows [18,

Chapter 3]:

log det
(
Eml

DDHET
ml

+ Ωml
I
)
−Aml

log (Ωml
) ≤ Cml

.
(5)

In (42) in Appendix A, we have provided an asymptotic

approximation for (5) when N,Aml
→∞ with

N

Aml

→ νml
.

The inequalities (4) and (42) will be used as two optimization
constraints when formulating the VARM problem for massive
MIMO SD-RAN.

BS mj forwards the decompressed signal ŝmj
to the UEs.

The received signal at UE nl from cell l can be expressed as

ynl
=

L∑
j=1

Mj∑
mj=1

√
phHmj ,nl

(
smj

+ ẽmj

)
+ ñnl

=
L∑
k=1

√
pHH

k,nl
sk +

L∑
k=1

√
pHH

k,nl
ek + ñnl

=
√
pHH

nl
s +
√
pHH

nl
e + ñnl

= HH
nl

(
√
pdnl

xnl
+
√
p

N∑
k=1,k 6=nl

dkxk

)
+
√
pHH

nl
e + ñnl

,

(6)

where ñnl
∈ CN (0, 1) denotes the Gaussian noise at

UE nl with zero mean and unit variance, HH
k,nl

=[
hH1,nl

. . .hHMk,nl

]
∈ C1×ABSk , HH

nl
=
[
HH

1,nl
. . .HH

L,nl

]
∈

C1×ABS , sk =
(
s1, . . . , sMk

)
∈ CABSk

×1, ek =(
ẽ1, . . . , ẽMk

)
∈ CABSk

×1, and e = (e1, . . . , eL) ∈ CABS×1.
We can rewrite the received signal in (6) as

ynl
= E

[√
pHH

nl
dnl

]
xnl

+
_
nnl

, (7)

where E [·] represents the expectation operator with respect to
the channel vectors and _

nnl
represents the effective noise. _

nnl

can be expressed as
_
nnl

=
(√
pHH

nl
dnl
− E

[√
pHH

nl
dnl

])
xnl

+
N∑

k=1,k 6=nl

√
pHH

nl
dkxk +

√
pHH

nl
e + ñnl

.
(8)

Following (7) and (8), the SINR ψnl
can be expressed as in

(9) where

var
(√
pHH

nl
dnl

)
= E

[∣∣√pHH
nl

dnl

∣∣2]− (E [√pHH
nl

dnl

])2
.

(10)

1) Rate Analysis with Perfect Training: We proceed by
statistically characterizing the terms in (9). We compute the
first and second order moments of the effective channel
gain and the inter-cell and intra-cell interference to obtain a
simple expression for the achievable rate that solely depends
on the large-scale parameters of the SD-RAN. Note that∣∣√pHH

nl
dnl

∣∣2 is a sum of scaled chi-square random variables
and is statistically equivalent to u2

nl
given below

u2
nl

=
L∑
i=1

Mi∑
mi=1

pβmi,nl

h̃Hmi,nl

h̃mi,nl∥∥∥h̃mi,nl

∥∥∥ h̃Hmi,nl∥∥∥h̃mi,nl

∥∥∥ h̃mi,nl


=

L∑
i=1

Mi∑
mi=1

pβmi,nl

Ami∑
k=1

∣∣∣h̃mi,nl
[k]
∣∣∣2

=
L∑
i=1

Mi∑
mi=1

pβmi,nl
x2
mi
,

(11)

where x2
mi

=
Ami∑
k=1

û2
k ∼ χ2

2Ami
and ûk are independent

identically distributed (i.i.d.) CN (0, 1). Moreover, the inter-
ference term E

[∣∣√pHH
nl

dk
∣∣2] at the denominator of (9) can

be bounded as (equation (47) in Appendix C):

E
[∣∣√pHH

nl
dk
∣∣2] ≤ L∑

j=1

Mj∑
mj=1

pAmjβmj ,nl

∣∣∣h̃max
mj ,nl

∣∣∣2, (12)

where
∣∣∣h̃max
mj ,nk

∣∣∣ = max
1≤i≤Amj

(∣∣∣h̃mj ,nk
[i]
∣∣∣). The last interfer-

ence term E
[∣∣√pHH

nl
e
∣∣2] in (9) can be expressed as:

E
[∣∣√pHH

nl
e
∣∣2] =

L∑
j=1

Mj∑
mj=1

pAmj
βmj ,nl

Ωmj
. (13)

Using (11) and (13), the SINR ψnl
in (9) can be ex-

pressed as in (14). Note that for large Amj , we have

lim
Amj

→∞

(
E
[
xmj

])2
Amj

= 1, lim
Amj

→∞

E
[
x2
mj

]
Amj

= 1, and

lim
Amj

→∞
var
(
xmj

)
= 0 [13]. We assume that

Amj

ABS
→ ηmj ,

when Amj →∞, mj ∈Mj , j ∈ L and ABS →∞. Dividing
the numerator and the denominator of (14) by ABS , (14) can
be asymptotically approximated as

ψnl

a.s.→

L∑
j=1

Mj∑
mj=1

pηm
j
βmj ,nl

L∑
j=1

Mj∑
mj=1

pηmj
βmj ,nl

(
N∑

k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣2 + Ωmj

)
+ 1

.

(15)
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ψnl
=

(
E
[√
pHH

nl
dnl

])2
var
(√
pHH

nl
dnl

)
+

N∑
k=1,k 6=nl

E
[∣∣√pHH

nl
dk
∣∣2]+ E

[∣∣√pHH
nl

e
∣∣2]+ 1

, (9)

ψnl

a.s.→

L∑
j=1

Mj∑
mj=1

pβmj ,nl

(
E
[
xmj

])2
L∑
j=1

Mj∑
mj=1

pβmj ,nl
var
(
xmj

)
+

L∑
j=1

Mj∑
mj=1

pAmjβmj ,nl

(
N∑

k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣2 + Ωmj

)
+ 1

. (14)

Note that pηmjβmj ,nl

(
N∑

k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣2 + Ωmj

)
is the

amount of interference that each BS contributes to the ag-
gregate intra/inter cell interference caused to UE nl, as-
suming that the BS transmits to all UEs. Therefore, if
BS mj serves a group of Bmj

UEs, the aggregate in-
terference caused by this BS to the UE nl adds up

to pηmj
βmj ,nl

(
Bmj∑

k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣2 + Ωmj

)
. Thus, assuming

that each BS mj that is transmitting to nl, transmits to a total
of Bmj

UEs, (15) can be expressed as follows:

ψnl

a.s.→

L∑
j=1

Mj∑
mj=1

pηm
j
βmj ,nl

L∑
j=1

Mj∑
mj=1

pηm
j
βmj ,nl

(
Bmj

+ Ωmj
− 1
)

+ 1

, (16)

where, without loss of generality, it is assumed that
Bmj

max
k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣ = 1 which gives the lower bound for ψnl
.

Note that without compression and considering single user sin-
gle antenna communications, (16) reduces to the standard well-

known SINR formula
pβmj ,nl∑

mk 6=mj

pβmk,nl
+ 1

, which accounts for

large-scale channel effects only.

2) Rate Analysis with Pilot Contamination: Considering
the small-scale channel vectors h̃ml,nl

= ĥml,nl
+ êml,nl

, in
order to simplify (9), we note that with pilot contamination,

E
[√
pHH

nl
dnl

]
= E

∣∣∣√pĤH
nl

∣∣∣+
√
pêHnl

Ĥnl∣∣∣Ĥnl

∣∣∣


=
L∑
i=1

Mi∑
mi=1

√√√√√√ pαpαβ̃mi,nl
(gnl

)

1 + αpα
L∑
j=1

β̃mi,nj
(gnl

)

E [xmi
],

(17)

where ĤH
nl

=
[
ĤH

1,nl
. . . ĤH

L,nl

]
∈ C1×ABS ,

ĤH
k,nl

=
[
ĥH1,nl

. . . ĥHMk,nl

]
∈ C1×ABSk , and

ênl
=

(
ênl,1

, . . . , enl,L

)
∈ CABS×1, and ênl,k

=

(
ênl,m1

, . . . , enl,Mk

)
∈ CABSk

×1. Also note that

var
(√
pHH

nl
dnl

)
= E

[∣∣∣√pĤH
nl

∣∣∣2]
+E

p ĤH
nl∣∣∣Ĥnl

∣∣∣ êHnl
ênl

Ĥnl∣∣∣Ĥnl

∣∣∣
− (E [√pĤH

nl
dnl

])2

=
L∑
j=1

Mj∑
mj=1

pαpαβ̃mj ,nl
(gnl

)

1 + αpα
L∑
i=1

β̃mj ,ni
(gnl

)

var
(
xmj

)

+
L∑
j=1

Mj∑
mj=1

p

1−
αpαβ̃mj ,nl

(gnl
)

1 + αpα
L∑
i=1

β̃mj ,ni
(gnl

)

.

(18)

Therefore, the lower bound on the achievable ergodic rate can
be expressed as follows:

ψnl
=

L∑
j=1

Mj∑
mj=1

pαpαβ̃mj ,nl
(gnl

)

1 + αpα
L∑
i=1

β̃mj ,ni
(gnl

)

(
E
[
xmj

])2/

L∑
j=1

Mj∑
mj=1

 pαpαβ̃mj ,nl
(gnl

)

1 + αpα
L∑
i=1

β̃mj ,ni (gnl
)

var
(
xmj

)
+

+
L∑
j=1

Mj∑
mj=1

pAmj β̃mj ,nl
(gnl

)

(
N∑

k=1,k 6=nl

∣∣∣h̃max
mj ,k

∣∣∣2 + Ωmj

)

p

1−
αpαβ̃mj ,nl

(gnl
)

1 + αpα
L∑
i=1

β̃mj ,ni (gnl
)

+ 1

 .

(19)
Note that when Amj

→∞, following similar approach used
to derive (15), (19) can be asymptotically expressed as in (20),

where umj
=

pαpαβ̃mj ,nl
(gnl

)(
1 + αpα

L∑
i=1

β̃mj ,ni (gnl
)

) . Following similar

analogy used to derive (16), assuming that each BS mj that
is transmitting to nl, transmits to total Bmj

UEs, ψnl
can be

expressed as in (21). Following (16) and (21), we arrive at
the following result:

Note 1: Focusing on the massive MIMO regime, assuming
that UE nl is served by the BS mj , the aggregate interference
imposed on nl from mj , knowing that mj is serving Bmj

−1
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ψnl

a.s.→

L∑
j=1

Mj∑
mj=1

ηm
j
umj

L∑
j=1

Mj∑
mj=1

(
p− ηm

j
umj

+ pηm
j
β̃mj ,nl

(gnl
)

(
N∑

k=1,k 6=nl

∣∣∣h̃max
mj ,nl

∣∣∣2 + Ωmj

)) , (20)

ψnl

a.s.→

L∑
j=1

Mj∑
mj=1

ηm
j
umj

L∑
k=1

Mk∑
mk=1

(
p− ηm

j
umj + pηm

j
β̃mk,nl

(gnl
) (Bmk

− 1) + Ωmk

)
+ 1

. (21)

other UEs, effectively, only depends on the value of Bmj and
not on the identity of those UEs served by mj .

III. VIRTUALIZATION, USER ASSOCIATION, AND RATE
MAXIMIZATION

In this section, we propose VARM which maximizes the
aggregate utility of the massive MIMO SD-RAN. Thereby,
VARM associates virtualized and non-virtualized UEs to the
massive MIMO BSs, and also allocates the radio and fronthaul
resources of the BSs to the UEs that they are associated to.
Considering ψnl

in (16) and (21), we express the achievable
SINR at UE nl as follows:

ψnl
=

L∑
j=1

Mj∑
mj=1

ψnl,mj
, (22)

where ψnl,mj
denotes the achievable SINR at UE nl which

receives data from BS mj . We use the index nl,mj
to indicate

that UE nl is associated to BS mj . If UE nl is not associated
to the BS mj , then ψnl,mj

= 0. Note that with perfect CSI,
ψnl,mj

can be asymptotically expressed as follows:

ψnl,mj

a.s.→
pηm

j
βmj ,nl

L∑
k=1

Mk∑
mk=1

pηmk
βmk,nl

(Bmk
+ Ωmk

− 1) + 1

.

(23)
With pilot contamination, ψnl,mj

can be expressed as in (24).
In order to determine the optimized UE-BS association as well
as the radio and fronthaul resource allocation decision, we
propose a novel HVC technique in which virtualization, user
association, rate maximization problem for massive MIMO
SD-RAN is decomposed into two separate sub-problems for
virtualized and non-virtualized services, respectively. UEs
demanding virtualized services are prioritized over the UEs
demanding non-virtualized services. This is justified by noting
that virtualized users pay higher service fees to the service
provider. The service provider prioritizes these UEs to meet
the service level agreements (SLAs). The UE demanding virtu-
alized services has its non-compressed message sent directly to
its serving BSs. Messages intended for UEs demanding non-
virtualized services with lower QoS requirements, however,
are compressed and suffer from the compression error.

The amount of interference caused to the virtualized UEs
by the non-virtualized UEs and vice-versa, is dependent on

the UE to BS association and the resource allocation decisions
made in each subproblem. Since the virtualized UEs are prior-
itized over the non-virtualized UEs, we formulate a two-stage
Stackelberg game model to capture the interaction between
the virtualized and non-virtualized UEs. In the first stage of
the game, the virtualized UEs determine their BS association
strategy, as well as the amount of virtualized resources they
want to use. In the second stage, the association and resource
consumption strategies of the non-virtualized UEs as well as
the compression noise levels are determined. We assume that
the virtualized UEs are the first movers and the non-virtualized
UEs are the followers that make their decisions according
to the association and resource consumption strategies of the
virtualized UEs.

Step II: The Best Response of UEs with Non-virtualized
Service Demands
In order to analyze the Stackelberg game, we first consider
the second stage of the game which aims to maximize the
utility of the non-virtualized UEs, given the association and
resource allocation strategies of the virtualized UEs. VARM
for non-virtualized UEs can be formulated as follows:

maximize
Ωmj

,f
nnv
l,mj

,Rnnv
l

L∑
l=1

Nnv
l∑

nnv
l =1

Rnnv
l

(25a)

subject to Rnnv
l
≤

L∑
j=1

Mj∑
mj=1

ψ̄nnv
l,mj

,

∀nnvl ∈ Nnv
l , l ∈ L, (25b)

L∑
l=1

Nnv
l∑

nnv
l =1

log2

(
1 + ψ̄nnv

l,mj

)
≤
C̃mj

$
,

∀mj ∈Mj , j ∈ L, (25c)

L∑
l=1

Nnv
l∑

nnv
l =1

fnnv
l,mj

≤ Bmj
−

L∑
l=1

Nv
l∑

nv
l =1

fnv
l,mj

,

∀mj ∈Mj , j ∈ L, (25d)
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ψnl,mj

a.s.→
ηm

j
umj

L∑
k=1

Mk∑
mk=1

(
p− ηmk

umj
+ pηmk

β̃mk,nl
(gnl

) (Bmk
− 1) + Ωmk

)
+ 1

.
(24)

L∑
j=1

Mj∑
mj=1

fnnv
l,mj

≤ 1, ∀nnvl ∈ Nnv
l , l ∈ L, (25e)

fnnv
l,mj

≥ 0, ∀nnvl ∈ Nnv
l , l ∈ L,mj ∈Mj , j ∈ L, (25f)

Ωmj
≥ log e√√√√( C̃mj

Amj

)2

+
2 log eC̃mj

Amj

−
C̃mj

Amj

,

∀mj ∈Mj , j ∈ L, (25g)

L∑
l=1

Nnv
l∑

nnv
l =1

fnnv
l,mj

p
(
1 + ηmj

Ωmj

)
≤ Pmj

−
L∑
l=1

Nv
l∑

nv
l =1

fnv
l,mj

p,

∀mj ∈Mj , j ∈ L, (25h)

Rnnv
l
≥ 0, ∀nnvl ∈ Nnv

l , l ∈ L, (25i)

where nnvl is used to index the non-virtualized UEs located
in cell l, nnvl,mj

is used to associate the non-virtualized UE
nnvl to BS mj , fnnv

l,mj
denotes the scheduling activity fraction

of the non-virtualized UE nnvl,mj
at BS mj , i.e. the fraction

of RBs over which nnvl,mj
is in the scheduled active subset of

BS mj , Nnv
l denotes the set of non-virtualized UEs located

in cell l where |Nnv
l | = Nnv

l , Rnnv
l

denotes the achievable
rate by the non-virtualized UE nnvl ,

ψ̄nnv
l,mj

a.s.→

pηmjfnnv
l,mj

βmj ,nnv
l,mj

L∑
k=1

Mk∑
mk=1

(
pηmk

βmk,nnv
l,mk

(
αnvmk

+ αvmk
+ Ωmk

))
+ 1

, (26)

αnvmk
=

∑
nnv
z,mk

6=nnv
l,mj

fnnv
z,mk

, αvmk
=

∑
nv
z,mk

fnv
z,mk

,

C̃mj
= Cmj

−
L∑
l=1

Nv
l∑

nv
l =1

fnv
l,mj

γvnv
l,mj

, (27)

$ denotes the compression ratio, nvl is used to index the
virtualized UEs located in cell l, nvl,mj

is used to associate
the virtualized UE nvl to the BS mj , fnv

l,mj
denotes the

scheduling activity fraction of the virtualized UE nvl,mj
at

BS mj , i.e. the fraction of RBs over which nvl,mj
is in

the scheduled active subset of BS mj , and γvnv
l

denotes the
minimum rate requirement of UE nvl . Note that the objective
function (25a) follows from the definition of the aggregate
throughput of user nl over all its serving BSs. In constraint
(25b), to make the problem computationally tractable, we

have changed the maximum sum-rate problem to the problem
of maximizing the achievable SINR at non-virtualized UEs.
Constraint (25c) ensures that the allocated wireless resources
through the fronthaul network does not exceed the amount of
fronthaul resources available to BS mj multiplied by inverse
of the compression ratio $. Constraint (25d) reflects the
fact that the sum of activity fractions of non-virtualized UEs
served by any BS cannot exceed the number of simultaneous
downstream data streams associated with that BS subtracting
the resources allocated to the virtualized UEs. Constraint
(25e) ensures that the total scheduling activity fraction of any
user cannot exceed 1. Constraint (25g) ensures that messages
can be reliably transferred to the BSs through the fronthaul
network. Constraint (25h) enforces the maximum transmit
power per BS. Note that in (25d) and (27), we have limited
the available SD-RAN resources per BS for non-virtualized
services to the total available radio and fronthaul resources
per BS subtracting the amount of aggregate resources already
allocated to the virtualized UEs. Note that the problem in
(25) is a mixed integer non-linear program (MINLP), which
even for small dimensions, is difficult to solve while providing
global optimality guarantee. To linearize (25h), we use a
linearization technique which deals with products of a binary
and a continuous variable [19].

Linearization Technique I: A product of a binary variable
x and a continuous positive variable y can be replaced by an
auxiliary continuous variable z = xy, along with a set of linear
constraint expressions: y− z ≤My (1− x), z ≤ y, z ≤Myx,
and z ≥ 0, where My is a large number guaranteed to be
greater than the maximum value that y can take.
Therefore, assuming that Q is a large positive number which
is at least equal to the maximum expected value for Ωmj

, we
introduce the auxiliary variable unnv

l,mj
to replace fnnv

l,mj

Ωmj

along with the necessary linear constraint sets expressed
below:

Ωmj
− unnv

l,mj
≤ Q

(
1− fnnv

l,mj

)
,

∀nnvl ∈ Nnv
l , l ∈ L,mj ∈Mj , j ∈ L, (28a)

unnv
l,mj
≤ Ωmj

, ∀nnvl ∈ Nnv
l , l ∈ L,mj ∈Mj , j ∈ L, (28b)

unnv
l,mj
≤ Qfnnv

l,mj
,∀nnvl ∈ Nnv

l , l ∈ L,mj ∈Mj , j ∈ L,(28c)

unnv
l,mj
≥ 0, ∀nnvl ∈ Nnv

l , l ∈ L,mj ∈Mj , j ∈ L. (28d)

Note that the reformulation technique used to eliminate
the nonlinearity in constraint (25h) provides an exact
transformation of the original problem variables, and no
approximation or relaxation penalty is induced. The price
we have to pay is the increase in the number of variables
and constraint expressions caused by the introduction of
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auxiliary variables. Moreover, applying a simple arrangement

of terms, we obtain (29) where Rnnv
l
≤

L∑
j=1

Mj∑
mj=1

Rnnv
l,mj

. For

the term Rnnv
l,mj

fnnv
z,mk

, we use the linearization technique I
introduced previously. For the product term Rnnv

l,mj
Ωmk

, we
use a linearization technique which deals with products of
two continuous variables.

Linearization Technique II: A product of a continuous
positive variable x and a continuous positive variable y can
be replaced by a new continuous auxiliary variable z = xy,
along with a linear constraint expression l1y ≤ z ≤ u1y,
knowing that l1 ≤ x ≤ u1.

Following the linearization technique II, we introduce the
auxiliary variable ũnnv

l,z,mj,mk
to replace Rnnv

l,mj
Ωmk

along
with the necessary linear constraint expressed below:

log eRnnv
l,mj√√√√( C̃mk

Amk

)2

+
2 log eC̃mk

Amk

− C̃mk

Amk

≤ ũnnv
l,mj
≤ QRnnv

l,mj
.

(30)
In order to linearize (25c), we first use the Trapezoidal Eulers

Log rule [20] ln (1 + x) ≈ x
(

1 + 0.5x

1 + x

)
. Assuming that the

minimum required ψ̄nv
l,mj

is 0 dB, for computing ln (2), the
Trapezoidal Eulers Log approximation results in 5.069×10−2

error compared to the exact value. Other approximation meth-
ods such as the infinite series technique using the first ten terms

or the
1

3
−SELOG technique [20] result in −5.248774×10−2

and −1.297264 × 10−3 error compared to the exact value,
respectively. As can be seen, the Trapezoidal Eulers Log
rule results in a sufficiently accurate approximation while
minimizing the incurred complexity. We further apply the

piecewise linear approximation of
1

2
x2 which can be written

as follows:
λ2

2
+ 2λ3 + 8λ4 =

1

2
x2,

λ2 + 2λ3 + 4λ4 = x,
λ1 + λ2 + λ3 + λ4 = 1.

(31)

Following (31) and (26), constraint (25c) can be linearly
approximated using the following set of constraints:(
λ2,nnv

l,mj
+ 2λ3,nnv

l,mj
+ 4λ4,nnv

l,mj

) L∑
k=1

Mk∑
mk=1

(
pηmk

βmk,nnv
l,mk ∑

nnv
z,mk

6=nnv
l,mj

fnnv
z,mk

+ αvmk
+ Ωmk

+ 1

= pηmjfnnv
l,mj

βmj ,nnv
l,mj

,

λ1,nnv
l,mj

+ λ2,nnv
l,mj

+ λ3,nnv
l,mj

+ λ4,nnv
l,mj

= 1,(
λ2,nnv

l,mj
+ 2λ3,nnv

l,mj
+ 4λ4,nnv

l,mj

)
−

(
λ2,nnv

l,mj

2
+ 2λ3,nnv

l,mj
+ 8λ4,nnv

l,mj

)

≤
1 + λ2,nnv

l,mj
+ 2λ3,nnv

l,mj
+ 4λ4,nnv

l,mj

$
C̃nnv

l,mj
,

(32)

where
L∑
l=1

Nnv
l∑

nnv
l =1

C̃nnv
l,mj

= C̃mj
.

Step I: VARM for UEs with Virtualized Service Demands
The rates requested by the virtualized UEs must be greater
than a pre-specified minimum threshold. VARM for virtualized
services can be formulated as follows:

maximize
f
nv
l,mj

,Rnv
l

L∑
l=1

Nv
l∑

nv
l =1

Rnv
l

(33a)

subject to Rnv
l
≤

L∑
j=1

Mj∑
mj=1

ψ̄nv
l,mj

,∀nvl ∈ Nv
l , l ∈ L,(33b)

Rnv
l
≥ γvnv

l
, ∀nvl ∈ Nv

l , l ∈ L, (33c)

L∑
l=1

Nv
l∑

nv
l =1

log2

(
1 + ψ̄nv

l,mj

)
≤ Cmj ,∀mj ∈Mj , j ∈ L, (33d)

L∑
l=1

Nv
l∑

nv
l =1

fnv
l,mj

p ≤ Pmj
, ∀mj ∈Mj , j ∈ L, (33e)

L∑
l=1

Nv
l∑

nv
l =1

fnv
l,mj

≤ Bmj , ∀mj ∈Mj , j ∈ L, (33f)

L∑
j=1

Mj∑
mj=1

fnv
l,mj

≤ G, ∀nvl ∈ Nv
l , l ∈ L, (33g)

fnv
l,mj

≥ 0, ∀nvl ∈ Nv
l , l ∈ L,mj ∈Mj , j ∈ L, (33h)

where Nv
l denotes the set of virtualized UEs located in cell

l where |Nv
l | = Nv

l , Nl = Nv
l ∪ Nnv

l , Nv
l ∩ Nnv

l = ∅, Rnv
l

denotes the achievable rate by the virtualized UE nvl ,

ψ̄nv
l,mj

a.s.→
pηmj

fnv
l,mj

βmj ,nv
l,mj

L∑
k=1

Mk∑
mk=1

(
pηmk

βmk,nv
l,mk

(
α̃vmk

+ α̃nvmk

))
+ 1

,

(34)
α̃vmk

=
∑

nv
z,mk

6=nv
l,mk

fnv
z,mk

, α̃nvmk
=

∑
nnv
z,mk

fnnv
z,mk

, and G

denotes the maximum number of BSs a virtualized UE can be
associated to. In (33b), to make the problem computationally
tractable, we have changed the maximum sum-rate problem to
the problem of maximizing the achievable SINR at virtualized
UEs. Moreover, applying a simple arrangement of terms,

we obtain (35) where Rnv
l
≤

L∑
j=1

Mj∑
mj=1

Rnv
l,mj

. To linearize

the term Rnv
l,mj

fnv
z,mk

, we use the linearization technique I
introduced previously. Finally, to linearize (33d), we use the
exact same procedure used to derive (32).
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L∑
k=1

Mk∑
mk=1

pηmk
βmk,nnv

l,mk

 ∑
nnv
z,mk

6=nnv
l,mj

Rnnv
l,mj

fnnv
z,mk

+Rnnv
l,mj

αvmk
+Rnnv

l,mj
Ωmk

+ 1 ≤ pηmjfnnv
l,mj

βmj ,nnv
l,mj

,

(29)

L∑
k=1

Mk∑
mk=1

pηmk
βmk,nv

l,mk

 ∑
nv
z,mk

6=nv
l,mj

Rnv
l,mj

fnv
z,mk

+Rnv
l,mj

α̃nvmk

+ 1 ≤ pηmj
fnv

l,mj

βmj ,nv
l,mj

, (35)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of VARM
using comprehensive simulation results. We consider an SD-
RAN with L = 4. We consider a network topology formed
by a 3000 m × 2000 m region with BSs whose locations
are fixed throughout the simulations. We assume one BS
is located in the center of each cell and 20 other BSs are
distributed uniformly in the region. We further assume that
the number of antennas at BSs is randomly selected such
that 100 ≤ Amj ≤ 150,mj ∈ Mj , j ∈ L. We assume that
BSs can serve user sets of size 20 and the pathloss from
a BS to a UE is given by βml,nl′ = 1

1+

dml,nl′

40

4 [11],

with dml,nl′ representing the distance between BS ml and UE
nl′ . We generate the location of the UEs according to a non-
homogeneous Poisson point process with lower density in the
central region of cells. In Fig. 3, we compare the cumulative
distribution function (CDF) of the sum-rate by virtualized and
non-virtualized services. We assume N = 43, Nv

l = 3, and
Nnv
l = 40, p = 50 dBm, Bmj = 20, Cmj = 0.5 Mbit/s/Hz,

Pmj
= 30 dB, mj ∈ Mj , j ∈ L, and γvnv

l
∈ {0.1, 0.2, 0.3}

Mbit/s/Hz. For virtualized UEs, we assume that G = 10. Non-
virtualized UEs, however, can only be associated with one BS
at a time. In order to investigate the performance of the system
with pilot contamination, we assume that the length of the pilot

signal is α = 10 and pα =
10 dB

N
. In Fig. 3, we have used “V”

to refer to virtualized services, “NV” to refer to non-virtualized
services, “PC” to refer to pilot contamination, and “PCSI” to
refer to the transmission scenario with perfect CSI. It can be
seen that with perfect CSI, virtualized UEs receive higher QoS
levels, as per the SLAs. As an example, when γvnv

l
= 0.1

Mbit/s/Hz, non-virtualized UEs can receive service rates as
high as 0.3 Mbit/s/Hz, whereas virtualized UEs are promised
minimum rates of 0.446 Mbit/s/Hz. With pilot contamination,
the overall performance of the SD-RAN is degraded. While the
difference between the achievable aggregate rate by virtualized
and non-virtualized UEs is reduced, the virtualized UEs still
are guaranteed their minimum rate requirements.

In Fig. 4, we study the performance of the SD-RAN system
when using the maximum peak rate association strategy [11]
where the UE nl, l ∈ L associates with BS mj when

mj = arg max
mk

Rnl,mk
,mk ∈Mk, k ∈ L. (36)

In the massive MIMO regime, the achievable peak rates of
the UEs converge to the deterministic limits that depend only

on the SINR of the UEs. Therefore, in the massive MIMO
framework, it is easy to implement the peak rate association
scheme. We assume γvnv

l
= 0.3 Mbit/s/Hz. In Fig. 4, we

have used “MPR” to refer to maximum peak rate association
strategy. As can be seen from Fig. 4, with both perfect CSI and
pilot contamination, VARM can achieve significantly higher
sum-rate than the maximum peak rate strategy. As an example,
with pilot contamination, virtualized UEs and non-virtualized
UEs can achieve minimum rates of 0.48 Mbit/s/Hz and 0.45
Mbit/s/Hz, respectively. However, UEs can only achieve up
to 0.23 Mbit/s/Hz with maximum peak rate strategy. With
perfect CSI, virtualized UEs and non-virtualized UEs can
achieve minimum rates of 0.59 Mbit/s/Hz and 0.45 Mbit/s/Hz,
respectively. However, the SD-RAN can only provide UEs
upto 0.26 Mbit/s/Hz with maximum peak rate strategy. These
results corroborate the outperformance of the proposed VARM
technique over the conventional maximum peak rate strategy.

Fig. 5 illustrates the sum-rate of the SD-RAN system using
VARM versus maximum number of UEs that BSs can serve
for Cmj

= 15 Mbit/s/Hz. We assume γvnv
l

= 0.1 Mbit/s/Hz
for virtualized UEs. We compare the performance of VARM
versus the maximum peak rate (MPR) strategy with perfect
CSI and pilot contamination. As can be seen from Fig. 5,
compared to the maximum peak rate strategy, VARM with
both perfect CSI and pilot contamination, provides the SD-
RAN with significantly higher sum-rate values. Moreover, we
can see a diminishing return pattern in the performance of
VARM with respect to the number of UEs, the SD-RAN
BSs can support. The knees of the utility curves signify the
optimum number of UEs that the SD-RAN BSs should support
for the considered N values. We denote this point by B∗mj

.
When Bmj

> B∗mj
, further increase in Bmj

does not lead to
any increase in the sum-rate of the system.

V. CONCLUSION

In this paper, we have proposed VARM which optimally
allocates the limited radio and fronthaul resources of the SD-
RAN to the virtualized and non-virtualized UEs. Using the
proposed HVC technique, we have formulated a two-stage op-
timization problem for virtualized and non-virtualized UEs. In
order to determine the optimum allocation/association strate-
gies of the UEs as well as the optimum compression noise
levels, we have used a Stackelberg game model. The provided
solution guarantees the virtualized UEs with their preferred
minimum rate requirements and provides the non-virtualized
UEs with best effort services. Numerical results show that the
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proposed VARM considerably outperforms the maximum peak
rate association strategy for SD-RAN. Moreover, the sum-rate
of the proposed VARM follows a diminishing return pattern
with respect to the maximum number of UEs each BS is
associated with. For future work, we will investigate pricing
for the massive MIMO SD-RAN, assuming that BSs are owned
by different service providers which offer their services at
different usage-based prices.

APPENDIX

A. An Asymptotic Approximation for (5)
Since we have assumed MF precoding, the left hand side

of (5) reduces to the following:

N log

(
1 +

1

Ωmj

− 1

4
F

(
1

Ωmj

,
N

Amj

))
+Amj

log

(
1 +

1

Ωmj

N

Amj

− 1

4
F

(
1

Ωmj

,
N

Amj

))
−Amj

Ωmj

log e

4
F

(
1

Ωmj

,
N

Amj

)
,

(37)

where F

(
1

Ωmj

,
N

Amj

)
is provided in (38), all logarithms

are for base 10, and (37) and (38) follow from the Shannon
transform of the empirical distribution of the eigenvalues of
Emj

DDHET
mj

using the Marcenko-Pastur law [21], assuming

that N,Amj →∞ with
N

Amj

→ νmj .

In the context of massive MIMO, when Amj
→ ∞, after

some calculations ((43) in Appendix B), we obtain (39) and
(5) can be approximated as follows:

Cmj

Amj

≥ νmj log

(
1 +

1

Ωmj

− 1

4
F

(
1

Ωmj

, νmj

))
+ log

(
1 +

νmj

Ωmj

− 1

4
F

(
1

Ωmj

, νmj

))
−

Ωmj
log e

4
F

(
1

Ωmj

, νmj

)
.

(40)

Considering the massive MIMO regime where N � Aml
,

(40) can be further approximated as follows:
Cmj

Amj

≥ log

(
1− 1

4

(
1 +

1

Ωmj

))
−

Ωmj
log e

4

(
1

Ωmj

+ 1

)
,

(41)

where we have assumed νmj
≈ 0 and F

(
1

Ωmj

, νmj

)
≈

1

Ωmj

+ 1. Using the trapezoidal rule [20] ln (1 + x) ≈

x

(
1 + 0.5x

1 + x

)
, we can solve (41) and obtain

Ωmj
≥ log e

−
Cmj

Amj

+

√(
Cmj

Amj

)2

+
2 log eCmj

Amj

. (42)

B. Proof of Equation (39)
We have (43). Therefore, when Amj → ∞, dividing (43)

by Amj
results in the asymptotic form provided in (44).

C. Proof of (12)

E
[∣∣HH

nl
dk
∣∣2] can be expressed as follows:

E
[∣∣HH

nl
dk
∣∣2]

= E

[hH1,nl
. . .hHML,nl

] h1,nk∥∥h1,nk

∥∥ , . . . , hML,nk∥∥∥hML,nk

∥∥∥
 × hH1,nk∥∥h1,nk

∥∥ . . . hHML,nk∥∥∥hML,nk

∥∥∥
 (h1,nl

, . . . ,hML,nl

)
= E

 L∑
j=1

Mj∑
mj=1

hHmj ,nl

hmj ,nk
hHmj ,nk∥∥∥hmj ,nk

∥∥∥2 hmj ,nl

+

E

 L∑
i=1

Mi∑
mi=1

L∑
j=1

Mj∑
mj=1,mj 6=mi

hHmi,nl

hmi,nk
hHmj ,nk∥∥hmi,nk

∥∥2 hmj ,nl


︸ ︷︷ ︸

0

=

E

 L∑
j=1

Mj∑
mj=1

Amj∑
i=1

h∗mj ,nl
[i]

hmj ,nk
[i] h∗mj ,nk

[1]∥∥∥hmj ,nk

∥∥∥2 hmj ,nl
. . .

. . .
L∑
j=1

Mj∑
mj=1

Amj∑
i=1

h∗mj ,nl
[i]

hmj ,nk
[i] h∗mj ,nk

[
Amj

]∥∥∥hmj ,nk

∥∥∥2 hmj ,nl




= E

 L∑
j=1

Mj∑
mj=1

Amj∑
i=1

h∗mj ,nl
[i]

hmj ,nk
[i] h∗mj ,nk

[i]∥∥∥hmj ,nk

∥∥∥2 hmj ,nl
[i]


= E

 L∑
j=1

Mj∑
mj=1

Amj∑
i=1

∣∣∣hmj ,nl
[i]
∣∣∣2∣∣∣hmj ,nk

[i]
∣∣∣2∥∥∥hmj ,nk

∥∥∥2

 .
(45)

In order to characterize the upper bound for (45), note that
for positive numbers x1, . . . , xN , we have

(x1 + · · ·+ xN )
2

N
≤ x2

1 + · · ·+ x2
N ≤ N max

(
x2

1, . . . , x
2
N

)
,

(46)
which compares the root mean square value, the arithmetic
mean, and the maximum value of these positive numbers. We
apply (46) to (45), and obtain

L∑
j=1

Mj∑
mj=1

(
Amj∑
i=1

∣∣∣hmj ,nl
[i]
∣∣∣ ∣∣∣hmj ,nk

[i]
∣∣∣)2

Amj

∥∥∥hmj ,nk

∥∥∥2

≤
L∑
j=1

Mj∑
mj=1

Amj∑
i=1

∣∣∣hmj ,nl
[i]
∣∣∣2∣∣∣hmj ,nk

[i]
∣∣∣2∥∥∥hmj ,nk

∥∥∥2

≤
L∑
j=1

Mj∑
mj=1

Amj
max

1≤i≤Amj

(∣∣∣hmj ,nl
[i]
∣∣∣2∣∣∣hmj ,nk

[i]
∣∣∣2)∥∥∥hmj ,nk
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F

(
1

Ωmj

,
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N
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)2

+ 1−
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(
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√
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Amj
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2

,

(38)
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where
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1≤i≤Amj
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upper limit in (C), we have
L∑
j=1

Mj∑
mj=1

pAmj
βmj,nl

βmj,nk

∣∣∣h̃max
mj,nl

∣∣∣2∣∣∣h̃max
mj,nk

∣∣∣2∥∥∥hmj,nk

∥∥∥2 ≤

L∑
j=1

Mj∑
mj=1

pAmj
βmj ,nl

βmj ,nk

∣∣∣h̃max
mj ,nl

∣∣∣2, (47)

where
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