

1

Abstract—Open Shortest Path First (OSPF) is one of the most

widespread routing protocols in the world. In OSPF networks,

routers calculate the paths for every traffic demand, based on

weight values that are configured in advance. OSPF Weight

Setting (OSPF-WS) is an NP-hard search problem; find the set of

weights that maximizes network utilization. Internet Service

Providers (ISPs) are facing the challenge of solving OSPF- WS

within practical time and find the best weight set for the efficient

use of the network. One heuristic approach, a scheme based on the

Genetic Algorithm (GA), has been reported to offer fast solution of

OSPF-WS. This scheme identifies good solutions comparable with

the output of the conventional Integer Linear Programming (ILP)

scheme. However, its calculation cost is still excessive for larger

networks, thus higher processing performance is required.

Unfortunately, the processing speed of single processing cores has

become saturated, and the recent trend is a shift to multi-core

processors. To best utilize the performance offered by these

processors, the algorithm should be redesigned and suitably

parallelized for multi-core CPUs. This paper redesigns the scheme

of OSPF-WS with GA to create a parallelized algorithm with much

lower computation overhead. Its performance is evaluated on a

16-core Intel Xeon processor and the result is a roughly 13 fold

faster calculation speed than the original algorithm on a

single-core CPU. This result shows the potential of further

speedups with larger scale parallel processing units such as the

GPGPU.

Index Terms—OSPF-WS, Traffic Engineering, Genetic Algo-

rithm, Parallelization.

I. INTRODUCTION

OMPUTER networks such as the Internet have become one

of the infrastructures necessary for people nowadays.

Internet Service Providers (ISPs) are responsible for the

exchange of customer’s data while satisfying the QoS

requirements specified in the Service Level Agreements (SLAs).

For efficient operation of limited network resources, Traffic

Engineering (TE) is the most important challenge for ISPs.

K. Kikuta, S. Okamoto and N. Yamanaka are with the Department of

Information and Computer Science, Faculty of Science and Technology, KEIO

University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan.

E. Oki is with Graduate School, Faculty of Science and Technology, Keio

University, and Dept. of Communication Engineering and Informatics,

Graduate School of Informatics and Engineering, The University of Electro-

Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN.

Manuscript received August 20, 2013; revised August 20, 2013.

Open Shortest Path First (OSPF) [1] is the most widely-

spread intra-domain routing protocol in the Internet. In an OSPF

network, the routes for the data traffic are determined by link

weights. Each link is assigned a link weight, a 16-bit integer

value ranging from 1 to 65535. Every router exchanges its

weight value throughout the Autonomous System (AS) and a

shortest-path is calculated for each source-destination pair

considering the weight value as the virtual distance of a link. A

larger link weight value makes the link unlikely to be the

shortest-path, so all traffic flows are determined by the setting of

weights. Additionally, routers divide traffic flow equally for

Equal Cost Multi Path (ECMP) if there are multiple shortest-

paths available. If TE is to realize the efficient use of the

network, which may involve ECMP, weight setting is crucial

task for ISPs. As a leading router vender, Cisco recommended

the capacity-inverse setting of link weights [2]. When the traffic

demand is estimative, this approach does not appear to be the

best way.

If the network is represented as directed graph G = (N, E), and

the traffic demand is given by matrix D = {Dst : s ∈ V, t ∈ V} (s and t

denote a source node and a destination node, respect-

tively, and Dst is a traffic demand from s to t), weight set W =

{w1, w2, ..., w|E|} determines the routes for all traffic flows, and

thus the congestion ratio fe/Ce, on any edge e (fe denotes the total

of the traffic flows on edge e, Ce denotes the capacity of edge e).

Minimizing L = maxe∈E (fe/Ce), the congestion ratio on the most

congested link, maximizes network utilization according to [3],

OSPF Weight Setting (OSPF-WS) is the problem of identifying

W that minimizes L and maximizes network utilization under

given demand matrix D. This prob-

lem is known to be NP-hard so computation cost instantly

becomes excessive when network size increases. ISPs are

forever trying to solve OSPF-WS within a practical time period

in the face of this complexity.

If OSPF-WS is to be practical, the calculation time must be

limited. If a traffic demand is updated, the current weight set

may not be suitable for the updated traffic demand. There- fore,

a new weight set needs to be calculated in a dynamic manner to

follow the traffic demand changes for the given network

topology. Note that the network topology may also be optimized

as in the case of a virtual network such as an optical-path

network, which consists of optical paths that can be dynamically

setup and released according to traffic demand changes. In this

A Parallelized OSPF Weight Setting Scheme

based on a Genetic Algorithm for Multi-Core

CPUs

Ko Kikuta, Satoru Okamoto, Eiji Oki, and Naoaki Yamanaka

C

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), September Edition, 2013

Volume 3, Issue 9

2

situation, multi-layer optimization is required so as to configure

both the virtual network and OSPF weight setting. To achieve

multi-layer optimization, an interactive computation between

the virtual network optimization and the OSPF weight

optimization is performed. Since the OSPF weight optimization

for a given virtual network topology is required iteratively, it

should be performed extremely rapidly.

Several calculation schemes for OSPF-WS have been intro-

duced [4]. The two main types of solutions: Integer Linear

Programming (ILP) and heuristic search. In the former, ILP, the

network optimization problem of OSPF-WS is transformed into

a mathematical ILP problem to allow application of the ILP

solver. ILP was originally designed to find the optimal solution

by exhaustive search, but also to find near-optimal solutions as

preliminary results of that search. The ILP solver can finally

achieve a good solution, but it takes a long time, even for the

first feasible solution. This time is not short enough for dynamic

weight setting unless the network is small. ILP computation is

not reliable since there is no assurance that even the first solution

will be available within a practical time. Therefore, ILP is

inadequate for dynamic weight setting.

On the other hand, heuristic search ignores the optimal

solution to secure close-to-optimal solutions in much shorter

times. Most OSPF-WS schemes employ metaheuristics. One of

them is based on Genetic Algorithm (GA) proposed by Ericsson

et al. [5]. While this scheme does not guarantee the accuracy due

to its use of stochastic search, the solution is, on average,

comparable to ILP. Additionally, the best solution is always

available at any moment during the calculation in this scheme.

Thus the scheme is preferred for dynamic weight setting.

However, its calculation costs are still huge when the network

size is large. Its support of larger networks revolves around the

processing performance.

Recent CPU venders are focusing on the development of

multi-core CPUs since clock speed has reached a technical

limitation [6]. Unlike over-clocking the CPU, providing more

processing cores does not directly accelerate the original

algorithms designed for single-thread processing. To utilize the

full performance of parallel core technology, the scheme must

be redesigned at the algorithm level. No parallel version of

OSPF-WS has been reported to date.

This paper parallelizes OSPF-WS for multi-core CPUs and so

enables TE by dynamic weight setting. The proposed scheme,

based on [5], is evaluated on a 16 core Intel Xeon Processor. It is

shown to be about 13 times faster than the original algorithm

designed for single-core implementation.

II. RELATED RESEARCH

A. OSPF-WS with Integer Liner Programming

ILP is a mathematical approach to the optimization problem

of minimizing (or maximizing) an objective function under a

given constraint. To solve OSPF-WS with ILP, the problem, one

objective function and a number of constraint conditions, is first

expressed as equations and inequalities, where all functions

must be linear and able to include integer variables.

A typical ILP scheme is proposed in [7]. In this scheme,

OSPF-WS is expressed as follows, (the expression are slightly

modified and comments are added for understanding).

The OSPF network is expressed by directed graph G = (V, E)

where a node denotes a router and an edge denotes a link. Edge e

∈ E has bandwidth capacity of ce, demands are given as matrix

D and element Dst denotes the traffic demand from source node

s∈V to t∈V, Vd ⊆V is a set of destination nodes.

Decision Variables:

fe
t
 : amount of traffic flow to destination t on edge e

xe
t
 : binary variable denoting if flow fe

t
 exists or not

fv
t
 : amount of split flow to node t on node v 

we : weight value of edge e 

dv
t
 : shortest distance from node v to destination t

L : the maximum link load over all edges

Flow Conservation Constraints:

 (1)

 (2)

Equations (1) and (2) define the relationship between incoming

and outgoing flows. Eq. (1) ensures that flows are terminated at

their destination nodes, and Eq. (2) ensures flow conservation

since the difference between incoming flows and locally

dropped flows must equal the flows passed on to other nodes.

Flow Splitting Constraints :

 (3)

 (4)

 (5)

Inequality (3) ensures that only when the binary variable xe
t
 is

equal to 1 can fe
t
 be a non-zero value, provided M is a very large

number, (This M can be set to the sum of Dv
t
). Hence, if fe

t
 is

non-zero, xe
t
 must be 1. In this case, the inequalities (4) and (5)

ensure that fe
t
 must be equal to fv

t
. On another front, if both xe

t

and fe
t
 are zero, inequalities (4) and (5) have no effect on fv

t
.

Therefore, fe
t
 must be fv

t
 or zero according on xe

t
. In this way,

equal flow splitting is realized by virtual value fv
t
 .

Feasible Distance Label Constraint :

 (6)

 (7)

 (8)

3

The mechanism of inequalities (6), (7) and (8) is somewhat

complex. If edge e has a flow to destination t, xe
t
 equals 1 (as

shown before), then dv
t
 + we equals du

t
 according to inequalities

(6) and (7). Since every neighbor node pair at the ends of edge e

along the path has this relationship, du
t
 must be sum of we on the

path. On the other hand, the other edges out of paths that have xe
t

equal to zero must not be the shortest path since dv
t
 + we is

greater than du
t
 according to the inequalities (8). In this way, if a

flow exists and xe
t
 equals to 1, it is ensured that the edge e is on

the shortest path.

 (9)

The last inequality (10) ensures that the maximum value of the

link congestion ratio is less than L. Since L is to be minimized, L

indicates the maximum value of link congestion ratio.

The ILP problem can, as expressed above, be tackled by ILP

solver software. CPLEX was developed by IBM and has

become one of the most popular commercially available ILP

solvers, and used in [7]. CPLEX reads the problem as the input

of the objective function and multiple equations and

inequalities, then starts its run. The functions are analyzed and a

solution is located. In most cases, CPLEX derives better

solutions than naive heuristic search as explained later.

ILP solvers output sets of decision variables, not just a

weight set. That is, the solution space of ILP includes infea-

sible solutions which do not satisfy one or more restrictions.

During the solution search, the ILP solvers try to minimize the

objective function, L. When all variables satisfy all restric-

tions, the solver can output the first feasible solution, which

includes a weight set. Unfortunately, the time taken to reach the

first solution becomes exponentially large if network size is

large. In this case, the ILP solver fails to output any weight set in

practical calculation time.

B. OSPF-WS with Genetic Algorithm

On the other hand, heuristic search finds solutions based on

experience rather than identifying the optimum solution. For

OSPF-WS, some heuristic search schemes based on meta-

heuristics are reported in [4]. B. Fortz et al. [8] presented the

Local Search algorithm and M.H.Sqalli et al. [9] presented

Simulated Annealing; Ericsson et al. used the Genetic Algo-

rithm [5] to solve OSPF-WS.

GA is a metaheuristic proposed in [10] that imitates the

principle of natural selection. GA has been applied to various

optimization problems even in the networking area, such as

multicast routing [11] and regenerator placement [12]. In GA,

each solution candidate (called individual) is expressed as a

gene, and it forms a group (called population). In the population,

evolutionary events such as inheritance, mutation, selection and

crossover are performed iteratively (each itera- tion is called a

generation). In each generation, the individuals are evaluated by

some fitness metric. The individuals that have, or potentially

have, better fitness are generated by evolution. A gene is the data

that encodes the property of the individuals. As the gene evolves

in every generation, the best solution is improved. More details

such as gene encoding, function to calculate fitness, and the

procedure of evolution depend on the scheme. These procedures

govern GA performance.

Figure 1 shows Ericsson’s GA for OSPF-WS [5]. In this

scheme, a gene is directly encoded as an OSPF-WS weight set,

and the fitness value is L. The population size per generation is

evaluation() calculate each fitness value, L

sort() sort and extract elites based on L

elites[A] non-elites[B + C]

group-b[B] group-c[C]group-a[A]

keep

Generation i

gene = int weight[E]

Generation i+1

crossover()

random()

Fig. 1. Erricsson’s scheme of GA for OSPF-WS

elite non_elite

group-B

ratio(elite : non_elite) = K : (1 - K)

(prob. = M)

mutation rand()

define crossover(elite[E], non-elite[E])

 int child[E];

 for each i in { E }

 float r = (rand() % RAND_MAX) – M;

 if r < 0

 child[i] = rand() % WMAX;

 else if r < K

 child[i] = elite[i];

 else

 child[i] = non-elite[i];

 end

 end

 return child;

end

Fig. 2. Crossover Function

4

constant at P, and all initial genes are given by random numbers.

Each generation is associated with two routines; one evaluates

all individuals and the other creates new genes by evolving the

current genes. In the latter, first all genes are sorted based on

fitness value and categorized as either an elite genes or a

non-elite gene. The elite genes are preserved as group-A genes

of next generation. The group-B genes are processed by a

crossover function where randomly chosen pairs of elite and

non-elite genes are recombined to yield new genes. Group-C

genes are created by setting random numbers. If group size is

expressed as A, B and C, the total population P = A + B +C (that

is, number of elite genes is A, number of non-elite is B + C).

After all genes have been processed or generated, the scheme

proceeds to the next generation.

Figure 2 shows the crossover function generating group-B

genes which is characteristic of the Genetic Algorithm. To

generate a new gene, one elite gene and one non-elite gene are

chosen at random and recombined. Each value in the array of the

weight set of the new gene is selected from the elite gene or the

non-elite gene at the same position. The selection is biased by

parameter K, so the elite gene value is selected with probability

of K, the non-elite with probability (1 − K). Furthermore, the

rare event of mutation (replacement by a random value) is

determined by parameter M. A pseudo code that performs

weight selection with one random number is shown in the right

part of Fig. 2. The genes generated by this crossover potentially

have better fitness value. If some of them are better than some

the current group-A entries, they replace the group-A entries in

the next generation. Evolution is performed in this manner.

The important issue with algorithm acceleration on a multi-

core CPU is represented by Amdahl’s law [14]. According to

this law, the speedup possible with parallelization is limited to

the sequential fraction of the whole process. When a scheme is

parallelized on N processing elements with a fraction of x of

total running time, the theoretical ratio of processing speed S(N)

accelerated by parallelization is given as follows.

 (10)

More specifically, parallelizing 90 percent of the whole process

(x = 90) on 16 cores (N = 16) achieves a 6.4 times speedup. If a

10 times speedup is needed, 96 percent of the whole process

should be parallelized. Furthermore, the computational

overhead of parallelization such as synchronization latency and

processing time of thread management is another factor limiting

the speedup. For effective parallelization, the scheme must be

parallelized globally with small computational overhead.

III. PARALLELIZATION OF OSPF-WS GA

In this research, the Ericsson scheme for OSPF-WS with GA

[5] is parallelized at the algorithm level. First, the con- ventional

serial version of the scheme is explained, then the proposed

parallelization version is introduced.

A. The serial algorithm of OSPF-WS GA

In the algorithm, both the evaluation routine and the evolu-

tion routine are processed in a large iteration loop for each

generation. The evaluation routine consists of an iteration of the

evaluation() function. In the evaluation() function, all routes for

demanded pairs are calculated by Dijkstra’s algorithm with

given weight set, which is initially taken to be link distance.

Second, flow size fe on every link on the network is calculated by

assignment of all demands to all links along the route. Finally,

the congestion ratio of the most congested link is returned as L.

This function of evaluation() is processed iteratively for

group-B and group-C genes in the evaluation routine. In the

subsequent evolution routine, the population is sorted based on

fitness value L and categorized into elites and non-elites. In

order to reduce the cost of sorting, the data element to be sorted

is a pointer to gene data, which is structured with fitness value

data. Hence, the population is managed by an array of this

structure. After sorting, the crossover() function is processed

iteratively to generate new genes of group-B. The crossover()

function chooses pairs of elite and non-elite genes by using

random numbers and then a new gene is generated. Since all

genes in group-B and group-C are potentially referred to in each

iteration of the crossover() function, these genes data are not

able to be rewritten until all iterations of crossover() function

have been processed. For this reason, buffers for new genes in

group-B are introduced, and new genes are written in the buffer.

After all iterations of crossover() function are processed, the

pointers of all genes in group-B are swapped. Finally, all genes

in group-C are replaced by random numbers as per the initial

genes. As all genes for the next generation are ready, the scheme

proceeds to the next generation.

B. proposed parallelization of OSPF-WS GA

This parallelization is processor-independent, so it makes no

assumption as to the number of processing elements. The main

for next Generation

. . .

buffer[B] buffer[C]

crossover() random()

evaluation() at individual timing

gene* ptr[A + B + C]

previous Generation
L

gene

L

gene

L

gene

elites[A] non-elites[B + C]

Fig. 3. Data structure for Parallelization

5

strategy is parallelization of the iterative process for each gene.

The scheme for OSPF-WS with GA is parallelized in two

steps. In the first step, the evaluation routine is parallelized. This

routine has only one iterative loop of the evaluation() function.

Both input data and output data for each evaluation() function

are independent, so this function can be processed in parallel

without any change. Then each iteration is parallelized and

processed by multiple threads. The number of threads equals the

number of cores and task assignment to each thread is performed

dynamically. Since the evaluation routine occupies the greatest

part of the total process in each gener- ation, parallelization of

evaluation achieves the most effective speedup.

The second step is global parallelization, where the evo-

lution routine is also parallelized. In this evolution routine,

random numbers are frequently used so the random number

table is parallelized first. Every execution of random() involves

modification of the table. If the table is shared, the speed of

accessing the table is low due to data coherency. Our solution is

to use as many random tables as there are threads.

The first process of evolution is to sort the genes. This is not

parallelized since its processing cost is negligible. The

remaining processes of evolution are three iteration loops for

crossover() function for group-B, pointer swap for group- B, and

generation of group-C. If these iteration loops are parallelized

individually, three parallel sections are created in this routine.

To reduce the computational overhead, our proposed scheme

minimizes the number of parallel sections. First, a buffer is

introduced for the generation of group-C genes as shown in

Figure 3. This allows group-C genes to be generated without

rewriting the non-elite genes referred to by group-B. All group-

B and group-C genes can be generated in parallel in the same

parallel section. Second, a buffer is also prepared for L data (and

is structured with the gene data buffer for better management)

for each of group-B and group-C genes. This buffer allows a

generated gene to be evaluated immediately and independently

without waiting for pointer swap. Then, the parallel section

processing group-B and group-C genes is merged with the

parallel section of the evaluation routine in the next generation.

This is, the order of the evaluation routine and evolution routine

in the large iteration loop is inverted. The pointer swapping is

performed for both genes and L values of all group-B and

group-C genes. Overall, except for the pointer swapping section,

three parallel sections are merged into one as shown in Figure 4.

Thus the proposed scheme consists of only two parallel sections

in total and so reduces the parallelization overhead.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed al-

gorithm. For this evaluation, OSPF-WS problems were created

by combining random traffic demands with randomly gener-

ated networks based on Waxman’s model [15]. All problems

were solved by ILP [7], a serial scheme of GA by Ericsson [5],

and the proposed parallel GA scheme. GA parameters such as

size of group-A, group-B, group-C were A = 300, B = 3000, C =

300, while K = 0.5, M = 0.01. For ILP, the CPLEX solver was

used. All calculations were performed on a 16-core Intel(R)

Xeon(R) CPU (E5-2687W 3.10GHz).

A. Speedup by Parallelization

First, the speedup achieved by parallelization was evalu- ated.

This proposed parallel scheme basically uses the same

procedure as Ericsson’s GA [5]. Therefore, the number of

generations processed per second is a fair measure of the

performance of each scheme. For the 10 sets of 15 node

networks and 10 sets of traffic demands, 100 generations were

measured for both schemes and averaged as units of 5 runs.

The results of speedup are shown in Table. I. This table lists the

results of serial scheme, partial parallel scheme (only eval-

uation routine is parallelized in the first step), and the proposed

globally parallelized scheme. The speedup value is normalized

against the serial scheme. Partial parallelization achieved a 6.85

times speedup while the scheme (global parallelization)

achieved a 13.16 times speedup. This speedup corresponds to

about parallelization of 99 percent. The reason why the proposal

failed to reach a 16 times speedup is as follows. First, using the

same data on multiple cores reduces the validity of cached data.

Accordingly, the metric of Instructions Per Second must be

degraded from 1.14 to 1.07 as shown in the table. Next, to

manage the parallel session, extra instructions such as

TABLE I

SPEEDUP BY PARALLELIZATION

 Serial
Parallel

(partial)

Parallel

(global)

time(sec) 3.068 0.375 0.233

speedup 1.0 8.17 13.16

IPC 1.14 0.82 1.07

Instructions (bn) 13.25 16.63 13.59

crossover() or replace

g
e
n
e
[0

]

g
e
n
e
[3

]

g
e
n
e
[2

]

g
e
n
e
[1

]

g
e
n
e
[1

5
]

evaluation()

sync

core #1#0 #3 #15#2

g
e
n
e
[0

]
g

en
e[

1
6
]

g
e
n
e
[1

5
]

g
e
n
e
[3

1
]

swap of pointers
sync

sort()(no jobs)

g
en

e[
1

]

g
en

e[
2

]

g
e
n
e
[3

]

Fig. 4. Image of Thread Graph in Proposal

6

synchronization or assignment of tasks are needed, as also

shown in the table.

B. Speedup by Parallelization

Next, the minimized L values output of both schemes are

evaluated. For this evaluation, 200 random demand pairs were

given for 10 random networks, each with 50 nodes. The L value

directly indicates the efficiency of network utilization. The

calculation time is 60 sec, which assumes dynamic weight

setting.

Table. II shows L values output by the conventional serial and

proposed parallel scheme. Even though network size and

number of demands are the same, the different networks yield

different problems and thus different optimal values. The

proposed scheme reduces L from 1.2 to 1.7 times, on average

1.46 times smaller (better) than the serial scheme.

Figure 5 shows the time variation in calculated L value which

is one of above results (taken for network #1). The horizontal

axis is logarithmic. Although stochastic search disperses the

plots slightly, it reduces L in most part.

C. Comparison with other scheme

Finally, the effectiveness of the proposed scheme for OSPF-

WS is shown as a comparison with other methods. Table III

shows OSPF-WS output by the proposed scheme (shown as

Prop.), ILP with CPLEX, and other constant weight setting

methods. Also, Figure 6 shows the time variation of L on

network #2. As constant setting methods, Minhop sets all

weights to 1, Cisco sets them to the inverse of bandwidth. To

achieve results from ILP, network size was set at 20 nodes and

calculation time at 800 sec.

As shown in the figure, since network size is small, the

proposal converges rapidly. On the other hand, ILP needs a long

time to output the first solution. As shown in the table, ILP could

not find any solution in 800 sec for some networks (#0, #2, #7).

As the network becomes larger, more problems become

insoluble by ILP. The L value of the proposed scheme is small

enough compared to Minhop or Cisco. In comparison with ILP,

the proposal generally yields the same solution. Even if the ILP

TABLE II

COMPARISON OF L WITH SERIAL SCHEME

Network Serial Parallel Serial/Parallel

#0 0.2512 0.1538 1.63

#1 0.2268 0.1724 1.32

#2 0.2390 0.1982 1.21

#3 0.2710 0.1697 1.60

#4 0.2323 0.1403 1.66

#5 0.2467 0.1967 1.25

#6 0.2163 0.1262 1.71

#7 0.1893 0.1179 1.61

#8 0.2844 0.2333 1.22

#9 0.2779 0.2000 1.39

Average 1.46

8000.05 1 10 100

0.45

0.12

0.15

0.2

0.25

0.3

0.35

0.4

Time(seconds)

L

Prop.

Conv.

Fig. 5. Serial vs. Parallel

TABLE III

L COMPARISON AGAINST OTHER SCHEMES

networ

k

Minho

p

Cisco ILP Prop. ILP/Prop.

#0 0.0833 0.3333 -- 0.0244 --

#1 0.0690 0.1563 0.0500 0.0500 1.00

#2 0.0682 0.1667 -- 0.0235 --

#3 0.0857 0.1333 0.0333 0.0333 1.00

#4 0.0761 0.0870 0.0500 0.0500 1.00

#5 0.1053 0.1333 0.0187 0.0208 0.90

#6 0.0714 0.2353 0.0200 0.0250 0.80

#7 0.1023 0.0909 -- 0.0215 --

#8 0.0606 0.1429 0.0257 0.0262 0.98

#9 0.1071 0.1875 0.0714 0.0313 2.28

10000.001 0.01 0.1 1 10 100

0.6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (seconds)

L

Minhop

Cisco

ILP

Prop.

Fig. 6. Proposed vs. ILP and others

7

solution is better (smaller L), the different is not significant.

V. CONCLUTION

OSPF-WS is an NP-hard problem so its computation cost is

excessive for any practical network size. Although ILP can

finally achieve a good solution, it fails to support dynamic

weight setting because it takes too long to identify the first fea-

sible solution. GA is preferred for dynamic weight setting but

calculation costs are huge if network size is large. Its support of

larger networks depends on the adoption of recent multiple CPU

core technology by parallelization at the algorithm level and

careful consideration of parallelization bottlenecks such as

computational overhead and the sequential fraction.

This paper introduced a parallelized OSPF-WS scheme for

multi-core CPU implementation as an enhancement of Erics-

son’s GA-based scheme [5]. This parallelization is performed

globally in both the evaluation routine and the evolution routine,

and computation overhead is minimized. The proposed scheme

achieves a roughly 13 times speedup on a 16 core CPU. The

solutions of the proposed scheme are comparable with those of

the ILP scheme, and it remains feasible even for larger networks

such as those with 50 nodes.

ACKNOWLEDGMENT

This work was supported by the Japan Society for the

Promotion of Science’s (JSPS) Grant-in-Aid for Scientific

Reseach(A) 22240004.

REFERENCES

[1] J. Moy, “OSPF Version 2,” IETF Proposed Standard, RFC 2328, April

1998.

[2] T.M. Thomas II. “OSPF Network Design Solutions.” Cisco Press, 1998.

[3] Eiji Oki and Ayako Iwaki, “Load-Balanced IP Routing Scheme Based on

Shortest Paths in Hose Model,” IEEE Transactions on Communications,

  Vol. 58, Issue 7, pp. 2088-2096, July 2010

[4] Ghazala, A.A., et al., “A Survey for Open Shortest Path First Weight

  Setting (OSPFWS) Problem,” International Conference on Information

Security and Assurance(ISA), April 2008.

[5] M. Ericsson, et al., “A Genetic Algorithm For The Weight Setting

Problem In Ospf Routing,” pp. 299-33, vol. 6, 2002.

[6] D.A. Patterson, J.L. Hennessy, “Computer Organization and Design,”

Fourth Edition, Morgan Kaufmann, November 2011.

[7] M. Pioro, et al., “On open shortest path first related network optimization

problems.Performance Evaluation,” pp. 201-223, vol. 48, 2002.

[8] Bernard Fortz and Mikkel Thorup,“Internet traffic engineering by opti-

mizing OSPF weights,” IEEE Conference on Computer Communications

(INFOCOM), pp. 519 Γ 528, vol. 2, 2000.

[9] Mohammed H. Sqalli, et al., “An Enhanced Estimator to Multi-objective

OSPF Weight Setting Problem”, Network Operations and Management

Symposium (NOMS), pp. 240 - 247, April 2006.

[10] J.H. Holland. “Adaptation in Natural and Artificial Systems,” MIT Press,

1975.

[11] Ting Lu, et al., “Genetic Algorithm for Energy-Efficient QoS Multicast

Routing,” IEEE Communications Letters, Vol. 17, Issue 1, pp. 31-34,

January 2013.

[12] Zuqing Zhu, et al., “Using Genetic Algorithm to Optimize Mixed Place-

ment of 1R/2R/3R Regenerators in Translucent Lightpaths for Energy-

Efficient Design,” IEEE Communications Letters, Vol. 16, Issue 2, pp.

262-264, February 2012.

[13] Dijkstra, E. W., “A note on two problems in connection with graphs,”

Numerische Mathematik, pp. 269 Γ 271, 1959.

[14] Gene M. Amdah, “Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities,” Proceeding of AFIPS

Conference, pp. 483 Γ 485, April 1967.

[15] B.M.Waxman, “Routing of multipoint connections,” IEEE Journal on

Selected Areas in Communications, vol. 6, issue 9, pp. 1617-1622., Dec

1988.

Ko Kikuta graduated from Keio University, Japan

where he received B.E. degrees in applied chemistry in

2007, and M.E. degrees in electronics engineering in

2009. Since 2007, he has been researching traffic

engineering for GMPLS, especially the next gener-

ation layer-2 network. He is currently researching a

network control technique. He is currently a Ph.D

candidate in Yamanaka Laboratory, Department of

Information and Computer Science, Keio University.

From 2009, he has also been a Research Assistant of

Global COE (Center of Excellence) program for High-Level global cooperation

for leading-edge platform on access spaces of the Ministry of Education,

Culture, Sports, Science, and Technology, Japan. Since 2011 he has been a

Research Fellow of Japan Society for the Promotion of Science (JSPS). Ko

Kikuta is a member of IEEE Comsoc. and IEICE.

Satoru Okamoto received his B.S.,M.S, and Ph.D.

degrees in electronics engineering from Hokkaido

University, Hokkaido, Japan in 1986, 1988 and 1994

respectively. In 1998, he joined Nippon Telegraph and

Telephone Corporation (NTT), Japan. Here, he

engaged in research on ATM cross-connect sys- tem

architectures, photonic switching system, optical path

network architectures, and developed GMPLS

controlled HIKARI router (Photonic MPLS router)

systems. He lead several GMPLS related interoper-

ability trials in Japan, such as the Photonic Internet

Lab (PIL), OIF world wide interoperability demo, and Keihanna Interoper-

ability Working Group. From 2006, he has been an Associate Professor of Keio

University. He is a vice co-chair of Interoperability Working Group of

Kei-han-na Info-communication Open Laboratory. He is now promoting

several research projects in the photonic network area. He received the young

Researchers’ Award and the Achievement Award in 1995 and 2000,

respectively. He has also received the IEICE/IEEE HPSR2002 outstanding

paper award. He is associate editor of the IEICE transactions and the OSA

Optics Express. He is an IEEE Senior Member and an IEICE Fellow.

 Eiji Oki is a Professor at the University of Electro-

Communications, Tokyo, Japan. He received the B.E.

and M.E. degrees in instrumentation engineer- ing and

a Ph.D. degree in electrical engineering from Keio

University, Yokohama, Japan, in 1991, 1993, and

1999, respectively. In 1993, he joined Nippon

Telegraph and Telephone Corporation (NTT) Com-

munication Switching Laboratories, Tokyo, Japan. He

has been researching network design and control,

traffic-control methods, and high-speed switching

systems. From 2000 to 2001, he was a Visiting Scholar at the Polytechnic

Institute of New York University, Brooklyn, New York, where he was involved

in designing terabit switch/router systems. He was engaged in researching and

developing high-speed optical IP backbone networks with NTT Laboratories.

He joined the University of Electro- Communications, Tokyo, Japan, in July

2008. He has been active in the standardization of path computation element

(PCE) and GMPLS in IETF. He has written more than ten IETF RFCs and

drafts. Prof. Oki was the recipient of the 1998 Switching System Research

Award and the 1999 Excellent Paper Award presented by IEICE, the 2001

Asia-Pacific Outstanding Young Researcher Award presented by IEEE

Communications Society for his contribution to broadband network, ATM, and

optical IP technologies, and the 2010 Telecom System Technology Prize by the

Telecommunications Advanced Foundation. He has authored/co-authored four

books, Broadband Packet Switching Technologies, published by John Wiley,

New York, in 2001, GMPLS Technologies, published by CRC Press, Boca

Raton, FL, in 2005, Advanced Internet Protocols, Services, and Applications,

8

published by Wiley, New York, in 2012, and Linear Programming and

Algorithms for Communication Networks, CRC Press, Boca Raton, FL, in

2012. He is an IEEE Fellow.

 Naoaki Yamanaka graduated from Keio University, Japan where he received

B.E., M.E., and Ph. D. degrees in engineering in 1981, 1983 and 1991,

respectively. In 1983 he joined Nippon Telegraph and Telephone Corporation’s

(NTT’s) Communica- tion Switching Laboratories, Tokyo, Japan, where he was

engaged in the research and development of a

high-speed switching system and high-speed

switching technologies for Broadband ISDN ser-

vices. Since 1994, he has been active in the develop-

ment of ATM-based backbone networks and systems

including Tb/s electrical/Optical backbone switching

as NTT’s Distinguished Technical Member. He is now

researching the future optical IP network, and optical

MPLS router systems. He is currently a professor of

Keio Univ. and representative of Photonic Internet

Lab. (PIL). He has published over 126 peer- reviewed journal and transaction

articles, written 107 international conference papers, and been awarded 182

patents including 21 international patents. Dr. Yamanaka received Best of

Conference Awards from the 40th, 44th, and 48th IEEE Electronic Components

and Technology Conference in 1990, 1994 and 1998, TELECOM System

Technology Prize from the Telecommunications Advancement Foundation in

1994, IEEE CPMT Transactions Part B: Best Transactions Paper Award in

1996 and IEICE Transaction Paper Award in 1999. Dr. Yamanaka is Technical

Editor of IEEE Communication Magazine, Broadband Network Area Editor of

IEEE Communication Surveys, and was Editor of IEICE Transaction as well as

vice director of Asia Pacific Board at IEEE Communications Society. He is an

IEEE Fellow and an IEICE Fellow.

