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Abstract—Open Shortest Path First (OSPF) is one of the most 

widespread routing protocols in the world. In OSPF networks, 

routers calculate the paths for every traffic demand, based on 

weight values that are configured in advance. OSPF Weight 

Setting (OSPF-WS) is an NP-hard search problem; find the set of 

weights that maximizes network utilization. Internet Service 

Providers (ISPs) are facing the challenge of solving OSPF- WS 

within practical time and find the best weight set for the efficient 

use of the network. One heuristic approach, a scheme based on the 

Genetic Algorithm (GA), has been reported to offer fast solution of 

OSPF-WS. This scheme identifies good solutions comparable with 

the output of the conventional Integer Linear Programming (ILP) 

scheme. However, its calculation cost is still excessive for larger 

networks, thus higher processing performance is required. 

Unfortunately, the processing speed of single processing cores has 

become saturated, and the recent trend is a shift to multi-core 

processors. To best utilize the performance offered by these 

processors, the algorithm should be redesigned and suitably 

parallelized for multi-core CPUs. This paper redesigns the scheme 

of OSPF-WS with GA to create a parallelized algorithm with much 

lower computation overhead. Its performance is evaluated on a 

16-core Intel Xeon processor and the result is a roughly 13 fold 

faster calculation speed than the original algorithm on a 

single-core CPU. This result shows the potential of further 

speedups with larger scale parallel processing units such as the 

GPGPU. 

 
Index Terms—OSPF-WS, Traffic Engineering, Genetic Algo- 

rithm, Parallelization. 

I. INTRODUCTION 

OMPUTER networks such as the Internet have become one 

of the infrastructures necessary for people nowadays. 

Internet Service Providers (ISPs) are responsible for the 

exchange of customer’s data while satisfying the QoS 

requirements specified in the Service Level Agreements (SLAs). 

For efficient operation of limited network resources, Traffic 

Engineering (TE) is the most important challenge for ISPs. 
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Open Shortest Path First (OSPF) [1] is the most widely- 

spread intra-domain routing protocol in the Internet. In an OSPF 

network, the routes for the data traffic are determined by link 

weights. Each link is assigned a link weight, a 16-bit integer 

value ranging from 1 to 65535. Every router exchanges its 

weight value throughout the Autonomous System (AS) and a 

shortest-path is calculated for each source-destination pair 

considering the weight value as the virtual distance of a link. A 

larger link weight value makes the link unlikely to be the 

shortest-path, so all traffic flows are determined by the setting of 

weights. Additionally, routers divide traffic flow equally for 

Equal Cost Multi Path (ECMP) if there are multiple shortest- 

paths available. If TE is to realize the efficient use of the 

network, which may involve ECMP, weight setting is crucial 

task for ISPs. As a leading router vender, Cisco recommended 

the capacity-inverse setting of link weights [2]. When the traffic 

demand is estimative, this approach does not appear to be the 

best way. 

If the network is represented as directed graph G = (N, E), and 

the traffic demand is given by matrix D = {Dst : s ∈ V, t ∈ V} (s and t 

denote a source node and a destination node, respect- 

tively, and Dst is a traffic demand from s to t), weight set W = 

{w1, w2, ..., w|E|} determines the routes for all traffic flows, and 

thus the congestion ratio fe/Ce, on any edge e (fe denotes the total 

of the traffic flows on edge e, Ce denotes the capacity of edge e). 

Minimizing L = maxe∈E (fe/Ce), the congestion ratio on the most 

congested link, maximizes network utilization according to [3], 

OSPF Weight Setting (OSPF-WS) is the problem of identifying 

W that minimizes L and maximizes network utilization under 

given demand matrix D. This prob- 

lem is known to be NP-hard so computation cost instantly 

becomes excessive when network size increases. ISPs are 

forever trying to solve OSPF-WS within a practical time period 

in the face of this complexity. 

If OSPF-WS is to be practical, the calculation time must be 

limited. If a traffic demand is updated, the current weight set 

may not be suitable for the updated traffic demand. There- fore, 

a new weight set needs to be calculated in a dynamic manner to 

follow the traffic demand changes for the given network 

topology. Note that the network topology may also be optimized 

as in the case of a virtual network such as an optical-path 

network, which consists of optical paths that can be dynamically 

setup and released according to traffic demand changes. In this 
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situation, multi-layer optimization is required so as to configure 

both the virtual network and OSPF weight setting. To achieve 

multi-layer optimization, an interactive computation between 

the virtual network optimization and the OSPF weight 

optimization is performed. Since the OSPF weight optimization 

for a given virtual network topology is required iteratively, it 

should be performed extremely rapidly. 

Several calculation schemes for OSPF-WS have been intro- 

duced [4]. The two main types of solutions: Integer Linear 

Programming (ILP) and heuristic search. In the former, ILP, the 

network optimization problem of OSPF-WS is transformed into 

a mathematical ILP problem to allow application of the ILP 

solver. ILP was originally designed to find the optimal solution 

by exhaustive search, but also to find near-optimal solutions as 

preliminary results of that search. The ILP solver can finally 

achieve a good solution, but it takes a long time, even for the 

first feasible solution. This time is not short enough for dynamic 

weight setting unless the network is small. ILP computation is 

not reliable since there is no assurance that even the first solution 

will be available within a practical time. Therefore, ILP is 

inadequate for dynamic weight setting. 

On the other hand, heuristic search ignores the optimal 

solution to secure close-to-optimal solutions in much shorter 

times. Most OSPF-WS schemes employ metaheuristics. One of 

them is based on Genetic Algorithm (GA) proposed by Ericsson 

et al. [5]. While this scheme does not guarantee the accuracy due 

to its use of stochastic search, the solution is, on average, 

comparable to ILP. Additionally, the best solution is always 

available at any moment during the calculation in this scheme. 

Thus the scheme is preferred for dynamic weight setting. 

However, its calculation costs are still huge when the network 

size is large. Its support of larger networks revolves around the 

processing performance. 

Recent CPU venders are focusing on the development of 

multi-core CPUs since clock speed has reached a technical 

limitation [6]. Unlike over-clocking the CPU, providing more 

processing cores does not directly accelerate the original 

algorithms designed for single-thread processing. To utilize the 

full performance of parallel core technology, the scheme must 

be redesigned at the algorithm level. No parallel version of 

OSPF-WS has been reported to date. 

This paper parallelizes OSPF-WS for multi-core CPUs and so 

enables TE by dynamic weight setting. The proposed scheme, 

based on [5], is evaluated on a 16 core Intel Xeon Processor. It is 

shown to be about 13 times faster than the original algorithm 

designed for single-core implementation. 

II. RELATED RESEARCH 

A. OSPF-WS with Integer Liner Programming 

ILP is a mathematical approach to the optimization problem 

of minimizing (or maximizing) an objective function under a 

given constraint. To solve OSPF-WS with ILP, the problem, one 

objective function and a number of constraint conditions, is first 

expressed as equations and inequalities, where all functions 

must be linear and able to include integer variables. 

A typical ILP scheme is proposed in [7]. In this scheme, 

OSPF-WS is expressed as follows, (the expression are slightly 

modified and comments are added for understanding). 

The OSPF network is expressed by directed graph G = (V, E) 

where a node denotes a router and an edge denotes a link. Edge e 

∈ E has bandwidth capacity of ce, demands are given as matrix 

D and element Dst denotes the traffic demand from source node 

s∈V to t∈V, Vd ⊆V is a set of destination nodes. 

 

Decision Variables: 

fe
t
 : amount of traffic flow to destination t on edge e 

xe
t
 : binary variable denoting if flow fe

t
 exists or not 

fv
t
 : amount of split flow to node t on node v   

we : weight value of edge e   

dv
t
 : shortest distance from node v to destination t  

L : the maximum link load over all edges 

 

Flow Conservation Constraints: 

 

 (1)
 

  (2)
 

 

Equations (1) and (2) define the relationship between incoming 

and outgoing flows. Eq. (1) ensures that flows are terminated at 

their destination nodes, and Eq. (2) ensures flow conservation 

since the difference between incoming flows and locally 

dropped flows must equal the flows passed on to other nodes. 

 

Flow Splitting Constraints : 

 

 (3) 

 (4) 

 (5) 

 

Inequality (3) ensures that only when the binary variable xe
t
 is 

equal to 1 can fe
t
 be a non-zero value, provided M is a very large 

number, (This M can be set to the sum of Dv
t
 ). Hence, if fe

t
 is 

non-zero, xe
t
 must be 1. In this case, the inequalities (4) and (5) 

ensure that fe
t
 must be equal to fv

t
. On another front, if both xe

t
 

and fe
t
 are zero, inequalities (4) and (5) have no effect on fv

t
. 

Therefore, fe
t
 must be fv

t
 or zero according on xe

t
. In this way, 

equal flow splitting is realized by virtual value fv
t
 . 

 

Feasible Distance Label Constraint : 

 

 (6) 

 (7) 

 (8) 
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The mechanism of inequalities (6), (7) and (8) is somewhat 

complex. If edge e has a flow to destination t, xe
t
 equals 1 (as 

shown before), then dv
t
 + we equals du

t
 according to inequalities 

(6) and (7). Since every neighbor node pair at the ends of edge e 

along the path has this relationship, du
t
 must be sum of we on the 

path. On the other hand, the other edges out of paths that have xe
t
 

equal to zero must not be the shortest path since dv
t
 + we is 

greater than du
t
 according to the inequalities (8). In this way, if a 

flow exists and xe
t
 equals to 1, it is ensured that the edge e is on 

the shortest path. 

 

 (9)
 

 

The last inequality (10) ensures that the maximum value of the 

link congestion ratio is less than L. Since L is to be minimized, L 

indicates the maximum value of link congestion ratio. 

 

 

 

 

The ILP problem can, as expressed above, be tackled by ILP 

solver software. CPLEX was developed by IBM and has 

become one of the most popular commercially available ILP 

solvers, and used in [7]. CPLEX reads the problem as the input 

of the objective function and multiple equations and 

inequalities, then starts its run. The functions are analyzed and a 

solution is located. In most cases, CPLEX derives better 

solutions than naive heuristic search as explained later. 

ILP solvers output sets of decision variables, not just a 

weight set. That is, the solution space of ILP includes infea- 

sible solutions which do not satisfy one or more restrictions. 

During the solution search, the ILP solvers try to minimize the 

objective function, L. When all variables satisfy all restric- 

tions, the solver can output the first feasible solution, which 

includes a weight set. Unfortunately, the time taken to reach the 

first solution becomes exponentially large if network size is 

large. In this case, the ILP solver fails to output any weight set in 

practical calculation time. 

 

B. OSPF-WS with Genetic Algorithm 

On the other hand, heuristic search finds solutions based on 

experience rather than identifying the optimum solution. For 

OSPF-WS, some heuristic search schemes based on meta- 

heuristics are reported in [4]. B. Fortz et al. [8] presented the 

Local Search algorithm and M.H.Sqalli et al. [9] presented 

Simulated Annealing; Ericsson et al. used the Genetic Algo- 

rithm [5] to solve OSPF-WS. 

GA is a metaheuristic proposed in [10] that imitates the 

principle of natural selection. GA has been applied to various 

optimization problems even in the networking area, such as 

multicast routing [11] and regenerator placement [12]. In GA, 

each solution candidate (called individual) is expressed as a 

gene, and it forms a group (called population). In the population, 

evolutionary events such as inheritance, mutation, selection and 

crossover are performed iteratively (each itera- tion is called a 

generation). In each generation, the individuals are evaluated by 

some fitness metric. The individuals that have, or potentially 

have, better fitness are generated by evolution. A gene is the data 

that encodes the property of the individuals. As the gene evolves 

in every generation, the best solution is improved. More details 

such as gene encoding, function to calculate fitness, and the 

procedure of evolution depend on the scheme. These procedures 

govern GA performance. 

 

Figure 1 shows Ericsson’s GA for OSPF-WS [5]. In this 

scheme, a gene is directly encoded as an OSPF-WS weight set, 

and the fitness value is L. The population size per generation is 

evaluation() calculate each fitness value, L

sort() sort and extract elites based on L

elites[A] non-elites[B + C]

group-b[B] group-c[C]group-a[A]

keep

Generation i

gene = int weight[E]

Generation i+1

crossover()

random()

 
 

Fig. 1.  Erricsson’s scheme of GA for OSPF-WS 

elite non_elite

group-B

ratio(elite : non_elite) =   K : (1 - K)

(prob. = M)

mutation rand()

define crossover(elite[ E ],  non-elite[ E ])

 int child[ E ];

 for each i in { E }

  float r = ( rand() % RAND_MAX  ) – M;

  if  r < 0

   child[ i ] = rand() % WMAX;

  else if  r < K

   child[ i ] = elite[ i ];

  else

   child[ i ] = non-elite[ i ];

  end

 end

 return child; 

end

 
 

Fig. 2.  Crossover Function 
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constant at P, and all initial genes are given by random numbers. 

Each generation is associated with two routines; one evaluates 

all individuals and the other creates new genes by evolving the 

current genes. In the latter, first all genes are sorted based on 

fitness value and categorized as either an elite genes or a 

non-elite gene. The elite genes are preserved as group-A genes 

of next generation. The group-B genes are processed by a 

crossover function where randomly chosen pairs of elite and 

non-elite genes are recombined to yield new genes. Group-C 

genes are created by setting random numbers. If group size is 

expressed as A, B and C, the total population P = A + B +C (that 

is, number of elite genes is A, number of non-elite is B + C). 

After all genes have been processed or generated, the scheme 

proceeds to the next generation. 

Figure 2 shows the crossover function generating group-B 

genes which is characteristic of the Genetic Algorithm. To 

generate a new gene, one elite gene and one non-elite gene are 

chosen at random and recombined. Each value in the array of the 

weight set of the new gene is selected from the elite gene or the 

non-elite gene at the same position. The selection is biased by 

parameter K, so the elite gene value is selected with probability 

of K, the non-elite with probability (1 − K). Furthermore, the 

rare event of mutation (replacement by a random value) is 

determined by parameter M. A pseudo code that performs 

weight selection with one random number is shown in the right 

part of Fig. 2. The genes generated by this crossover potentially 

have better fitness value. If some of them are better than some 

the current group-A entries, they replace the group-A entries in 

the next generation. Evolution is performed in this manner. 

The important issue with algorithm acceleration on a multi- 

core CPU is represented by Amdahl’s law [14]. According to 

this law, the speedup possible with parallelization is limited to 

the sequential fraction of the whole process. When a scheme is 

parallelized on N processing elements with a fraction of x of 

total running time, the theoretical ratio of processing speed S(N) 

accelerated by parallelization is given as follows. 

  (10) 

More specifically, parallelizing 90 percent of the whole process 

(x = 90) on 16 cores (N = 16) achieves a 6.4 times speedup. If a 

10 times speedup is needed, 96 percent of the whole process 

should be parallelized. Furthermore, the computational 

overhead of parallelization such as synchronization latency and 

processing time of thread management is another factor limiting 

the speedup. For effective parallelization, the scheme must be 

parallelized globally with small computational overhead. 

 

III. PARALLELIZATION OF OSPF-WS GA 

In this research, the Ericsson scheme for OSPF-WS with GA 

[5] is parallelized at the algorithm level. First, the con- ventional 

serial version of the scheme is explained, then the proposed 

parallelization version is introduced. 

 

A. The serial algorithm of OSPF-WS GA 

In the algorithm, both the evaluation routine and the evolu- 

tion routine are processed in a large iteration loop for each 

generation. The evaluation routine consists of an iteration of the 

evaluation() function. In the evaluation() function, all routes for 

demanded pairs are calculated by Dijkstra’s algorithm with 

given weight set, which is initially taken to be link distance. 

Second, flow size fe on every link on the network is calculated by 

assignment of all demands to all links along the route. Finally, 

the congestion ratio of the most congested link is returned as L. 

This function of evaluation() is processed iteratively for 

group-B and group-C genes in the evaluation routine. In the 

subsequent evolution routine, the population is sorted based on 

fitness value L and categorized into elites and non-elites. In 

order to reduce the cost of sorting, the data element to be sorted 

is a pointer to gene data, which is structured with fitness value 

data. Hence, the population is managed by an array of this 

structure. After sorting, the crossover() function is processed 

iteratively to generate new genes of group-B. The crossover() 

function chooses pairs of elite and non-elite genes by using 

random numbers and then a new gene is generated. Since all 

genes in group-B and group-C are potentially referred to in each 

iteration of the crossover() function, these genes data are not 

able to be rewritten until all iterations of crossover() function 

have been processed. For this reason, buffers for new genes in 

group-B are introduced, and new genes are written in the buffer. 

After all iterations of crossover() function are processed, the 

pointers of all genes in group-B are swapped. Finally, all genes 

in group-C are replaced by random numbers as per the initial 

genes. As all genes for the next generation are ready, the scheme 

proceeds to the next generation. 

 

B. proposed parallelization of OSPF-WS GA 

This parallelization is processor-independent, so it makes no 

assumption as to the number of processing elements. The main 

for next Generation

. . .

buffer[B] buffer[C]

crossover() random()

evaluation()  at individual timing

gene* ptr[ A + B + C ]

previous Generation
L

gene

L

gene

L

gene

elites[A] non-elites[B + C]

 
 
Fig. 3.  Data structure for Parallelization 
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strategy is parallelization of the iterative process for each gene. 

The scheme for OSPF-WS with GA is parallelized in two 

steps. In the first step, the evaluation routine is parallelized. This 

routine has only one iterative loop of the evaluation() function. 

Both input data and output data for each evaluation() function 

are independent, so this function can be processed in parallel 

without any change. Then each iteration is parallelized and 

processed by multiple threads. The number of threads equals the 

number of cores and task assignment to each thread is performed 

dynamically. Since the evaluation routine occupies the greatest 

part of the total process in each gener- ation, parallelization of 

evaluation achieves the most effective speedup. 

The second step is global parallelization, where the evo- 

lution routine is also parallelized. In this evolution routine, 

random numbers are frequently used so the random number 

table is parallelized first. Every execution of random() involves 

modification of the table. If the table is shared, the speed of 

accessing the table is low due to data coherency. Our solution is 

to use as many random tables as there are threads. 

The first process of evolution is to sort the genes. This is not 

parallelized since its processing cost is negligible. The 

remaining processes of evolution are three iteration loops for 

crossover() function for group-B, pointer swap for group- B, and 

generation of group-C. If these iteration loops are parallelized 

individually, three parallel sections are created in this routine. 

To reduce the computational overhead, our proposed scheme 

minimizes the number of parallel sections. First, a buffer is 

introduced for the generation of group-C genes as shown in 

Figure 3. This allows group-C genes to be generated without 

rewriting the non-elite genes referred to by group-B. All group- 

B and group-C genes can be generated in parallel in the same 

parallel section. Second, a buffer is also prepared for L data (and 

is structured with the gene data buffer for better management) 

for each of group-B and group-C genes. This buffer allows a 

generated gene to be evaluated immediately and independently 

without waiting for pointer swap. Then, the parallel section 

processing group-B and group-C genes is merged with the 

parallel section of the evaluation routine in the next generation. 

This is, the order of the evaluation routine and evolution routine 

in the large iteration loop is inverted. The pointer swapping is 

performed for both genes and L values of all group-B and 

group-C genes. Overall, except for the pointer swapping section, 

three parallel sections are merged into one as shown in Figure 4. 

Thus the proposed scheme consists of only two parallel sections 

in total and so reduces the parallelization overhead. 

IV. PERFORMANCE EVALUATION 

This section evaluates the performance of the proposed al- 

gorithm. For this evaluation, OSPF-WS problems were created 

by combining random traffic demands with randomly gener- 

ated networks based on Waxman’s model [15]. All problems 

were solved by ILP [7], a serial scheme of GA by Ericsson [5], 

and the proposed parallel GA scheme. GA parameters such as 

size of group-A, group-B, group-C were A = 300, B = 3000, C = 

300, while K = 0.5, M = 0.01. For ILP, the CPLEX solver was 

used. All calculations were performed on a 16-core Intel(R) 

Xeon(R) CPU (E5-2687W 3.10GHz). 

 

A. Speedup by Parallelization 

First, the speedup achieved by parallelization was evalu- ated. 

This proposed parallel scheme basically uses the same 

procedure as Ericsson’s GA [5]. Therefore, the number of 

generations processed per second is a fair measure of the 

performance of each scheme. For the 10 sets of 15 node 

networks and 10 sets of traffic demands, 100 generations were 

measured for both schemes and averaged as units of 5 runs. 

The results of speedup are shown in Table. I. This table lists the 

results of serial scheme, partial parallel scheme (only eval- 

uation routine is parallelized in the first step), and the proposed 

globally parallelized scheme. The speedup value is normalized 

against the serial scheme. Partial parallelization achieved a 6.85 

times speedup while the scheme (global parallelization) 

achieved a 13.16 times speedup. This speedup corresponds to 

about parallelization of 99 percent. The reason why the proposal 

failed to reach a 16 times speedup is as follows. First, using the 

same data on multiple cores reduces the validity of cached data. 

Accordingly, the metric of Instructions Per Second must be 

degraded from 1.14 to 1.07 as shown in the table. Next, to 

manage the parallel session, extra instructions such as 

TABLE I 

SPEEDUP BY PARALLELIZATION 

 Serial 
Parallel 

(partial) 

Parallel 

(global) 

time(sec) 3.068 0.375 0.233 

speedup 1.0 8.17 13.16 

IPC 1.14 0.82 1.07 

Instructions (bn) 13.25 16.63 13.59 
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Fig. 4.  Image of Thread Graph in Proposal 
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synchronization or assignment of tasks are needed, as also 

shown in the table. 

 

B. Speedup by Parallelization 

Next, the minimized L values output of both schemes are 

evaluated. For this evaluation, 200 random demand pairs were 

given for 10 random networks, each with 50 nodes. The L value 

directly indicates the efficiency of network utilization. The 

calculation time is 60 sec, which assumes dynamic weight 

setting. 

Table. II shows L values output by the conventional serial and 

proposed parallel scheme. Even though network size and 

number of demands are the same, the different networks yield 

different problems and thus different optimal values. The 

proposed scheme reduces L from 1.2 to 1.7 times, on average 

1.46 times smaller (better) than the serial scheme. 

Figure 5 shows the time variation in calculated L value which 

is one of above results (taken for network #1). The horizontal 

axis is logarithmic. Although stochastic search disperses the 

plots slightly, it reduces L in most part. 

 

 

C. Comparison with other scheme 

Finally, the effectiveness of the proposed scheme for OSPF- 

WS is shown as a comparison with other methods. Table III 

shows OSPF-WS output by the proposed scheme (shown as 

Prop.), ILP with CPLEX, and other constant weight setting 

methods. Also, Figure 6 shows the time variation of L on 

network #2. As constant setting methods, Minhop sets all 

weights to 1, Cisco sets them to the inverse of bandwidth. To 

achieve results from ILP, network size was set at 20 nodes and 

calculation time at 800 sec. 

As shown in the figure, since network size is small, the 

proposal converges rapidly. On the other hand, ILP needs a long 

time to output the first solution. As shown in the table, ILP could 

not find any solution in 800 sec for some networks (#0, #2, #7). 

As the network becomes larger, more problems become 

insoluble by ILP. The L value of the proposed scheme is small 

enough compared to Minhop or Cisco. In comparison with ILP, 

the proposal generally yields the same solution. Even if the ILP 

TABLE II 

COMPARISON OF L WITH SERIAL SCHEME 

Network Serial Parallel Serial/Parallel 

#0 0.2512 0.1538 1.63 

#1 0.2268 0.1724 1.32 

#2 0.2390 0.1982 1.21 

#3 0.2710 0.1697 1.60 

#4 0.2323 0.1403 1.66 

#5 0.2467 0.1967 1.25 

#6 0.2163 0.1262 1.71 

#7 0.1893 0.1179 1.61 

#8 0.2844 0.2333 1.22 

#9 0.2779 0.2000 1.39 

Average 1.46    
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Fig. 5.  Serial vs. Parallel 

 

TABLE III 

L COMPARISON AGAINST OTHER SCHEMES 

networ

k 

Minho

p 

Cisco ILP Prop. ILP/Prop. 

#0 0.0833 0.3333 -- 0.0244 --   

#1 0.0690 0.1563 0.0500 0.0500 1.00   

#2 0.0682 0.1667 -- 0.0235 --   

#3 0.0857 0.1333 0.0333 0.0333 1.00   

#4 0.0761 0.0870 0.0500 0.0500 1.00   

#5 0.1053 0.1333 0.0187 0.0208 0.90   

#6 0.0714 0.2353 0.0200 0.0250 0.80   

#7 0.1023 0.0909 -- 0.0215 --   

#8 0.0606 0.1429 0.0257 0.0262 0.98   

#9 0.1071 0.1875 0.0714 0.0313 2.28   
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Fig. 6.  Proposed vs. ILP and others 
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solution is better (smaller L), the different is not significant. 

V. CONCLUTION 

OSPF-WS is an NP-hard problem so its computation cost is 

excessive for any practical network size. Although ILP can 

finally achieve a good solution, it fails to support dynamic 

weight setting because it takes too long to identify the first fea- 

sible solution. GA is preferred for dynamic weight setting but 

calculation costs are huge if network size is large. Its support of 

larger networks depends on the adoption of recent multiple CPU 

core technology by parallelization at the algorithm level and 

careful consideration of parallelization bottlenecks such as 

computational overhead and the sequential fraction. 

This paper introduced a parallelized OSPF-WS scheme for 

multi-core CPU implementation as an enhancement of Erics- 

son’s GA-based scheme [5]. This parallelization is performed 

globally in both the evaluation routine and the evolution routine, 

and computation overhead is minimized. The proposed scheme 

achieves a roughly 13 times speedup on a 16 core CPU. The 

solutions of the proposed scheme are comparable with those of 

the ILP scheme, and it remains feasible even for larger networks 

such as those with 50 nodes. 
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