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Abstract—Cooperative MIMO explores the wireless communi-
cation schemes between multiple sensors emphasizing the mul-
tiple input multiple output (MIMO) structure. In this paper, an
energy efficient cooperative technique is proposed for a wireless
sensor network (WSN) where selected numbers of sensors at
the transmitting end are used to form a MIMO structure
wirelessly connected with selected numbers of sensors at the
receiving end. The selection of nodes in the transmitting end is
based on a selection function which is a combination of channel
condition, residual energy, inter sensor distance in a cluster and
geographical location whereas the selection in receiving side is
performed on the basis of channel condition. Data are sent by
the sensors in a cluster to a data gathering node (DGN) using a
multihop transmission. We are concentrating our design on the
intermediate hop where sensors in a cluster transmit their data
to the sensors in another cluster with MIMO communication. In
this study, a mathematical model has been developed for higher
probability subset of sensors from a number of available sensors
in a cluster. Simulation results show that the selected approach
shows better performance in terms energy efficiency.

Index Terms—Cooperative technique, probabilistic approach,
selection function, MIMO, wireless sensor networks

I. INTRODUCTION

With recent technical and technological advances in wireless
sensor network (WSN), it becomes possible to envisage not
only simple non real-time WSN data collections but also more
complicated real-time WSN applications including surveil-
lance, intrusion detection and environmental monitoring [1].
The size of sensors is typically small but the functions inside
the sensor are complex. Recent hardware advancements allow
more signal processing functionality to be integrated into a
single sensor chip. RF transceiver, A/D and D/A converters,
base band processors, and other application interfaces are
integrated into a single device to be used as a smart wireless
node. System on chip (SoC) and Network on Chip (NoC) have
been developed for integrated system design of those kinds of
applications. A wireless sensor network typically consists of a
large number of sensor nodes distributed over a certain region.
Monitoring node (MN) monitors its surrounding area, gathers
application-specific information, and transmits the collected
data to a data gathering node (DGN) or a gateway. Energy
issues are more critical in the case of MNs rather than in the
case of DGNs since MNs are remotely deployed and it is not
easy to frequently change the energy sources. Therefore, the
MNs have been the principal design issue for energy limited
wireless sensor network design. MIMO [2], [3] is a potential

candidate for energy efficient design for a targeted probability
of bit error rate at the receiver. There has been a great amount
of research on various MIMO techniques (including MISO
and SIMO) in wireless communication systems due to its
diversity and BER improvements. But the fact that MIMO
techniques could require complex transceiver circuitry and
signal processing leading to large power consumptions at the
circuit level has precluded the application of MIMO techniques
to energy limited wireless sensor networks. Moreover, physical
implementation of multiple antennas at a small-size sensor
node may not be feasible. The solution came in the form
of cooperative MIMO [2-5]. Cooperative MIMO is a kind
of MIMO technique where the multiple inputs and outputs
are formed via cooperation. The concept has been proposed
to achieve MIMO capability in a network of single antenna
nodes. The sensors cooperate with each other to form a
multiple input multiple output structure. The results in [2]
show that cooperative MIMO based sensor networks may
in fact lead to better energy efficiency and smaller end-
to-end delay. Later this idea has been improved in [3] by
Jayaweera considering channel estimation (training overhead)
in the DGN side. Recently this technique is further modified
in [8] by Y. Gai considering data aggregation at the cluster
head. However, these cooperative techniques consider all the
monitoring nodes to cooperate with each other for energy
efficient communication. Since all the nodes are transmitting
the data, energy is utilized inefficiently. One approach to the
node selection is done by Mr. I. Ahmed in [9], [22] where
the nodes are selected on the basis of geometric locations of
the MNs. Another approach for node selection is taken in [5],
[25] where the node selection is done on the basis of channel
gain parameter.

In this paper, we propose a selection based cooperative
communication for energy-limited wireless sensor networks
where the multiple sensors in input and output cluster form the
MIMO structure. The selection of nodes in the input cluster
is based on a selection function which is a combination of
channel condition, residual energy, inter sensor distance in a
cluster and geographical location of the sensors whereas the
nodes in the output cluster is selected on the basis of channel
condition only. We derive a probabilistic model for selecting
a sensor in a cluster. This probabilistic approach addresses the
importance of a node to be included for selective transmission.

The remainder of this paper is organized as follows: In
section 2, the proposed system model of selective approach is



introduced. In section 3, probabilistic model is developed with
mathematical derivations. Section 4 shows the energy model
and simulation results are discussed in section 5. Section 6
concludes this paper.

II. SYSTEM MODEL

Our system model is a centralized wireless sensor network
suitable to applications like IEEE 1451.5 standard, where
many clusters with several sensors are connected wirelessly
with the DGN using multihop communication. We are con-
centrating our design on cluster to cluster communication
which is an intermediate hop between the cluster to DGN data
transmission. The system model is shown in Fig. 1. We assume
a system with narrowband, frequency-flat Rayleigh fading
channels and perfectly synchronized transmission/reception
between wireless sensor nodes. We consider Nt transmitted
and Nr received antennas each placed at a sensor. The received
discrete-time signal is attenuated by a Nt×Nr channel matrix
H of scalar fading coefficients. We assume each element in H
is a zero-mean circulant symmetric complex Gaussian random
variable with unit variance. The fading is assumed constant
during the transmission of each frame. Unless otherwise
specified, the terms node, sensor and MN are considered as
synonyms to each other.
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Fig. 1. System model for cluster to cluster communication in wireless sensor
network

For sensor networks, maximizing the network lifetime is
the main concern and it directly depends on the total energy
consumption. To reduce the energy consumption, energy ef-
ficient transmission is necessary. Since MIMO can provide
energy savings in fading channels [12] we can use it in the
form of cooperative MIMO to transmit data from a cluster
to another cluster. Energy efficient transmission is possible
using cooperative transmission [2], [3] but the use of all
the sensors in a cluster make the cooperative transmission
inefficient. Recently researches have been done to optimize the
cooperative transmission by using single parameter selection
of cooperative nodes [5], [9]. But all these single parameter
node selection algorithms are incomplete in a sense that they
are not considering all the selection parameters which con-
tribute to minimize energy consumption. Residual energy and
inter sensor distance in a cluster are two important parameters
which are not yet explored for the node selection. Probabilistic

approach using these parameters is not developed. The solution
for these problems is to include all the selection parameters us-
ing a selection function and develop the effect of probabilistic
approach using this selection function.

A. Construction of selection function

Cooperative MIMO works with multiple sensors and it is
possible to choose a number of sensors aomong the available
sensors. To achieve the near optimal solution, several selection
parameters need to be considered in the form of a selection
function. If the cluster head can dynamically select the sensors
with better selection parameters, it can help to reduce the
overall energy consumption. The overall energy consumption
largely varies due to several parameters: i) channel condition
ii) residual energy iii) inter sensor distance in a cluster and
iv) geographical location of the sensors. These parameters are
the potential candidates for node selection.

In this paper we propose an idea of using selected number
of sensors from available active sensors to transmit the data of
all the sensors in a cluster for more energy efficiency. Channel
condition parameter h is a critical issue in transmitting data
to a distant receiver. The signal power drops off due to three
effects: mean propagation path loss, macroscopic fading and
microscopic fading. To represent the channel condition, we
only use microscopic fading since the other effects can be
easily minimized using controlled transmission [12]. As the
cooperative MIMO is based on the distributed antennas, and
the channel parameter is different from one node to another,
this feature can be used to optimize the data transmission.
Residual energy re is the amount of energy present in a sensor
at a particular time. Inter sensor distance in a cluster dm is
the distance between a cluster head and the other sensors
inside a cluster. The closer the sensors are the less is the
energy consumption for local communication. Geographical
location of the sensors, d is the distance of the sensors from
the receiving cluster. Total energy consumption increases with
the increase in this distance. Node selection is based on the
previously explained four parameters and a sensor is selected
on the basis of the following node selection function,

NS =
ddm
hre

. (1)

The node selection function is chosen in a way that all the
required choices of selection parameters for energy efficient
transmission will lead to a smaller value of selection function.
For example, higher value of h and re are desirable and lower
value of d and dm are desirable for lower energy consumption
which lead to a smaller value of proposed selection function.
The parameters in the node selection function are normalized.
Therefore, the idea of our proposal is to calculate this node
selection function for each sensor and then select two sensors
with smaller selection function values.

B. Selection procedure of sensors

The physical phenomena monitored by sensor networks, e.g.
forest temperature, water contamination, usually yield sensed
data that are strongly correlated. Data aggregation is the tool
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by which the correlated data size can be significantly reduced
depending on the correlation factor. In Fig. 2, sensors at the
receiving cluster continuously send training bits to all the
available sensors at the transmitting end. After receiving the
training bits, these sensors estimate the channel and determine
the distance from the receiving cluster. Then they send the
results to the cluster head along with their residual energy
and information data. The cluster head then estimates the inter
sensor distance dm and selects the sensors with better selection
function among the available sensors. At the same time it sends
the channel estimation results to the receiving cluster head.
Cluster head at the receiving side selects receiving sensors
on the basis of channel estimation result performed at the
transmitting end and send a command signal to remain active.
This estimation procedure is performed in every frame until the
completion of the data transmission from the transmitting end
sensors to the receiving end sensors. After the sensors transmit
their data to the cluster head, it aggregates the data [8] and
sends all the data to the remaining active sensors within that
cluster. It then sends a command signal to the selected sensors
to start transmitting data. After receiving the data, selected
sensors at the receiving cluster transmit them to their cluster
head locally.
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Fig. 2. Cooperative communication using selection

III. PROBABILISTIC MODEL

We can find a probabilistic model of this proposed node
selection scheme based on the fact that the minimum value of
this node selection function will have the maximum probability
to be selected. We can choose a subset of sensors within
a cluster which have higher probability to be selected. We
assume a cluster based sensor network where the cluster

head is centrally located with other sensors and they are
Gaussian distributed around the cluster head. Data gathered
by the sensors are correlated and sent to the cluster head for
data aggregation purpose. For cooperative data transmission,
sensors at the transmitting cluster are selectively chosen on the
basis of four parameters. These parameters collectively form a
selection function and its value is measured for all the available
sensors. Sensors are selected on the basis of minimum value
of this selection function. The selection function is shown in
equation 1. The probability that a sensor is selected from an
available number of active sensors in a cluster is given by

PS =
P{d}P{dm}
P{h}P{re}

(2)

Probability distribution for longhaul distance d
Let the sensors in cluster 1 are Gaussian distributed with

zero mean and variance σ2
d1. Again let the sensors in cluster 2

are also Gaussian distributed with zero mean and variance σ2
d2.

So, the distance from a sensor located at cluster 1 to a sensor
located at cluster 2 is a random variable with mean davg and
variance σ2

d1 + σ2
d2 where davg is the average distance from

the cluster 1 sensors to cluster 2 sensors. So, the probability
distribution function for this longhaul distance is given by

f(d) =
1√

2π(σ2
d1 + σ2

d2)
e
− (d−davg)2

2(σ2
d1

+σ2
d2) (3)

We consider a sensor to be selected if it is located at the
dashed area in Fig. 3 which is closer to the receiving cluster.
So, the probability that a sensor will be selected on the basis
of longhaul distance is given by

P{d} = P{(davg −D) ≤ d ≤ davg}

=

∫ davg

davg−D

1√
2π(σ2

d1 + σ2
d2)

e
− (d−davg)2

2(σ2
d1

+σ2
d2) dd (4)

where D is the distance shown in Fig. 3. We can finally get

P{d} =
1

2

[
erf

(
D√

2 (σ2
d1 + σ2

d2)

)]
(5)

davg

D D

Cluster 1 Cluster 2

Fig. 3. Distribution for longhaul distance

Probability distribution for the distance between the
sensors in a cluster dm
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As the sensors in a cluster are assumed to be Gaussian
distributed, and we also assume that the cluster head is
centrally located, the probability distribution function is given
by

f(dm) =
1√

2πσd1

e
− (dm−µdm)

2

2σ2
d1

=
1√

2πσd1

e
− dm

2

2σ2
d1 (6)

The probability that a sensor will be selected on the basis
of inter sensor distance is

P{dm} = P{(−σd1 < dm < σd1)}

=

∫ σd1

−σd1

1√
2πσd1

e
− dm

2

2σd1
2 ddm

= erf(
1√
2
) (7)

Probability distribution for channel gain parameter h
Channel gain parameter is chosen to be zero mean circularly

symmetric complex Gaussian distributed. So, the envelop of
its distribution follows Rayleigh distribution as follows

f(h) =
h

σh
2
e
− h2

2σh
2 (8)

The probability that the channel gain is above a critical
value hc is given by

P{h} = P (h > hc) =

∫ ∞

hc

h

σh
2
e
− h2

2σh
2 dh

= 1− CDF (hc)

= 1− (1− e
− hc

2

2σh
2 )

= e
− hc

2

2σh
2 (9)

Assuming this ZMCSCG distribution follows normal dis-
tribution with unit variance, the resulted Rayleigh distribution
will also be with unit variance. So, we get

P{h} = e−
hc

2

2 (10)

Probability distribution for residual energy re
We are using the selection function at the transmitting

cluster. So the calculations done here are concentrated on the
transmitting cluster. Residual energy is different for different
types of nodes. For normal node, the residual energy is

Eren = Eren0
− LrEtrl −NtLrErel

−NtLrEtrL (11)

and for the cluster head, the equation is written as

Ereh = Ereh0
−NtLr[Erel + Eagg

+Etrl + EtrL] (12)

Here Eren0
and Ereh0

are residual energies in previous
round for normal node and cluster head respectively, Etrl

and Erel are the energy needed per bit for local transmission
and local reception for transmitting cluster whereas EtrL is
the energy needed per bit for long haul transmission. Eagg is
data aggregation energy per bit. Nt is the number of available
sensor nodes at the transmitting cluster and Lr is the bit size
in a single round. Local reception energy can be replaced by
Erel = (PMIX +PLNA+Pfilr +PIFA+PADC +Psyn)/Rb.
Local and longhaul transmitted energy can be replaced by the
following equations using equations (1) - (4)

Etrl = [{Eb ×
(4π)2dm

k

GtGrλ2
MlNf}(1 + α) + Ecir] (13)

EtrL = [{Eb ×
(4π)2dk

GtGrλ2
MlNf}(1 + α) + Ecir] (14)

where the symbols are explained in aforementioned equa-
tions and Ecir represents circuit energy consumption during
transmission and can be replaced by Ecir = (PDAC+PMIX+
Pfilt+Psyn)/Rb. Now the residual energy for the normal node
becomes

Eren = Eren0
− Lr[{Eb ×

(4π)2dm
k

GtGrλ2
MlNf}(1 + α)

+Ecir]−NtLrErel −NtLr[{Eb

× (4π)2dk

GtGrλ2
MlNf}(1 + α) + Ecir] (15)

Again the residual energy for cluster head is

Ereh = Ereh0
−NtLr[Erel + Eagg + [{Eb

× (4π)2dm
k

GtGrλ2
MlNf}(1 + α) + Ecir] + [{Eb

× (4π)2dk

GtGrλ2
MlNf}(1 + α) + Ecir]] (16)

Putting the value of

Lr{Eb × {(4π)2/(GtGrλ
2)}MlNf}(1 + α) = K

we get the normal node residual energy like the followings

Eren = Eren0
−NtLrErel −Kdm

k −NtKdk

−(Nt + 1)LrEcir

= Ξ−Υ(Xk +NtY
k)

= Ξ−Υ(Xk + Zk) (17)

where Ξ = Eren0
− NtLrErel − (Nt + 1)LrEcir, Υ =

K, X = dm, Y = d and Z = Nt
1
k Y

Again the residual energy for the cluster head is

Ereh = Ereh0
−NtLrErel −NtLrEagg

−NtLrKdm
k −NtLrKdk − 2NtLrEcir

= Φ−Ψ(Xk + Y k) (18)
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where Φ = Ereh0
− NtLrErel − NtLrEagg −

2NtLrEcir, Ψ = NtLrK, X = dm, and Y = d. The
residual energy in both cases from equation (17) and (18) are
of the form of Z = ϑ− ϱ(X k + Yk). Taking k = 2, we get

Z = ϑ− ϱ(X 2 + Y2)

= ϑ− ϱW (19)

where W = X 2+Y2. Here X is a normal distribution with
zero mean and σx

2 variance whereas Y is a normal distribution
with µy mean and σy

2 variance. W follows the non central
chi-square distribution with pdf

fW(w; k, λ) =
1

2
e−

w+λ
2

(w
λ

) k
4−

1
2

I k
2−1(

√
λw) (20)

where Im(n) is a modified Bessel function of the first

kind given by Im(n) =
(
n
2

)m∑∞
j=0

(
n2

4

)j

j!Γ(m+j+1) and λ =∑k
i=1

(
µi

σi

)
and cdf

F (w) =
∞∑
j=0

e−
λ
2
(λ2 )

j

j!

γ(j + k/2, w/2)

Γ(j + k/2)
(21)

Putting the value of k = 2 and λ =
µ2
y

σ2
y

we get the pdf and
cdf like the followings

fW(w; 2,
µ2
y

σ2
y

) =
1

2
e−

w+
µ2
y

σ2
y

2

(
wσ2

y

µ2
y

) 2
4−

1
2

×I 2
2−1

(√
µ2
y

σ2
y

w

)

=
1

2
e−

w+
µ2
y

σ2
y

2 I0

(√
µ2
y

σ2
y

w

)
(22)

F (w) =
∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y
)j

j!

γ(j + 1, w/2)

Γ(j + 1)
(23)

Again we have Z = ϑ− ϱW . To get the cdf with variable
Z we get

FZ(z) = p[Z ≤ z]

= p[ϑ− ϱW ≤ z]

= p[W ≥ z − ϑ

ϱ
]

= 1− FW(
z − ϑ

ϱ
)

= 1−
∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y
)j

j!

γ(j + 1, z−ϑ
2ϱ )

Γ(j + 1)
(24)

Probability that the residual energy will be greater than rm
is given by

P{ŕe} = P (ŕe > rm)

= 1− FZ(rm)

=
∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y
)j

j!

γ(j + 1, rm−ϑ
2ϱ )

Γ(j + 1)
(25)

Considering both the normal node and cluster head we find
the revised probability for residual energy

P{re} =
Nt − 1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y
)j

j!

γ(j + 1, rm−Ξ
2Υ )

Γ(j + 1)

+[
1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y
)j

j!

×
γ(j + 1, rm−Φ

2Ψ )

Γ(j + 1)
] (26)

The probability that a node in a cluster will be selected is
given by

PS =
P{d}P{dm}
P{h}P{re}

=

1

2

[
erf

(
D√

2(σ2
d1 + σ2

d2)

)]
erf

(
1√
2

)

e−
hc

2

2 [
Nt − 1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y

)j
j!

×
γ
(
j + 1, rm−Ξ

2Υ

)
Γ(j + 1)

+
1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

×

(
µ2
y

2σ2
y

)j
j!

γ
(
j + 1, rm−Φ

2Ψ

)
Γ(j + 1)

]

(27)

In this probability model, a sensor in a cluster is selected
as a member of higher probability subset when it’s distance d
from the sensors at the receiving cluster is within (davg−D ≤
d ≤ davg where D is the diameter of a cluster and davg is
the average distance between the transmitting end sensors and
receiving end sensors, the inter sensor distance dm is within
−σd1 < dm < σd1, the channel gain parameter h > hc and
the residual energy re > rm where hc and rm are the critical
values for channel gain and residual energy respectively.

Theorem: 1 The probability that a sensor in a cluster is
included in a higher probability subset is given by
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PS =

1

2

[
erf

(
D√

2(σ2
d1 + σ2

d2)

)]
erf

(
1√
2

)

e−
hc

2

2 [
Nt − 1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y

)j
j!

×
γ
(
j + 1, rm−Ξ

2Υ

)
Γ(j + 1)

+
1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

×

(
µ2
y

2σ2
y

)j
j!

γ
(
j + 1, rm−Φ

2Ψ

)
Γ(j + 1)

].

(28)

If the sensors in a cluster are at an equal distance from the
cluster head, we can ignore the effect of dm on the selection
function. Again if the cluster is at a long distance from the
receiving cluster, we can ignore the effect of longhaul distance,
d. Considering these two special cases, the selection function
reduces to

NS =
1

hre
. (29)

Corollary: 1 Sensors located at equal distance from the
cluster head in a cluster and at a long distance from receiving
cluster is included in a higher probability subset for cooper-
ative transmission with the following probability

PS = e
hc

2

2

[
Nt − 1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

(
µ2
y

2σ2
y

)j
j!

×
γ
(
j + 1, rm−Ξ

2Υ

)
Γ(j + 1)

+
1

Nt

∞∑
j=0

e
−

µ2
y

2σ2
y

×

(
µ2
y

2σ2
y

)j
j!

γ
(
j + 1, rm−Φ

2Ψ

)
Γ(j + 1)

].

(30)

IV. ENERGY MODEL

The energy model is based on the system model shown in
Fig. 1. We state our problem from the receiver point of view,
therefore a loss model is used to estimate the received energy.
To estimate the total energy consumption, both circuit and
transmitter powers are taken into consideration. We use the
same transmitter and receiver block shown in [2], [6], and [7].
Source coding, pulse shaping, modulation and error correction
coding blocks are omitted for simplicity. The total power
consumption for a single node consists of two main parts,
namely, the power consumption of all the power amplifiers
PPA which is a function of transmission power Pout, and the
power consumption of all other circuit blocks PC

PT = PPA + PC . (31)

The amplifier power can be calculated using the following
equation

PPA = (1 + α)Pout, (32)

where α = ( ξη − 1), where η is the drain efficiency [10] and
ξ is the peak to average ratio [7]. When the channel only
experiences a kth power path loss with additive white Gaussian
noise (AWGN), Pout can be calculated using the link budget
relationship [17] as follows.

Pout = EbRb ×
(4π)2dk

GtGrλ2
MlNf , (33)

where Eb is the average energy per bit required for a given bit
error rate (BER) specification, Rb is the transmission bit rate, d
is the transmission distance, Gt and Gr are the transmitter and
receiver antenna gains respectively, λ is the carrier wavelength,
Ml is the link margin compensating the hardware process
variations and other background noise, Nf is the receiver noise
figure defined as Nf = Nr

N0
where Nr is the power spectral

density (PSD) of the total effective noise at the receiver input
and N0 is the single-sided thermal noise PSD at the room
temperature.

The circuit power includes transmitter and receiver circuit
power Pct and Pcr respectively. This power consumption
is due to several power blocks such as Pmix, Psyn, Pfilt,
Pfilr, PLNA, PIFA, PDAC , and PADC which are the power
consumption values of the mixer, the frequency synthesizer,
the active filters at the transmitter and at the receiver side,
the low noise amplifier, the intermediate frequency amplifier,
the D/A and A/D converter, respectively. The total energy
consumption per bit can be written as

Ebt =
(PPA + PC)

Rb
, (34)

where Rb is the actual bit rate and can be replaced by
Reff

b = F−pNT

F Rb when pNT training symbols are inserted
in each block to estimate the channel at the receiving cluster
or DGN side. The block size is equal to F symbols and can
be obtained by setting F = ⌊TCRS⌋, where RS is the symbol
rate and TC is the fading coherence time. The fading coherence
time can be estimated from TC = 3

4fm
√
π

where the maximum
Doppler shift fm is given by fm = v

λ with v being the velocity
and λ being the carrier wavelength [11]. The total energy con-
sumption is estimated by multiplying Ebt by the number of bits
L to be transmitted. Now we develop the mathematical model
where we estimate total energy consumption for cooperative
communication. Channel estimation is performed in every data
frame and energy per bit is multiplied by the total data size to
get the total energy consumption. Therefore, the total energy
consumption in cooperative case for this scheme is

EC−C
CO =

Nt∑
i=1

Li

F
Ech + Lch

Nt−1∑
i=1

Li

F
Et

i

+Lch
Li

F
El

S +

Nt−1∑
i=1

LiE
t
i + Eda

Nt∑
i=1

Li

+(Nt − 1)Et0
i

Nt∑
i=1

Liγi + Lcps
Li

F

x∑
i=1

Et0
i

+El
M

Nt∑
i=1

Liγi +
1

bmimo

Nt∑
i=1

Li

y∑
i=1

blrE
t
j , (35)
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TABLE I
OPTIMIZED CONSTELLATION SIZE FOR CLUSTER TO CLUSTER DATA

TRANSMISSION AT Nt = 4 & Nr = 4

d(m) 1 5 10 15 20 40 70 100
b4×4 18 13 10 9 8 6 4 3
b2×4 18 11 9 8 7 4 3 2
b1×4 14 9 6 5 4 2 1 1

where Ech is the channel estimation energy and is using
28 µJ/bit/signals in our simulation experiment [13]. Data size
Li is divided by the frame size F to find out the number of
channel estimations required for the transmitted data size Li as
channel estimation is performed once in a frame duration. The
second term is due to the transfer of channel estimation result
to their own cluster head. Et

i is the energy per bit required
to transmit the channel estimation result from a sensor to the
cluster head. Lch is the number of bits needed to transmit the
channel estimation result. Lch

Li

F El
S is the term required to

transmit the channel estimation result to the receiving cluster
head due to channel estimation purpose. The same energy per
bit Et

i is needed to transmit the data from sensors to the cluster
head. Eda is the energy dissipation per bit required in the
cluster head for data aggregation. It depends on the algorithm
complexity[16].

Eda(L) =

{
C0 + C1 × L+ C2 × L2 for O(n2)
C0 + C1 × L for O(n)

, (36)

where L is the number of transmission bits and C0, C1

and C2 are coefficients depending on the software and CPU
parameters. In our model, we use beam forming algorithm and
5 nJ/bit/signals in simulation experiments [8]. Et0

i denotes
the local transmission energy cost per bit for transferring
the aggregated data to the remaining active sensors, γ is the
percentage of remaining data after aggregation and it reflects
the correlation between data amongst different sensors. The
same energy per bit Et0

i is needed to transmit a command
signal from the cluster head to the selected sensors. Lc denotes
the bit length of a command signal and x = NBt − 1
for the cluster head being a selected sensor and x = NBt

otherwise where NBt denotes number of selected sensors at
the transmission end. ps is the probability that a selected
sensor is changed in the next frame and is chosen as 1

Nt
.

After receiving all the bits, the selected nodes encode the
transmission sequence according to some diversity scheme,
such as the STBC. El

M denotes the energy cost per bit for the
long-haul MIMO transmission [2].

∑Nt

i=1 Li is divided by the
optimal bit size of the longhaul transmission bmimo to find the
number of symbols present in the received signal. The number
of symbols is then multiplied by the optimal bit size of the
local transmission blr to find the total bit length. Et

j is the
energy per bit required to transmit the data from a sensor to
the cluster head at the receiver side. y = NBr − 1 is used
for the cluster head being a selected sensor and x = NBr

otherwise where NBr denotes number of selected sensors at
the receiving end.

For the SISO approach, sensors will transmit their data

to the cluster head and as there is no burden for channel
estimation, the cluster head will transmit all the aggregated
data directly to the destination node without any cooperation.
So the total energy consumption becomes

EC−C
SISO =

Nt−1∑
i=1

LiE
t
i + Eda

Nt∑
i=1

Li + El
SC−C

Nt∑
i=1

Liγi, (37)

where El
SC−C

denotes the SISO long haul transmission and
can be calculated as a special case of MIMO transmission
with NBt = 1 and NBr = 1 where NBt and NBr are
the selected number of antennas at the transmitting and
receiving end respectively. In both SISO and MIMO case,
optimized constellation size is used according to the different
communication distance so that at any given distance, the
communication energy consumption is minimized under its
constellation size. In Table I, the optimized constellation sizes
are shown for different combination of selected sensors (NBt)
and receiving number of sensors (Nr) for cluster to cluster
data transfer.

V. SIMULATION RESULTS AND DISCUSSION

In order to get the total communication energy consumption,
the average energy per bit required for a given BER Pb, Eb

need to be determined. In our approach we get the value of
Eb by using a numerical search. we have taken ten thousand
randomly generated channel samples and averaged to find the
desired bit error rate at each transmission distance. The value
of the constellation size is optimized for each transmission
distance. For the long haul communication, SISO is taken as
a special case of MIMO structure. The channel matrix of a
MIMO system can be written as

H =


h11 h12 . . . h1NBr

h21 h22 . . . h2NBr

...
...

...
...

hNBt1 hNBt2 . . . hNBtNBr


Out of Nt available sensors, NBt number of sensors will be

selected to transmit the data of all the active sensors. In the
receiving side, NBr number of sensors are selected to receive
the data in the case of receiving cluster out of Nr available
sensors. A list of system parameters used in our simulation
is shown in Table II where the power consumption values of
various circuit blocks are quoted from [10], [18]-[20].

TABLE II
SYSTEM PARAMETERS

fc = 2.5 GHz η = 0.35
GtGr = 5 dBi N0 = -171 dBm/Hz
B = 10 KHz k = 2 for local com.
Pb = 10−3 k = 3 for long haul com.
Nf = 10 dB p = 0
Ml = 40 dB Pmix = 30.3 mW
Ech = 28 µJ/bit/signals Psyn = 50.0 mW
Lch = 8 PLNA = 20 mW
Lc = 8 Eda = 5 nJ/bit/signals
Pfilt = 2.5 mW Pfilr = 2.5 mW
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Fig. 4. Energy efficiency over distance for cluster to cluster transmission

I have evaluated and simulated energy efficiency and is
calculated using the following formula

Energy efficiency =
ESISO − ECO

ESISO
(38)

Energy efficiency is the key term to evaluate the energy
efficient performance. For simulation we consider all the
sensors in a cluster are transmitting the same data size Li

= 10 kb. Cluster size with Nt = 4 and Nr = 4 are chosen
for the data transfer. In our simulation, we have taken the
unselected approach as a special case of selected approach
where all the sensors in a cluster are selected for transmission.
While choosing all the sensors from a cluster we consider not
including the extra overhead taken by the selective approach.
We evaluated the energy efficiency to compare the energy
efficient performance. Fig. 4 shows the energy efficiency
comparison. It shows that the proposed selective approach is
more energy efficient than the existing unselected approach
[2]. This is because the unselected approach is using all the
available sensors to transmit the data without considering their
parameter conditions and therefore remains inefficient. In this
figure, our selected approach is also compared with the optimal
selection. Our selection function is not the optimal one but is
close to optimal especially in the smaller cluster to cluster
distances. In smaller distances, local communication plays
a key role in total energy consumption. As dm is one of
the parameters in the proposed selection function, it helps to
reduce total energy consumption at smaller longhaul distances.

VI. CONCLUSION

An energy efficient selective cooperative technique for the
cluster based wireless sensor networks have been proposed.
The selection of nodes in the transmitting end is based
on a selection function which is a combination of channel
condition, residual energy, inter sensor distance in a cluster and
geographical location whereas the selection in receiving side

is performed on the basis of channel condition. A probabilistic
model has been developed using the proposed selection func-
tion. A mathematical model has been developed for energy
consumption using cooperative scheme and has been simu-
lated. The simulation results show that the selected coopera-
tive MIMO structure outperforms the unselected MIMO. Our
model can be considered as a special case of multi hop wireless
sensor structure where the cluster to cluster communication is
only considered. So, our proposal can well be extended to the
multi hop wireless sensor network considering both the cluster
to cluster and cluster to DGN transmission.
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