

7

Abstract— The constant increase in the number of computer

network attack attempts has pushed researchers community to

devise better security strategies. However, the rapid growth both

in quantity and complexity of components and services offered in

today's networks has increased the difficulty of administering

these, making approaches based only on human interventions

impracticable. In order to circumvent this problem, a modern

approach called Autonomic Computing (AC) has gained

attention from researchers related to network security

management. AC has the essence of self-management and the

implementation of its concepts for network security systems

introduces the ability of self-assurance. This paper aims to

introduce the concepts of AC and shows their applicability to the

context of security in computer networks.

Index Terms— Autonomic Computing, Intrusion Detection,

Network Security.

I. INTRODUCTION

ECURITY in computer networks is an area that consists of

protecting data during transit against its unexpected

changes, unauthorized access and unavailability. Since the

advent of Internet, several research works for better security

strategies have increased considerably due to a large number

of attempted attacks that have been carried out. These attacks,

when successful, have caused financial and image loss to

companies, institutions and individuals.

There are several obstacles to be faced to achieve truly

secure networks; among them we can highlight the existence

of dependence of security systems management with human

intervention, which is a continuous process that increases the

level of difficulty. Another example of obstacles is that

attacks on computer systems are becoming increasingly

sophisticated and there are several deficiencies in current

security systems.

Thus, the problem of security management is becoming

more complex and it is therefore interesting to use resources

offered by the Autonomic Computing (AC). AC systems are

able to manage themselves and dynamically adapt to changes

in order to restore the balance in agreement with the policies

and business goals. To do this, AC has effective mechanisms

The development of this work is made possible by financial support

provided by the Foundation for Scientific Research and Technological
Development of Maranhão (FAPEMA) – Brazil.

that allow them to monitor, control and regulate themselves,

and recover from problems without recourse to external

intervention.

The architecture and properties of AC provide systems with

advantages to network security. Besides showing the intrinsic

characteristics of self-management, an autonomic element

provides other features that can be used to solve particular

problems of network security such as learning techniques and

cooperation between applications.

This paper discusses the concepts of AC and shows their

applicability to the context of computer network security.

Applying the concepts of AC in network security introduces

the ability of self-security, through services and security

management functions that are performed without the need for

a human manager, by just defining the objectives and initial

parameters provided by the administrators.

The rest of this paper is organized as follows. All the

fundamentals of AC are described in Section 2, showing the

properties and the architecture. Section 3 describes some

concepts of network security and shows the problems which

may be faced. The need for autonomic mechanisms in

computer network security and related works are detailed in

sections 4 and 5 respectively. Finally, section 6 gives the

conclusions of this work.

II. AUTONOMIC COMPUTING

The term Autonomic Computing was founded in 2001 with

a manifesto published by Paul Horn, IBM researcher, who

issued a challenge on the problem of managing the growing

complexity of software [1]. The term autonomic comes from

biology and it is related to involuntary physiological reactions

of the nervous system [2]. In the human body, the autonomic

nervous system takes care of unconscious reflexes, i.e. body

functions that do not require our attention as the expansion

and contraction of the pupil, digestive functions of the

stomach and intestine, the frequency and depth of breathing,

dilatation and constriction of blood vessels, etc. This system

reacts to changes or disturbances caused by the environment

through a series of modifications in order to contain the

disruption to its internal balance.

In analogy to human behavior, it is said that a computer

system is in equilibrated state when its internal environment

(formed by its subsystems and the system itself) is in due

Autonomic Computing applied to Network

Security: A Survey

Ariel S. Teles, Jean P. M. Mendes, Zair Abdelouahab

Department of Electrical Engineering, Federal University of Maranhão

São Luís – MA – Brazil

{arielsoaresteles, jeancomp}@gmail.com, zair@dee.ufma.br

S

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), November Edition, 2011

8

proportion with the external environment. Parashar and Hariri

[3], and with more details in [4], have noted that if the internal

or external environment disturbs the stability of the system, it

shall always act in order to restore the original balance. Thus,

AC systems are systems that can manage themselves and

adapt dynamically to changes in order to restore balance in

accordance with the policies and business objectives of the

system [5]. They must have effective mechanisms to enable

them to monitor, control and regulate themselves, and recover

from problems without the need for external intervention.

A. Properties of Autonomic System

The essence of AC is self-management. To implement it,

the system must be aware of itself and its environment. Thus,

the system must know accurately its own situation and its

operational environment in which it operates. From a practical

standpoint, of Hariri [5], the term autonomic computing has

been used to denote systems that have the following

properties:

• Self-awareness: The system knows itself: its components

and their interrelationships, their state and behavior;

• Context-aware: The system must be aware of the context

of its execution environment and be able to react to

changes in its environment;

• Self-configuring: The system should dynamically adjusts

its resources based on their status and the state of the

execution environment;

• Self-optimizing: The system is able to detect

performance degradations and perform functions for self-

optimization;

• Self-protecting: The system is able to detect and protect

resources from internal and external attackers, keeping

their safety and overall health;

• Self-healing: The system must have the ability to identify

potential problems and reconfigure itself in order to

continue operating normally;

• Open: The system should be portable to different

hardware architectures and software and therefore must

be built on open protocols, interfaces and standards;

• Anticipatory: The system must be able to anticipate as

far as possible, considering the needs and behaviors of its

context and manage them in a pro-active way.

B. The Architecture of an Autonomic System

Autonomic system architectures aim at formalizing a

framework that identifies the common functions and lays the

foundation necessary to achieve autonomy. In general, these

architectures provide solutions to automate systems

management cycle, which involve the following activities:

• Monitoring or Measuring: Collects, aggregates,

correlates and filters data of managed resources;

• Planning and Analysis: Analyzes the data collected and

determines if changes should be made in the strategies

used by the managed resource;

• Control and Enforcement: schedules and executes the

changes identified as necessary for the function of

analysis and decision.

C. MAPE-K

In 2003, IBM proposed an automated version of the cycle

system management called MAPE-K (Monitor, Analyze, Plan,

Execute, Knowledge) [1], represented in Figure 1. This model

is increasingly used to inter-relate the architectural

components of autonomic systems. An autonomic system

consists of a set of autonomic elements.

An autonomic element contains a single autonomic manager

that represents and monitors one or more managed elements

(hardware component or software) [6]. Each autonomic

element acts as a manager responsible for promoting resource

productivity and quality of services provided by the system

component in which it is installed. In the MAPE-K autonomic

loop, the managed element represents any software or

hardware feature which is given by the autonomic behavior of

an autonomic manager coupling.

The sensors are responsible for collecting information from

the managed element. These data may be diverse, for example,

the response time of requests from customers, if the managed

element is a Web server. The information collected by the

sensors are sent to the Monitor where they are interpreted,

preprocessed and placed in a level of abstraction, and then

sent to the next step in the cycle, i.e. Analyze and Plan. In this

stage, there is a kind of product which is a work plan, which

consists of a set of actions to be executed by the Execute. The

component responsible for making the changes in the

environment is called Effectors.

Only sensors and effectors have direct access to the

managed element. Throughout autonomic management cycle,

there may be a need for decision making, thus it is necessary

for the presence of a knowledge base (knowledge), and this is

the most commonly exploited in the process of analysis

“Analyze” and planning “Plan”.

This is implemented using two or more autonomic

management cycles, one or more local cycles and one global

control cycle. The cycles of local control deal only with

known states of the local environment, based on the

knowledge found in their own managed element. For this

reason, the local cycle is unable to control the overall behavior

of the system. The global cycle, in turn, based on data from

the local managers or through a global monitoring, can make

decisions and act globally on the system. However, the

implementation of interactions among various levels depends

on existing needs and limitations of the application.

Fig. 1. MAPE-K: Autonomic Management Cycle [7].

9

III. NETWORKS SECURITY

The large growth in the number of components and services

in modern computer networks has increased the level of

complexity for their management and administration. Several

devices are integrated to networks that require connectivity

anytime and anywhere, and are characterized by their

heterogeneity.

Thus, it is necessary to apply the idea of AC to Computer

Networks, by giving the ability of self management, known as

Autonomic Networks. The services and network management

functions are performed transparently to its users without

necessity for a human manager, taking into account only the

goals and initial parameters of the system. The network must

be able to learn from the actions of its components by

analyzing the results. The adaptability and learning are

characteristics of autonomic networks.

In this scenario, one cannot leave the information security

issue, which is prerequisite for a proper function of any

computer system, by taking all measures aimed at preserving

and protecting information. Since these networks are almost

always connected to the Internet, applications running on them

may suffer malicious activity originating from any connected

user.

Accesses to the World Wide Web offer the possibility of

discovering and exploiting vulnerabilities very quickly, almost

always quicker than the upgrade of security tools and patches

issued by software manufacturers. Thus, a number of security

incidents are growing very rapidly causing an amount of

damages. However, there is also a growing research for

devising new mechanisms and techniques to increase the

security level. Access policies, use of firewalls, intrusion

detection systems, honeypots, among others, are some of these

measures.

In information security, it is possible to identify the

following basic properties [8]: confidentiality, integrity,

availability, authenticity, non-repudiation, auditing and

regulation. These properties guide for the determination of a

focus in which a particular application should be developed to

meet the security requirements specified by the necessity of

the proposed environment. It is also important to define the

phases of protection where it will operate.

A. Steps to Protect Networks

It is possible to highlight four phases in order to protect the

network against attacks [9]: Prevention, Detection, Forensics

and Defense, as seen in Figure 2.

Prevention comprises all methods used to prevent attacks in

order to ensure confidentiality and data integrity with the use

of access controls to network resources. It includes techniques

for authorization and authentication (login services), building

trust, as well as encryption and traffic filtering (using

firewall). It is important to emphasize that prevention is only

possible for known attacks, but there is work being developed

to predict the occurrence of unknown attacks, [10] and [11].

Prevention mechanisms are considered defense systems, in

the first line, i.e., they are responsible for the first step in

securing a computer network. Normally this defense in the

first line is made in the design phase of the network in order to

develop it as safely and get better results when put into

operation. These mechanisms are typically implemented to

control access to resources and information in the network.

If prevention fails, detection is the next phase to deal with

an incident. Detection is then the discovery process of an

attack or preparation of an attack, or any other malicious

activities, from a port scan evidence to crack passwords by

brute-force technique. This is usually done by analyzing data

captured by a sniffer, through interception and recording of

data traffic over the network.

Intrusion Detection Systems (IDSs) are used in the

detection phase. When they perform network monitoring and

thus are called Network Based Intrusion Detection System

(NIDS), or when connected to a device, are known as Host

Based Intrusion Detection System (HIDS). Their purpose is to

find the occurrence of an attack or malicious activity. An IDS

may use several approaches to identify an attack, the best

known are: Signature Based and Anomaly Based [12].

Another mechanism used in the detection phase is known

by the name of Methods of Deception, as defined in [13] by

creating a fake environment to fool malicious users.

Techniques are used in which the attacker interacts with a

feature set as a trap, intentionally vulnerable, which emulates

services or systems that really should be the target of its

action. The technique that is widely used is with the use of

honeypots, defined by Spitzner [14] as a network resource

whose function is to be probed, attacked or compromised. This

means that a machine can be invaded, and this one is

configured to obtain information about the attacker. The

intention is that the intruder when performing an attempted

invasion, in which the network has a honeypot running, has

the feeling that he is interacting with a machine that has some

functionality and he can get some use.

If a malicious traffic is detected, then the process of defense

is initiated. To achieve this goal, it is necessary that the system

implements these two phases (detection and defense),

integrating various security systems. An example is the

Intrusion Prevention System (IPS), which generates some

response in order to neutralize the attack and may include an

IDS and a firewall.

In some cases when the earlier phases of prevention and

detection fail and the attack was successful, it is necessary to

make an analysis of all the logs in order to learn how the

methods used in the processes of detection and defense can be

improved to prevent future incidents. This phase is called

forensics, which aims to conduct an investigation to find out

specific details of attacks, with results that in some way

Fig. 2. Four phases of protection [9].

10

contribute to the improvement of network protection. For ES

Pilli et al. [15], techniques for network forensics provide

resources for researchers track down the attackers.

From the outline of these phases it is possible to

characterize the functions of network security systems.

However, many of these systems have currently some

limitations and problems. Along with this, attacks on

computer networks are becoming increasingly sophisticated.

These issues are detailed below.

B. Problems Faced

Zseby et al. in [9] state that the security of networks

crucially requires greater attention by the administrator and

almost always more effort and cost, as new protocols and

applications introduce new vulnerabilities. Unfortunately, the

mechanisms used to increase the level of security currently

have some problems, namely: solid, low defense skill, without

self-adaptation, without self-evolution and without self-

learning.

To Atay and Masera, in [16], all methods of analysis of

threats, vulnerabilities and risks need to continually update

their knowledge of the weaknesses found in the new network

assets. This serves to identify how these weaknesses can be

exploited to further define and implement the necessary

countermeasures. This is a continuous cycle, as new

evaluations are needed over time.

However, it is known that information about new attacks is

not immediately disclosed by manufacturers or by the

community that develops the software, due to its sensitivity.

This is because this information can be used to further explore

the vulnerabilities, since malicious users can obtain them.

They are soon published after the manufacturers release

patches. The methods of risk analysis cited by [16] should

redo the safety assessment of systems taking into account

information about new attacks when they are released, or the

use of intelligence techniques to detect them even before the

disclosure.

In this situation, Wang et al. [17] states that the right

direction for the development of applications in defense and

security is the adoption of two features: the integration and

intelligence. Integration is to enable management of multiple

protective features in a distributed network environment, and

the intelligence adapted to the environment is to increase the

efficiency of protection based on its knowledge that it has

acquired, and finally, achieving a balance between the security

application and network environment.

Allied to the problems faced by today's security systems,

attacks on computer systems are becoming increasingly

sophisticated, unpredictable, and often with a greater number

of sources [16]. Examples of these attacks can be carried out

to highlight the use of botnets [18] and 0-day attacks [10] [11].

IV. NETWORKS AUTONOMIC SECURITY

The protection of today's networks systems are based on the

paradigm of interactive computing, i.e., it is left to human

administrators decide what to do and how to protect systems

in the event of malicious attacks or cascading unexpected

errors. Systems that incorporate more than one phase of

network protection, aiming to further increase the security

level, are more complex. This is due to the fact that they have

more components to meet the requirements of each phase.

This complexity requires a constant human intervention

specialist for the correct use of the system.

Thus, it is interesting the use of autonomic mechanisms to

automate the management processes. Applying the concepts of

AC network security to a system will provide the latter with

the ability of self-security, through which services and security

management functions are performed without the need for a

human manager, considering only the objectives and initial

parameters set by their administrators.

It is also possible to highlight that in order to try to propose

solutions to security problems faced by computer networks,

autonomic system architecture can be applied to software

development focused on defense and security. The MAPE-K

model provides a conceptual view of how autonomic systems

can be developed to meet security needs.

Sensors can be any program that checks for occurrences of

malicious traffic, regardless of what stage of protection is,

collecting relevant information from the network to be sent to

the monitors. Example of data collected can be, for example,

traffic to honeypots, IDS alerts, firewall logs, etc. The

monitors receives such information and treats them to extract

what is relevant, for example, the source IP address of the

intruder, the protocol used by the department in which the

attack was carried out, time / date of the intrusion, etc.

The monitors send the necessary information to the analysis

and planning components where these will use it for

processing. However, the phases of analysis and planning

may be implemented in a single component. The processing

performed by this component varies according to the strategy

adopted by the autonomic manager who set the objectives for

the system. An example of processing using ECA rules [19]

can be seen in Figure 3. ECA (event-condition-action) rules

are declarative specifications of regulations that govern the

behavior of application components. For each event, it is a

defined set of rules that can generate one or more actions. In

this example, in case the IDS gives an alert (IDSAlert) and if

the source IP that generated the alert is not blacklisted in the

firewall´s then a script that contains SrcIpAddr adds the IP

address (i.e. Add SrcIpAddr in BlackList) to the blacklist.

The knowledge base can be used by the component analysis

and planning with strategies to prevent performing actions

previously realized. For example, Figure 3 shows that IP

addresses already entered in the backlist will not be included

again inside that list. The component analysis and planning

produces a plan of actions to be executed by the component

execute, which consist of adding IP source address that

generated the alert in the blacklist, as shown in figure 3.

The component execute applies the actions on the managed

on IDSAlert if BlackList !Contains SrcIpAddr do AddSrcIpAddr in BlackList

Fig. 3. Example of reconfiguration.

11

element through the effectors. The effectors are responsible

for making configuration changes to the managed element, or

in any application or in a network security. The goal in

making configuration changes is to increase the level of

security. In Figure 3, the effectors interacts directly with the

application responsible for the blacklist, i.e. the firewall.

In addition to the architecture offered by the AC, as well as

the state that current security systems should achieve and also

the growing of attacks on computer networks, it is possible to

specify the type of properties of autonomic systems that are

needed [20], as seen below:

• Self-protecting: Refers to the ownership of the system to

defend itself from accidental or malicious attacks. Thus,

the system must have knowledge of potential threats, and

provides mechanisms to address them. To achieve this

property the system must have the ability to anticipate,

detect, identify and protect against threats;

• Self-healing: Responsible for identifying and correcting

errors or failures. In the context of network security, the

autonomic system should be able to detect, diagnose and

repair problems resulting from attacks on production

assets of the network. Using the knowledge about the

configuration of network resources, the system must have

a component that must analyze diagnostic information

showing the occurrence of faults or damage caused by a

network attack, and later seeks a solution to be taken, and

apply it and then test whether it was satisfactory.

Importantly, the healing process should be conducted with

maximum transparency for legitimate users of the

network;

• Self-configuring: This property provides systems with

the ability to automatically configure and reconfigure

according to business policies provided by their

managers, which define what must be done and not how.

In order to automate the configuration management, a

security system must have dynamic reconfiguration

capability with minimal human intervention;

• Self-learning: A Property that provides systems with the

ability to learn from and sense data from experiments and

results obtained in previous actions. It is a fundamental

property for security systems, since it provides the ability

for the system to learn to defend against previously

unknown, or at least recognize malicious traffic in the

network for further defense.

Although AC offers various qualities, applying these to

computer networks and their security is not a trivial process.

There are challenges to be faced to achieve self-management.

According to Agoulmine et al. in [21], the challenge is to

simplify the management task for the administrator by

automating the decision process. Security issues are another

challenge for the development of autonomic systems, whereas

the use of self-learning and self-evolution may cause loss of

control under the management of human decisions made by

the system itself, with a possibility of deviation from the initial

goals that are set. Thus, in the process of developing

autonomic software a validation phase should be applied

rigorously.

V. AUTONOMIC SYSTEMS OF NETWORKS SECURITY

Below are shown some works that use the AC as a basis for

the development of their proposals or implement any of the

properties offered by AC.

A. ISDS

In [17] was developed Intelligent Security Defensive

Software (ISDS), a model and security software based on AC.

ISDS's strategy is to make the process of building software

security by giving it intelligence. In other words, build a

model using the ISDS software is to make its components

change dynamically according to the current security situation

of the network. For this, the ISDS provides awareness of the

context.

The ISDS model is a distributed defense system

characterized by being flexible and self-adapting. The areas

where it can be applied are mainly in the management of

security on local networks and management of information

security on the Internet. The idea of the model is that the

system can analyze the information from the environment and

adjust its structure dynamically. It consists of some basic

components which are: command, execution, sensing, policy,

and other auxiliary equipment as shown in Figure 4. The

component command is the main part of the ISDS, with the

functions of: activation of policy components, sense

equipment and implementation of decision making based on

the sensing component, the management of all components of

security and policy update of new policies and security

components, verifying and resolving policy conflicts. The

execution component works as a channel of communication

between security entities and the component command. It

takes care of filter, process and transmits the message to all

other components, making them work properly. The

component policies are primarily responsible to maintain the

set of policies, decision-making of appropriate policies and

also the passage of the outcome of the decision. Information

on the outcome of the decision made is then passed to the

equipment component to perform some action. Finally, the

component environmental sensor collects information and

sends it to the component command, taking into account the

cost of the two sensing modes: emergence and timing, where

the first has the highest priority over the second.

Fig. 4. The Conceptual Framework of an ISDS [17].

12

B. Autonomic Security and Self-Protection based on

Feature-Recognition with Virtual Neurons

In the work developed in [22], the authors have presented

an autonomic security mechanism based on virtual neurons

and the recognition features. Their approach works to

automatically detect many security problems that are currently

difficult to make defense. Through simulation and different

case studies, results show that this solution is feasible. The

virtual neurons are developed similarly to the neurons of

animals, as seen in Figure 5. The idea is that they are

distributed in a way to perceive changes in the environment

and react to stimulus. A virtual neuron is actually a simple

software capable of context-aware in order to analyze the

context information and perceive possible appearances of

attacks.

In the virtual neuron, the Information Collector component

captures various contexts information, such as memory and

processor usage, process status information and network

traffic. Neighbor neurons are those that connect directly

through the Neighbor Communicator. There is another

component called the Feature Recognizer, and its operation is

based on knowledge of information that characterizes an

attack (based on subscriptions). This information is passed to

the Information Collector Feature Recognizer by the neuron

itself and to its neighbors through the Neighbor

Communicator. Virtual neurons can be easily distributed,

because the installation package is compact, they require few

computational resources and are easy to install on the hosts.

These neurons are distributed in a virtual hierarchical

architecture and Peer-to-peer (P2P), as seen in Figure 6. The

structure-based P2P operates in relations with neighboring

neurons, and their communication via message passing. The

hierarchical architecture is used to increase efficiency in the

propagation of messages by group of neurons, called cells. In

each cell a neuron-neuron is elected as leader, the election

algorithm takes into account the computational resources and

communication speed of the host.

In the hierarchical organization, a neuron-chief is elected as

the head of high-level leaders to other neurons. This procedure

is repeated until there is a single neuron Chief higher on

others. If a fault occurs somewhere in chief of a neuron cell,

another neuron of the same cell will assume the role of

neuron-chief, through a new election. In this hierarchical

organization of messages are delivered more efficiently. The

security mechanism employed by this distributed system is to

detect illegal messages or data.

Origins of attacks are traced to identify and locate the

attacker. After identifying the attacker, all neurons receive

messages to discard traffic originating from that malicious

user. The reconfiguration of resources is made at this time to

achieve the system defense. To perform the detection and

subsequent defense, a mechanism is developed (characteristic

or signature) for each type of attack, such as: Eavesdropping,

Replay, Masquerading, spoofing and Denial of Service (DoS).

C. Self-Configuration of Network Security

The work [23] presents an approach of self-configuring to

control and manage the security mechanisms in large

networks. It automatically configures the system security

mechanisms and modifies the resource settings and policies at

runtime. To show its feasibility, the authors have implemented

an Autonomic Defense System Network (AND). AND is a

system that can detect network attacks, known or unknown

(me be last-day-attacks) and proactively prevent or minimize

impacts on network services.

The AND was developed on the framework AUTONOMIA

[5], which is an extension focusing on strategies and

mechanisms to detect and protect themselves from network

attacks. The units have two software modules, they are:

Component Management Interface (CMI) and Component

Runtime Manager (CRM). The CMI is used to specify the

settings and policies associated with each component

(hardware or software). The CRM manages the operations of

components using the policies set by CMI. More details about

the framework AUTONOMIA may be seen in [24]. The main

components of the AND are seen in Figure 7.

We can observe that this architecture is based on the MAPE-

K. The online monitoring collects data network traffic and

transactions on computers through specific tools and log files

generated by operating systems. The model selection feature

filters the monitored data in order to find relevant information

or characteristics to be passed to the next module. The

anomaly analysis module uses a function to quantify whether

there is a deviation from the standard profile of a system or

network. If any is considered an anomaly then the action

module executes the appropriate actions. The action module

briefly restricts access to the attacked resources and then later

Fig. 7. The Architecture of AND [23].

Fig. 6. Structure and hierarchical organization of P2P virtual neurons [22].

Fig. 5. Virtual Neuron [22].

13

tries to uninstall malicious code installed on compromised

computers in the network.

D. Quality of Protection

Work started in [25] resulted in a new term in [26] called the

Quality of Protection (QoP). It is a framework for proactive

network defense that can be integrated with existing protocols

for Quality of Service (QoS). The goal is to provide

differentiated services for traffic flows according to their

degree of abnormality. For this purpose, it was created a new

metric called distance abnormality (DA), as seen in Figure 8,

which can be used to classify traffic as normal, uncertain and

abnormal. There is a Delta function that shows how much

closer the traffic is normal or abnormal, and then it can be

classified as probably normal or probably abnormal.

The idea is that the DA metric is used in conjunction with

QoS protocols to increase the priority of traffic considered

normal and decrease of abnormal traffic. Tests were carried

out on attacks of Distributed Denial of Service and worm

propagation. This has been possible to demonstrate how the

proposed approach can detect and reduce the impact caused.

E. Properties in Autonomic Computing Systems Security

Some works are characterized by providing some of the

autonomic properties in isolation, although not based on the

AC. That is, they were developed without following the

concepts of AC, but provide some mechanism that qualifies in

some of the autonomic properties. Systems like these are not

regarded as autonomic.

It was developed in [27] a security operation to update

firewall rules based on traffic to a honeynet [14]. In the

scheme there is a module that analyses data to discover new

attacks. This module analyzes traffic logs generated by the

honeynet and uses data mining techniques to create

dynamically new firewall rules passing them to the learning

module which in turn filters out the inconsistencies between

the rules and finally applies them. Thus the firewall continues

increasing its strategies by improving its ability to defend the

system against new attacks.

The tool Honeycomb [28] aims to automate the generation

of attack signatures for intrusion detection systems from logs

generated by honeypots. Actually this tool is a plugin for the

honeyd [29], which is a framework of low-interaction

honeypots [14]. Honeycomb generates signatures format Bro

[30] and Snort [31]. Its intention is to create attack signatures

at runtime, an activity that is usually done manually by

security experts.

In the case of SweetBait [32], it was developed an automated

system that uses low-and high interactivity honeypots to

protect, recognize and capture malicious traffic. Based on the

logs generated after discarding patterns in the white list, it

automatically creates attack signatures, component

implemented using Honeycomb. To provide a short response

time to an attack it immediately distributes signatures to IDSs

after its generation. Parallel to this, the signatures are

continuously refined to increase accuracy and reduce false

positives. This work is extended in Argos [10] that employs a

broader feature, the property of self-protection by proactively

react against attacks.

F. Comparison

The Table I illustrates a comparison between security

systems for computer networks seen before. This comparison

takes into account if the system is based on AC in its

development, as well as the autonomic properties that the

system offers as a resource.

To achieve the original vision of the term Autonomic

Computing the properties of self-configuring, self-

optimization, self-healing and self-protection are sufficient

[2]. To incorporate the properties of self-optimization and self-

healing mechanisms of self-awareness, context awareness and

self-configuring should be the system requirements. In

particular in security systems, self-learning property is

fundamental [33].

VI. CONCLUSION

In 2001, IBM produced a manifesto in which it warned of

the difficulty of managing computer systems and pointed out

the current range of systems as an alternative for solving this

problem. This paper has presented a definition and main

characteristics of a new approach to the development of

systems that provide autonomy, Autonomic Computing. With

the new approach, it involves a change in the way of designing

computer systems.

The idea behind this approach is to develop self-managing

software, with little or no human intervention. It is based only

on high-level policies set by the supervisor and the knowledge

acquired over time. A set of autonomic properties are used in

this approach to reduce or eliminate human intervention in the

management of computer systems, such as self-healing, self-

protection, self-optimizing, self-learning, self-configuration,

etc. In this view, the task of management is placed under the

responsibility of the machines themselves.

We have shown in this paper that computer networks are

TABLE I

AUTONOMIC NETWORKS SECURITY SYSTEMS

Properties / Type Based in AC Not based in AC

Self-configuring [17] [22] [23] [26] [27] [32] [10]

Self-optimizing [17] [23] [26] [28] [32] [10]

Self-healing [23] [10]

Self-protecting [17] [22] [23] [10]

Self-learning [17] [23] [26] [27] [28] [32] [10]

Fig. 8. The Distance of Abnormality [25].

14

scenarios where AC can be easily applied, mainly resulting

from the growth of the Internet. In particular, we have

presented the applicability of AC in a very specific

environment, the management of network security. We have

explained the needs of network security for autonomic

mechanisms and how they can be implemented. Several

related works done within the area were described to provide a

more practical view.

Finally, research directions for network and application

security are the adoption and integration of intelligence. The

resources provided by AC are the most viable way to solve

problems in computer networks and more specifically, in case

of network security.

REFERENCES

[1] IBM, “An architectural blueprint for autonomic computing,” IBM Press,

in IBM Press, 3nd ed., Ed. New York: Prentice-Hall, 2005.
[2] R. Murch, “Autonomic computing,” IBM Press, Prentice-Hall, 2004.

[3] M. Parashar, and S. Hariri, “Autonomic computing: An overview,”

Unconventional Programming Paradigms, Springer Verlag, 2005, pp.
247-259.

[4] M. Parashar, and S. Hariri, “Autonomic computing: concepts,

infrastructure, and applications,” CRC Press, 2007.
[5] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar, and

H. Liu, “The autonomic computing paradigm,” Cluster Computing,

Springer, vol. 9, 2006, pp. 5-17.
[6] J.O. Kephart, and D.M. Chess, “The Vision of autonomic computing,”

Computer, IEEE Computer Society, 2003, pp. 41-50.

[7] M. C. Huebscher, and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Computing Surveys, vol. 40,

n. 3, 2008.

[8] M. Krause, and H. F. Tipton, “Handbook of Information Security
Management,” Auerbach Publications, 1999. Available:

http://www.cccure.org/Documents/HISM/.

[9] T. Zseby, H. Pfeffer and S. Steglich, “Concepts for Self-Protection,”
Autonomic Computing and Networking, Springer Science, 2009, pp.

355-380.

[10] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an Emulator for
Fingerprinting Zero-Day Attacks for advertised honeypots with

automatic signature generation,” in Proceedings of the EuroSys, 2006,

pp. 15-27.
[11] J. Song, Y. Kwon, and H. Takakura, “A Generalized Feature Extraction

Scheme to Detect 0-Day Attacks via IDS Alerts,” in International

Symposium on Applications and the Internet - SAINT, Turku, Finlândia,
2008.

[12] P. Kabiri, e A. A. Ghorbani, “Research on Intrusion Detection and

Response: A Survey,” International Journal of Network Security, vol. 2,
n. 1, 2005, pp. 84-102.

[13] M. T. Qassrawi and Z. Hongli, “Deception Methodology in Virtual

Honeypots,” in Second International Conference on Networks Security,
Wireless Communications and Trusted Computing, Wuhan, China, 2010,

pp. 462-467.

[14] L. Spitzner, “Honeypots: Definitions and Value of Honeypots,” in SANS
Annual Conference, 2002.

[15] E. S. Pilli, R.C. Joshi, and R. Niyogi, “Network forensic frameworks:

Survey and research challenges,” Digital Investigation, Elsevier, 2010,
pp. 1-14.

[16] S. Atay, and M. Masera, “Challenges for the security analysis of Next

Generation Networks,” in Proceedings of the Sixth International
Conference on Broadband Communications, Networks, and Systems –

BROADNETS, 2009.

[17] K. Wang, J. Wang, L. Shen, and Z. Han, “An Intelligent Security
Defensive Software Scheme and Realization,” in Third International

Symposium on Intelligent Information Technology and Security

Informatics - IITSI, 2010, pp. 793-796.
[18] M. Feily, A. Shahrestani, and S. Ramadass, “A Survey of Botnet and

Botnet Detection,” in Third International Conference on Emerging
Security Information, Systems and Technologies, 2009.

[19] Act-Net Consortium, Corporate, “The active database management

system manifesto: a rulebase of ADBMS features,” ACM SIGMOD
Record, New York, NY, USA, vol. 25, n. 3, 1996, pp. 40-49.

[20] S. Poslad, “Autonomous Systems and Artificial Life,” Ubiquitous

Computing: Smart Devices, Environments and Interactions, United
Kingdom: John Wiley & Sons, Ltd., 2009, pp. 317-341.

[21] N. Agoulmine, S. Balasubramaniam, D. Botvich, J. Strassner, E.

Lehtihet, and W. Donnelly, “Challenges for Autonomic Network
Management,” in 1st IEEE International Workshop on Modelling

Autonomic Communications Environments – MACE, 2006.

[22] Y. Dai, M. Hinchey, M. Qi, and X. Zou, “Autonomic Security and Self-
Protection based on Feature-Recognition with Virtual Neurons,” in

Proceedings of the 2nd IEEE International Symposium on Dependable,

Autonomic and Secure Computing, 2006.
[23] H. Chen, Y. B. Al-Nashif, G. Qu, and S. Hariri, “Self-Configuration of

Network Security,” in Proceedings of the 11th IEEE International

Enterprise Distributed Object Computing Conference, 2007, pp. 97-108.
[24] S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao,

“AUTONOMIA: an autonomic computing environment,” in

Proceedings of the IEEE International Performance, Computing, and
Communications Conference, 2003, pp. 61-68.

[25] G. Qu, S. Hariri, S. Jangiti, J. Rudraraju, S. Oh, S. Fayssal, G. Zhang,

and M. Parashar, “Online Monitoring and Analysis for Self-Protection
against Network Attacks,” in Proceedings of the International

Conference on Autonomic Computing, 2004, pp. 324-325.

[26] S. Hariri, G. Qu, R. Modukuri, H. Chen, and M. Yousif, “Quality-of-
Protection (QoP) - An Online Monitoring and Self-Protection

Mechanism,” IEEE Journal on Selected Areas in Communications, vol.
23, n. 10, 2005, pp. 1983-1993.

[27] B. Wang, P. Zhu, Q. Wen, and X. Yu, “A Honeynet-based Firewall

Scheme with Initiative Security Strategies,” in International Symposium
on Computer Network and Multimedia Technology - CNMT, 2009, pp.

1-4.

[28] C. Kreibich, and J. Crowcroft, “Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots,” SIGCOMM Computer

Communication Review, ACM, vol. 34, ed. 1, 2004.

[29] N. Provos, “A virtual honeypot framework,” in Proceedings of the 13th
conference on USENIX Security Symposium, vol. 13, Berkeley, CA,

USA, 2004.

[30] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Computer Networks (Amsterdam, Netherlands: 1999), vol. 31, n.

23-24, 1999, pp. 2435-2463.

[31] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,” in
Proceedings of the 13th Conference on Systems Administration, 1999,

pp. 229-238.

[32] G. Portokalidis, and H. Bos, “SweetBait: Zero-hour worm detection and
containment using low- and high-interaction honeypots,” Computer

Networks, Elsevier, vol. 51, ed. 5, 2007, pp. 1256-1274.

[33] J. E. Tapiador, and J. A. Clark, “Learning Autonomic Security
Reconfiguration Policies,” in IEEE 10th International Conference on

Computer and Information Technology (CIT), 2010, pp. 902-909.

