

 32

Abstract— Pervasive computing has become a very hot research
field. In our previous work, we have proposed a system named

UMP-Percomp, a Ubiquitous MultiProcessor-based Pipeline

processing architecture to support high performance pervasive

application development. So far we have implemented a prototype

system to evaluate the performance of the architecture. However,

the structure of the prototype system has some limitations: lack of

scalability, inefficient resource allocation algorithm, and lack of

flexibility for new kind of tasks. Hence we solve these problems

and improve the current UMP system. We add a UDP server to

each component to support scalability and component substitution.

We also design a parallel algorithm to maximum the usage of PEs

(Processing Elements), and we also consider the situation of

lacking PEs suitable for requested tasks. Finally, we run extensive

experiments on the new system to compare with the old system.

Index Terms—pipeline-based; scalability; resource allocation;

pervasive computing

I. INTRODUCTION

S hardware industry develops rapidly, people now can

share many kinds of computers; can share many servers;

can have a desktop computer and a notebook, and our house can

have many embedded devices. We now have come into one

person, many computers era, that is ubiquitous computing era,

or pervasive computing era [1]. Yet we still need to do many

researches on it.

In order to create this future technology, Olympus Company

and The University of Aizu cooperate with each other, and

create a system called UMP (Ubiquitous Multi-Processor)

System. We assume that, in the future more and more

microprocessors with extremely limited resources will be

embedded into pervasive computing environment. And under

most circumstances, these microprocessors only have unit

function. So in the UMP System, each of these processors is

Manuscript received November 19th, 2010. This work is supported in part

by Japan Society for the Promotion of Science (JSPS) Research Fellowships for

Young Scientists Program, JSPS Excellent Young Researcher Overseas Visit

Program and National Natural Science Foundation of China (NSFC)

Distinguished Young Scholars Program (No. 60725208).

M. Dong, K. Ota and L. Zheng are with School of Computer Science and

Engineering, the University of Aizu, Aizu-Wakamatsu, Fukushima, 965-8580,

Japan (e-mail: mx.dong@ieee.org, k.ota@ieee.org, d8112104@u-aizu.ac.jp).

G. Zhang and M. Guo are with Department of Computer Science and

Engineering, Shanghai Jiao Tong University, Shanghai, China. (e-mail:

zhanggw@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn)

called PE (Processing Element). Different kind of PE has

different function, several kinds of PE can do together to finish a

task. There are so many kinds of PEs around you, in your office,

in your home, or in your lab. So the objective of the UMP

System is to organize these heterogeneous PEs and running

pervasive computing application across these PEs. Besides, the

UMP System also wants to support mobile computing. In order

to achieve these purposes, we first designed a ubiquitous

pervasive computing framework (full name is Ubiquitous

Multi-Processor Network-Based Pipeline Processing

Framework), and then implemented a UMP based JPEG

encoding application [2]. The interesting place of JPEG

encoding application is that: user takes a photo by a camera

equipped mobile phone, and then asks the mobile phone to

encode the photo into JPEG, and finally view the processed

photo on the mobile phone. It seems that all the work is done on

the mobile phone, but in fact, the mobile phone sends the

encoding work to UMP System, and wait for the result returned

by the UMP System. Due to this technology, we can do more

complex task on mobile phone, and the duration of mobile

phone’s battery can be longer.

Though this seems very promising and interesting, there are

some insufficient points on the designing and implementing of

UMP System which we will formulate clearly later. In brief,

there are mainly three problems of current system: one is lack of

scalability and component substitution strategy; one is lack of

efficient pipeline scheduling, and the last one is mainly about

the ability to handle new kind of task. The main purpose of this

research is to address the above mentioned questions to make

the UMP System better. For the first question, we create a

general model for each component in the UMP System, so we

can easily implement scalability and component substitution.

For the second question, we introduce a pipeline algorithm. As

for the third question, we consider the handling of new kinds of

task to make UMP System more ubiquitous, and make a user to

have a better experience. Finally, we implement the modified

system and evaluate it by huge experiments of simulation.

The remainder of this paper is organized as follows. Section 2

reviews related works. Section 3 shows overview of the current

UMP system. Section 4 formulates three problems of the current

system and their corresponding solutions are given in section 5.

In section 6, we show experiment results and analysis followed

by conclusion in section 7.

Pipeline Based Resource Allocation Design in

Ubiquitous Communication Networks

Mianxiong Dong, Kaoru Ota, Long Zheng, Gongwei Zhang and Minyi Guo

A

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), November Edition, 2010

 33

II. RELATED WORK

A lot of projects on pervasive computing have been done in

the past few years. The solar project [4] in Dartmouth

University is to build a graph-based abstraction for collecting,

aggregating, disseminating context information. The project

treats the context-aware application has “event-driven”

structure, where event here refers to context information. And

then they built a graph of operators. These events (context

information) can flow through a directed acyclic graph of

operators to subscribing applications. The one world project [5]

provides an integrated, comprehensive framework for building

pervasive applications. The project realizes the vision that the

pervasive applications should continually adapt to an

ever-changing environments and still function when people

move through the physical world or switch devices. So they

build the one world framework to facilitate developers to build

pervasive applications. The Aura Project [6] aims at

distraction-free. The project assumes that the bottleneck in

computing is no longer CPU speed, disk capacity, or

communication bandwidth. Instead the bottleneck is the

limited resource of human attention. Researchers in this project

build Aura framework to minimize user’s attention and create an

environments that adapts to the user’s context and needs. The

Oxygen Project [7] at MIT tries its best to be human-centered.

The project treats computation has been centered about

machines for the last forty years. People should interact with the

machines on their term. The project assumes in the future, there

will be abundant computation and communication, and these

should be human-centered. They built Oxygen Project to make

these computation and communication as pervasive and free as

air, naturally into people’s live. The Endeavour Project [8] tries

to develop a revolutionary Information Utility, able to operate at

planetary scale, in order to make it dramatically convenient for

people to interact with information, devices and other people.

Researchers in Olympus Company and The University of

Aizu also had done many works on pervasive computing

previously. A. Shinozaki, M. Guo et.al developed a high

performance simulator system-based on multi-way cluster [3].

In their simulator, they developed architecture on

heterogeneous multiprocessor system, and use MPI library to

implement inter-process communication in order to minimize

CPU resource usage on communication wait state. At last, they

develop a distributed JPEG Encoding application to test the

performance. Inspired by the new insights in this work, M.

Kubo, B. Ye et.al propose a UMP (Ubiquitous Multi-Processor)

Framework to support pervasive computing environment and

mobile computation [2]. M. Dong et.al test some parameters on

the prototype system for optimizing [10][11].

III. AN OVERVIEW OF THE UBIQUITOUS MULTI-PROCESSOR

SYSTEM

A. Motivation of our work

The final goal of the UMP project is to provide a network

framework for the coming ubiquitous era [13]. In the ubiquitous

society, services are filled around the user just like the oxygen.

Services are like the water come out from the faucet; they are

everywhere and anytime to meet the user’s requests. This trend

requires computing resources with two opposing attributes:

higher performance and lower power consumption. The UMP

system has many processing elements (PEs). Each PE can have

a particular function. To tell simply, UMP system is like a

Tangram [12]. PE can be considered as a piece of the Trangram.

Trangram could be many constructions. Using some pieces, we

can get Rabbit or Yacht. As the same to it, The UMP system

provides the various functions for the users just combine the

precise PE and using it. In the ubiquitous society, users’ needs

are multifarious, so the best solution is to provide the several

basic functions which can collaborate with others to provide

various services. This idea brings the flexibility dynamics to the

UMP system.

B. Big picture of the UMP system

In our system, there are three kinds of nodes as shown in

Fig.1. One is the Client Node which works instead of the mobile

users. This node requests tasks through mobile terminals on a

wireless network. The other is the Resource Router (RR) which

is a gateway of the system. There exists only one node of RR in

one subnet. This node received task requests from the Client

Nodes. Then, the node manages a list of tasks and determines

which tasks should be executed currently on the subnet. The last

one is the Calculation Node which actually executes tasks

requested from the Client Nodes. Every task is allocated by the

RR on the subnet. When a task is executed, several Calculation

Fig. 1. Overview of the UMP system with one RR, two Client Nodes, seven

Calculation Nodes.

 34

Nodes are connected to each other like a chain. For example, to

encode a bitmap file into JPEG file, the step is 6. So it means the

chain has 6 Calculation Node. Combination of the Calculation

Nodes is always unique so that actions of tasks can be changed

flexibly by demands of the Client Nodes.

C. Architecture of the UMP system

Fig.2. shows architecture of the UMP system proposed in our

previous work [2]. In User Space, the ubiquitous application

sends a task to Task Management in USB (Ubiquitous Service

Broker). Then the Task Management asks Task Analysis &

Decomposition component to decompose the task into small

subtasks. Each subtask can only be done on corresponding PE.

After decomposing, Task Layer sends the subtasks to Service

Layer. Components in Service Layer will require PEs from

Resource Layer, and schedule the PEs for subtasks. As for

Resource Layer, it is responsible for managing PEs, including

monitoring the state of PEs.

We assume every user has a mobile phone. And for the

current UMP system, we only deployed it at one place and we

focused on USB. Because USB is core part in the architecture,

we will also focus USB on the improved system. It is a pity that

we integrated all the components into RR in the current UMP

system, but we will mend it in the improved system. Here is the

description of how the current system works: The user uses the

mobile phone to take a photo which is in raw and takes a large

space. Then the ubiquitous application on this mobile phone

connects to the RR on fixed UDP port. After connecting, the RR

spawns a new client thread to communicate the client (here

refers to the mobile phone) for current task. Then the mobile

phone sends task (here refers to JPEG Encoding) and

decomposed subtasks to the new client thread. The new client

thread finds all the necessary PEs for these subtasks. If it cannot

find them all, it rejects the task. If it finds them all, it sends the

subtasks to the PEs, and any of these PEs cannot be allocated

again for other tasks until all of these PEs freed by the system.

Finally, the PE in the last step sends the result to the mobile

phone.

IV. PROBLEM FORMULATION

In this section, we define three problems to be solved in the

current UMP system and corresponding solutions are given in

the next section.

A. Scalability

Our current UMP system has a lack of scalability because of

the following two sub-problems; component independent

problem and component substitution problem

First, we describe what the component independent problem

is. For simplicity, we only implemented some components of

USB in the current UMP system. Moreover, these components

are not independent. The RR component is responsible for the

other components. So they must reside on the same server.

Second, to explain the component substitution problem, we

take Task Manager Component as example. We have only a

normal server, on which we deployed a Task Manager

Component. This server can only handle a limited request from

clients. Because in the ubiquitous society, it has a possibility

that many users will use the system simultaneously, we want to

add a more powerful server to the system, and deploy Task

Manager Component on this server. However, this server has

different IP address. So how can the client know the new server

and send request to it? Another case is that the normal server

comes down. Under such case you have to substitute it.

However, the new server might have a new IP address. For

example, we tested to deploy the Task Manager Component on

an existing server which has a different IP address. As a result,

the client fails to send the request.

B. Resource Allocation

The big limitation of the current policy is if the RR allocates

the PEs to the users once, the all PEs are reserved until the

whole task will be finished. This is obviously a big useless of the

computational resource. To regard as this point, we can apply a

pipeline based algorithm to the UMP system. Due to the user

side is assumed as a mobile client, however, the battery life-time

is a very important factor in the system design. Hense, we need

to design an efficient resource allocation algorithm with

consideration of reducing the energy consumption of user side.

C. Handling diversity of tasks

In the current system, we only deploy PEs for a specified kind

of task, e.g. JPEG Encoding. So if a client requests a task but all

the PEs are not subtasks of it, the PEs cannot deal with the task

so that the system just reject it. However, practically, we will

have many different kinds of users and each of them have many

different kinds of requests (tasks). In addition, although all

users request the same tasks, available PEs are not enough and

some of the requests are rejected if the number of the users is

Fig. 2. Architecture of the UMP system

 35

quite large.

V. DESIGN OF THE NEW UMP SYSTEM

In this section, to design the new UMP system, we give

solutions to the problems mentioned in the previous section. We

firstly describe a new component structure to solve the first

problem and propose resource allocation algorithms followed

by introducing Emply PEs to the system, which can deal with

diverse tasks.

A. New component structure

To solve the component independent problem, we implement

the components of USB independently. That means each

component can deployed on different servers. They do not have

to be at the same server.

The key point to solve the second sub-problem is to ignore

the concrete IP address of each Component. Inspired by the

implementation of RR in the current system, we proposed a

UDP based solution. We designed a UDP server for each

component. The UDP server has a fixed port number, just as ftp

has a well-know port number 25. Different components have

different port numbers.

When there is a need for a component (or a client) to

communicate with another component. It first creates a

broadcast packet which contains a type and a random value.

The type is used for identifying the component with which it

wants to communicate. Because the receiving component may

receive different broadcast packets from different components,

it’s better to use a value to differentiate these packets. After

creating a proper packet, the sending component broadcasts the

packet. On receiving this broadcasted packet, the receiving

component check the type field in the packet, if it finds the

packet is aiming for itself: it replies its own IP Address and

other information like CPU speed to the sending component.

Otherwise it just discards the packet. After broadcasting, the

sending components can know the IP addresses and other

information about the components to which it wants to connect.

Base on the information like CPU speed, the sending

component can choose a proper one to connect.

Now we solve the component independent problem. You

may notify another problem has come up: how does a

component know the port number of the other component? One

method is to assume the port number is well-known. In order to

consider the scalability of the system, we will use another

strategy.

So far we only deployed the current system at one place, so

we do not need to consider the migrate problem. If we want to

run experiments on several places, we have to add a Task

Migrate Component to the system. We only modify a little of the

components that need to interact with Task Migrate Component.

Task Migrate Component registers itself at a fixed map server.

The map server allocates a unique port number for Task Migrate

Component. So if a component wants to interact with Task

Migrate Component. It just requires the corresponding port

number for Task Migrate Component at map server for the first

time. And then broadcasts to know the concrete IP address of a

Task Migrate server. Next time, it needs not to require the map

server again.

Considering the above problems, we propose a structure

model for each component as shown in Fig.3. The UDP Server

is used for replying IP address. Because there may be many

connection requirements from other components, we also

design a TCP server. It is used for handling requests, and

creating a child thread for each request. In order to make the

system more convenient, we integrate the starting of UDP

Server of TCP Server into Main. So when you start a

component, it can automatically start the corresponding TCP

and UDP servers.

B. Resource Allocation Algorithms

We design two pipeline based algorithms, which are called as

randomly allocating algorithm (RAA) and RAA with cache

technology, such that the RR only allocates a necessary PE for

current phase. Before describing two proposed algorithms,

firstly we review the current algorithm as follows.

Current algorithm (CA): When task comes, RR will reserve

the whole PEs which will be needed to process the task until the

task is finished. During the processing time, even some PEs are

free, they cannot be used by other tasks.

The characteristic can be analyzed into two parts:

Mean delay:

n

t
m

n
m

m

n
nt

m

n
mtmtmtm

d






⋅





−+−





⋅++⋅+⋅+⋅

=

)()1(210 L

 (1)

 Where m is the number of tasks RR can handle at one time, t

is the time to handle m tasks.

So the first m tasks wait 0 time, the second m tasks wait t time,

the ith m tasks should wait (i-1)t time. According to these, we

can compute the mean delay(d) time as follows:

n

t
m

n
m)

m

n
(nit

d

m

n

0i






⋅





−+

=
∑








= (2)

We can get task execution efficiency as follows:

Task Execution Efficiency:

Module

Main

(ModuleName.c)

start

start

create

UDP Ser ver

(UdpSer ver . c)

Ser ver

(Ser ver . c)

Chi l dThr ead

(Chi l dThr ead. c)

Fig. 3. Component Structure

 36

∑∑

∑
−

=
+

=

=

+

=
1

1

1,

1

1

n

i

ii

n

i

i

n

i

i

ce

e

f (3)

where niei ≤≤1 is the execution time in ith PE, 1, +jjc is the

communication time between jth PE and (j+1)th PE, nj ≤≤1 .

In our simulation, we assume the communication time

between any two PE is the same, i.e,

Nnmjiccc nmji ∈∀== ,,,,,
, N is the natural number set. So,

Task execution efficiency:

cne

e

f

i

i

i

i

*)1(
6

1

6

1

−+

=

∑

∑

=

=

 (4)

Randomly allocating algorithm (RAA): We apply a randomly

distribute algorithm to the UMP system. Due to the user side is

assumed as a mobile client, the battery life-time is a very

important factor in the system design. To reduce the energy

consumption of user side, we fix the first PE and the last PE to

provide the frequently access from user to search the last PE.

Thus, all the optimization process is effect to the middle PEs in

the whole process chain. The concept of RAA is after the PE

finished the execution of the process, the PE will ask the RR for

the next phase of PE. The usage rate of PE is quite high, but the

load balance is heavy for the RR.

We can get task execution efficiency as follows:

Task execution efficiency:

∑∑

∑

=
−

=

=

+++

=
n

i

iii

n

i

i

n

i

i

ccrcre

e

f

2

,11

1

1

)*2(

 (5)

where niei ≤≤1 is the execution time, nicri ≤≤1 is the

communication time between ith PE and RR, nic ii ≤≤− 2,1 is the

communication time between (i-1)th PE and ith PE.

Randomly allocating algorithm with cache technology

(RAA-C): To improve the RAA, we introduce the cache

technology. For every PE, we assign a cache for them to

memorize the next stage’s PE. When they finish their sub-task,

the will search the next phase of PE in their cache. If the all PEs

in the cache are at the busy status, it will ask RR to assign one

free PE as the next phase PE.

We can get task execution efficiency as follows:

Task execution efficiency:

∑∑

∑

=
−

=

=

+

=
n

i

ii

n

i

i

n

i

i

ce

e

f

2

,1

1

1

)3(

 (6)

where niei ≤≤1 is the execution time, nic ii ≤≤− 2,1 is the

communication time between (i-1)th PE and ith PE.

C. Available PE and Empty PE

To solve the third problem, we have the following two kinds

of PEs: Available PE and Empty PE. Available PE carries an

execution code to do a specific subtask and cannot work for

different kind of subtask. In order to complete a task requested

by a user, we need a group of Available PEs for all the subtasks

composing the task. We call them a set of Available PEs. On the

other hand, Empty PE does not carry any code, so it cannot do

any kind of subtask. It however can load any kind of codes from

a repository PE or a repository Server, and then can do the

corresponding subtask.

We utilize Empty PEs when we cannot find any Available PE

in the case when Available PEs are all busy or they cannot deal

with a requested task. In other word, unless we have no Empty

PEs, otherwise we will never give up to fulfill a task from a user

request.

The strategy for handling diversity of tasks is as follow:

(1) Find a set of Available PEs (It does not mean that they

are allocated at a time, just for testing the requirement). If

find all, return OK; else if cannot find all, but have empty

PEs, go to step (2); otherwise reject the task.

(2) Ask the system for necessary codes, if find all, loading

the codes to Empty PEs, otherwise go to step (3)

(3) Ask the client for necessary codes (it is handled by the

ubiquitous application, it is opaque to any user), if find

all, loading the codes to Empty PEs, otherwise go to step

(4)

(4) Check if the task is a migrating task, if yes, borrow the

code from last place; if no, and reject the task.

The users are unconscious of all the above steps; therefore the

users experiment better performance without rejected by the

system.

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we evaluate performance of the UMP system

in terms of impact on resource allocation algorithms as well as

impact with Empty PEs. Simulation results of them are shown in

the following subsections respectively.

A. Performance impact on resource allocation algorithms

For the first experiment, we built a simulation system to

evaluate the three algorithms. We used Poisson Distribution

[14] for task generation to bring the simulation close to the real

environment. Because The Poisson Distribution arises in

connection with Poisson processes. It applies to various

phenomena of discrete nature whenever the probability of the

phenomenon happening is constant in time or space. The

number of tasks is from 2500 to 5500. We run the simulation of

the number of tasks from 2500 to 5500 with every 150 interval.

We set number of PE as 2400. Because the JEPG encoding need

6 steps to process, each task needs 6 PEs, therefore the total

chains of PEs are 400. We also set the network delay as 100.

Fig. 4 shows the load balance of RR from the simulation

result. The load balance of CA is obviously small than RAA and

RAAC because once the RR assign the PE to execute the task, it

will never communicate with PEs. So, we omitted the

comparison in Fig. 4. From the picture, we can see by using the

 37

cache technology the summation of load balance of RR, RAAC

perform a good result than RAA. And it is naturally the RAA

had bad result, because almost every time the PE should ask RR

to know the next phase PE which should be connected to.

In Fig.5, task execution efficiency is highly related with the

waiting time, CA shows the worst result as well as it has to wait

the execution to start even there are free PEs in the process chain.

We can see RAA has a better result than RAAC. But consider

the loading balance of RR it is still not acceptable.

Delay (waiting time) is an important factor in the real system.

Supposed even the total executions time is good, but if the delay

is very large, the system is still cannot be well used by users.

From Fig. 6, we can see the average of delay of CA is extremely

huge. That is because the execution procedure is almost the

sequential. The reason of why RAA is slightly better than

RAAC is RAA can fully randomly use the next phase of PE. So

the waist of the fail communication time is omitted.

From the left part of Fig. 7, we can see the proposed

algorithms have a significant improvement compared with the

current implementation. From the bottom part of Fig. 5, we can

see the RAA is slightly performing a good result than RAAC.

But the difference is very small, so we can neglect in the real

system implementation.

Though these experiments, we have successfully proofed our

proposed algorithms are meaning while. Considering those four

key factors (task execution efficiency, load balance of the RR,

reducing the delay of task execution, total processing time of the

whole task), both of RAA and RAAC has its meit and demerit.

There is always a tradeoff between these factors. Taking into

account the balanced point of all factors, we found the RAAC is

much more suitable for the real environment to allocating

resources (PEs) when the condition is the system has many users

and many task to process. If the users and tasks are not so large

RAA could have a good performance too. One more things we

have realized through the experiments are we can set the

allocating policy flexibly answering to the user’s request.

Maybe that is the best solution to design the UMP system.

B. Performance impact with Empty PE

In the second experiment we use the same simulation system

as the first experiment. We run the experiment under three

different situations to evaluate .

For the first situation, we only offer Available PEs for one

kind of task in each system. We also offer a lot of empty PEs and

Fig. 4. The load balance of RR with RAA and RAAC Fig. 5. The execution efficiency of tasks with CA, RAA, and RAAC

Fig. 6. The delay (waiting time) of tasks with CA, RAA, and RAAC Fig.7. The total execution time of the tasks with CA, RAA, and RAAC

 38

binaries in each system. These binaries can be registered by the

administrator in the system. Then we sent ten kinds of tasks

requests to each system. Fig. 8 shows a rejection rate of a

requested task. We can see that in the current system (denoted

by a circle), it only accepts task 2, but reject all other kinds of

tasks. The reason is that we only include Available PEs for task

2. In the improved system (denoted by a square), it accepts all

the tasks. Though we also only provide Available PEs for task 2,

the Empty PEs can load necessary codes from some place to

execute the new kind of task.

For the second situation, we also only offer Available PEs for

one kind of task in each system, which means the system can

only do a task at the beginning. We do not offer codes in each

system this time. But we assume that the client has random kinds

of codes, so the system can ask the client for codes. We only

send three kinds of task requests to each system. But the same

kind of task may be sent several times to the system. The

number of the same kind task is randomly selected.

At first, there are only a few tasks to process. The kind of task

is random selected. We know for both systems, they can only do

one kind of task at the beginning. So if the number of this kind is

large, the rejection rate will be low. Otherwise, the rejection rate

will be high. In a word, the rejection rate seems stochastic. But

as the number of tasks become more and more, the number of

each kind will tend to be the same. So for the current system,

after the number of tasks reaches 150, the rejection rates are

going to be similar. That means the current system will reject

two kinds of tasks and accepts only one kind. Because the

number of each kind of task is almost the same, the reject rate is

approximate to 2/3≈0.6667. As for the improved system, we

know it can get new codes from client. As it handles with more

clients, it gets more codes. As a result, it can do more kinds of

tasks. So you can see in Fig. 9 that the rejection rate becomes

lower as the number of tasks gets larger (We assume a client

only do a few tasks in a limited time, this sounds reasonable). A

perfect result is that the system accumulates all the necessary

codes, and then it will accept any kind of task.

For the third situation, the unchangeable condition is that

both systems can only handle a kind of task at first. And this

time we consider the task migration. The improved system can

borrow the codes from another place, while the current system

cannot. We also do the ten kinds of tasks on both systems. The

result is similar to the first experiment as shown in Fig. 10. In the

current system, it only accepts tasks of kind 5. This is the only

different from the first experiment, because in this time’s

experiment, the systems are provided Available PEs for kind 5

task. You know, the current system has no way to get proper PEs

for other kinds of tasks. In the improved system, when a

migrating task comes, it can always borrow the codes from last

place. So we can accept all the migrating tasks in the new

system.

VII. CONCLUSION

In this paper, we addressed three problems in the UMP

System: lack of component substitution and scalability, lack of

efficient resource allocation algorithms, high rejection rate for

tasks requested by users. We design a UDP and TCP servers

based structure to support component substitution and

scalability. We proposed two different resource allocation

algorithms to utilize PEs efficiently. Also, we involve two kinds

of PEs to handle diversity of tasks. We ran a number of

simulation experiments and results show execution efficiency

can increase much more than the previous system and also

rejection rate can decrease. As future work, we will extend the

system to larger scale, and we will add more functions to it.

Fig. 8. Rejection rate with diversity of tasks

Fig. 9. Rejection rate over the number of tasks

Fig. 10. Rejection rate with diversity of tasks when Empty PEs can retrieve

any codes from anyplace

 39

REFERENCES

[1] Satyanarayanan, "Pervasive Computing: Vision and Challenges", IEEE

PCM August 2001, pp. 10 – 17

[2] M. Kubo, B. Ye, A. Shinozaki, T. Nakatomi, M. Guo, “UMP-Percomp: A

Ubiquitous Multiprocessor Network-Based Pipeline Processing

Framework for Pervasive Computing Environments”, in Proc. of IEEE

AINA’07

[3] A. Shinozaki, M. Shima, M. Guo, and J. Kubo. “A high performance

simulator system for a multiprocessor system based on multi-way

cluster”, in Proc. of 2006 Asia-Pacific Conf. Computer System

Architecture systems, pages 231-243, Shanghai, China, September 2006

[4] G Chen, D Kotz, “Solar: A Pervasive-Computing Infrastructure for

Context-Aware Mobile Applications”, Mobile Computing Systems and

Applications, 2002. In Proc. of Fourth IEEE Workshop, Page 105-114

[5] R.Grimm, “One world: Experiences with a pervasive computing

architecture”, IEEE Pervasive Computing, 3(3):22-30, July 2004

[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. SteenKiste, “Project aura:

Towards distraction-free pervasive computing”, IEEE Pervasive

Computing, 21(2):22-31, April 2002.

[7] Oxygen, MIT, http://www.oxygen.lcs.mit.edu

[8] Endeavour, UC Berkeley, http://endeavour.cs.berkeley.edu

[9] Helal, S. Winkler, B. Choonhwa Lee Kaddoura, Y. Ran, L. Giraldo,

C. Kuchibhotla, S. Mann, W. “Enabling location-aware pervasive

computing applications for the elderly”, in Proc. of IEEE Percom 2003

Page531-536, March 2003

[10] M. Dong, S. Guo, M. Guo and S. Watanabe, “Design of the Ubiquitous

Multi-Processor System Focusing on Transmission Data Size”, in Proc.

of The 2008 International Workshop on High Performance and Highly

Survivable Routers and Networks, pp. 158-166, Sendai, Japan, March

2008

[11] M. Dong, S. Watanabe, and M. Guo, “Performance Evaluation to

Optimize the UMP System Focusing on Network Transmission Speed”,

in Proc. of Japan-China Joint Workshop on Frontier of Computer

Science and Technology, pp. 7-12, Wuhan, China, November 2007

[12] Tangram, Wikipedia, http://en.wikipedia.org/wiki/Tangram

[13] OLYMPUS Future Creation Laboratory : Fields of Research, Olympus

Corporation, http://www.fc-lab.jp/en/activ/human/ubiquitous.html

[14] L. Kleinrock, Queueing Systems Volume 2: Computer Applications, John

Wiley & Sons, 1979.

