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Abstract—Recent advancement in wireless communications 

and electronics has enabled the development of Wireless Sensor 

Networks (WSN). WSNs are being deployed in a variety of 

location-aware applications, where the measurement of data is 

meaningless without accurate location. Many localization 

algorithms have been proposed in order to increase the accuracy 

and minimize the cost requirements. Artificial intelligence 

techniques such as fuzzy logic and neural networks can be 

utilized as effective methods to satisfy these requirements. In this 

paper, we present two efficient artificial intelligence-based 

localization algorithms for WSNs. In the first algorithm, we 

implement a Sugeno-type fuzzy system with a collaborative 

communication feedback to achieve an accurate and cost effective 

two-dimensional (2D) localization system. In the second 

algorithm, the idea of the 2D localization using neural network is 

extended to achieve a three-dimensional (3D) localization with 

simplicity, location accuracy, and low cost. The proposed 

approach is able to localize mobile nodes with unpredictable 

movement patterns. The simulation results depict the 

performance and the effectiveness of each approach.   

 
Index Terms— Wireless sensor network, Fuzzy logic, Neural 

networks, Localization, Location accuracy, Mobility. 

I. INTRODUCTION 

ECENT advances in radio communication and Micro-

Electro-Mechanical Systems (MEMS) have enabled the 

proliferation of Wireless Sensor Networks (WSNs). WSNs are 

complex wireless networks of wireless nodes equipped with a 

variety of sensors including infrared, ultrasonic, pressure, 

cameras, sonar, radar, and orientation to support different 

types of sensing functionalities. Sensor nodes are fitted with at 

least one microcontroller, which provides the processing 

capability. They are also equipped with RF transceiver with 

usually an omnidirectional antenna to allow the 

communication with each other or a central unit. As for the 

power source, sensor nodes usually rely on small batteries 

with a limited lifetime and sometimes rely on solar cells. 

These tiny sensor nodes, which consist of sensing, data 

processing, and communicating components, influence the 

idea of sensor networks based on collaborative effort of a 

large number of nodes. WSNs have broad applications in 

scientific data gathering, performing search and rescue 
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operations, real-time information processing for disaster 

response, surveillance, security, and military applications [1].  

One of the fundamental challenges and active research 

areas in wireless sensor networks is node localization. Node 

localization refers to determining the physical location of each 

node in the network. Most WSN applications need to have 

location information of the sensor nodes in order to make the 

measured data significant. Node localization is required to 

report the origin of events, assist group querying of sensors, 

routing and to answer questions about the network coverage 

[2]. Also, location information is used in many location-aware 

applications such as navigation, tracking, searching, and 

rescue operations [3]. One way to localize sensor nodes is by 

using Global Positioning System (GPS) on each node. 

Unfortunately, many prerequisites have to be met for proper 

GPS function. The GPS antenna must have an unobstructed 

line-of-sight to the sky, making it difficult for use indoors or 

in urban canyons. Also, the power consumption of such 

devices greatly shortens the lifetime of the sensor nodes. 

Moreover, in a network with large number of nodes, using 

GPS significantly increases the production cost of each node. 

For these reasons, an alternate solution of GPS is required, and 

it should be cost efficient, rapidly deployable and can operate 

in diverse environments.  

Many localization algorithms have been proposed to 

overcome GPS problems and to provide efficient localization. 

Localization algorithms for WSNs can be classified into two 

main categories: the range-based approaches and the range-

free approaches [4]. Range-based localization algorithms 

require precise internode measurements like distance or angle. 

Such measurements require extra hardware implementation 

and therefore become costly. Furthermore, the power 

consumption in these localization algorithms is high, and 

influences the lifetime of sensor nodes. On the other hand, the 

neighbor distance/angle information is assumed to be 

unavailable for node localization in range-free algorithms. 

Hence, such algorithms usually rely on the information of 

proximity of the reference nodes to estimate the location. 

Although range-based localization algorithms provide more 

accuracy, range-free localization algorithms are simpler, faster 

and more economical. However, the appropriate localization 

technique heavily depends on WSN intended application.  

In this paper, we propose two efficient localization 

algorithms for WSN using artificial intelligence techniques: 

Fuzzy Logic [5] and Neural Networks [6]. The proposed 

approaches address some of the major problems in node 

localization such as cost, accuracy, 2D/3D case, and mobility. 

They primarily aim to localize all sensors in a network given a 

minimum static set of well-known location reference nodes. 
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II. RELATED WORK 

A. Node Localization using Fuzzy Logic 

The ability of fuzzy logic to describe the expertise in 

more intuitive, human-like manner and to works well with 

optimization, adaptive, and non-linear techniques have 

enabled the propagation of a lot of fuzzy-based applications, 

including WSNs applications. Fuzzy logic can be used without 

additional hardware implementation to perform fast reasoning, 

and data processing. In [7], the authors propose a range-free 

localization algorithm that uses the broadcasted anchor node 

position (     ) by anchor beacons. In their algorithm, each 

sensor node computes its position as a centroid of the 

positions of all connected anchor nodes to itself by: 
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where (         ) represents the estimated position of the 

sensor node and  is the number of the connected anchor nodes 

to the sensor node. The scheme is simple and economic. 

However, it shows large localization errors. An improved 

version of [7] was proposed by the authors of [10]. In their 

approach, the location of a sensor node is calculated by using 

edge weights of anchor nodes, which is connected to that 

sensor node. Therefore, each sensor node computes its 

position by: 
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where    is the edge weight of         anchor node connected to 

the sensor node. The performance of this approach highly 

depends on the design of the edge weights and the number of 

anchor nodes involved in the localization process. In [19], the 

authors propose a combined Mamdani-Sugeno fuzzy approach 

that relies on the weighted average formula used by [10], in 

order to estimate the position of a sensor node. The approach 

shows good results. However, it deploys many anchor nodes 

comparing to the number of the sensor nodes, which is not 

cost efficient and is hard to be deployed in large areas. 

Another similar approach is proposed by [8]. The approach 

uses the weighted average formula used by [10, 19], to 

calculate the estimated position of a sensor node. However, it 

uses a lower number of anchor nodes than [19]. Also, it is 

used for indoor tracking and sensor nodes need to be deployed 

somewhere near the middle of the testing environment in order 

to get accurate results. 

 

B. Node Localization using Neural Networks 

Successful training can result in artificial neural networks 

that perform tasks such as predicting an output value, 

classifying an object, approximating a function, recognizing a 

pattern in multifactorial data, and completing a known pattern. 

Hence, neural networks can be used for any complex 

application including the localization of WSNs. Although 

neural networks are not commonly used in localization, there 

is some work in that area. In this section, we summarize some 

of the related work to three-dimensional (3D) localization and 

localization using neural networks. 

In [11], the authors propose a 3D-Weighted Centroid 

Localization algorithm (3D-WCL). The algorithm restricts the 

number of anchor nodes involved in the localization process 

by setting the weight to either 0 or 1 to each. The approach 

reduces the cumulative error caused by the variation in the 

Received Signal Strength Indicator (RSSI) values. Although 

this approach achieves better performance than the traditional 

Monte Carlo Localization (MCL) algorithm [12], it requires a 

large number of anchor nodes, which is hard to be deployed in 

reality. The authors of [13] followed a similar approach by 

using Mamdani and Sugeno fuzzy interface system to 

determine the weight of each anchor node. The system shows 

better performance than the simple centroid method. However, 

large number of anchor nodes must be deployed to achieve 

good results. In [14], the authors propose a Complexity-

reduced 3D trilateration Localization Approach (COLA) based 

on RSSI values. In this approach, a set of super anchor (SA) 

nodes are utilized for range estimation. The sensor nodes need 

to find the reference nodes that lie on the same x-y plane to 

reduce the 3D localization to 2D. The COLA approach 

achieves high location accuracy. However, to achieve good 

results, super anchor nodes need to be distributed uniformly, 

which is hard to be achieved in reality. 

In [15], the authors propose a recursive localization 

algorithm in 3D wireless sensor networks. The approach 

requires at least three anchor nodes to locate one sensor node. 

Also, it implements a recursive method for propagating 

position information throughout a sensor network given a 

limited number of reference nodes. The approach shows better 

performance than APIS [16] and the novel centroid algorithm 

[17]. 

In [18], the authors compare the efficiency of using neural 

networks with Kalman filter in the 2D localization. They also 

compare the usage of three main types of neural networks 

(MLP, RBF, and RNN) in localization in terms of accuracy 

and memory requirements.  As a result, they show that neural 

networks in general provide better accuracy than Kalman 

filter, where noise parameters are not expected to change. In 

contracts, Kalman filter is the best option if a flexible and 

easily modifiable method is required. Also, they show that 

neural networks perform well only for the area in which they 

have been trained. If the tracked object passes beyond the 

boundaries of the area where the neural network has been 

trained, the neural network will not be able to localize. As for 

the types of neural networks, they show that MLP neural 

network provides the best trade-off between accuracy and 

memory requirements. In this paper, we extend the work 

presented by [18] to achieve a 3D localization with location 

accuracy, mobility, and low cost. 

III. PROPOSED APPROACHES 

A. A Fuzzy-based Collaborative Localization Algorithm for 

Wireless Sensor Networks 

 

Using artificial intelligence in general and fuzzy logic in 

particular provides fast node localization. Fast node 
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localization is highly important for mission-critical 

applications, where the delay is not accepted [9]. In this 

section, we propose a fuzzy-based localization algorithm with 

a collaborative communication feedback. The proposed 

algorithm is a range-free algorithm and it relies on RSSI 

measurements across the wireless channel to determine the 

distance between the anchor nodes and the sensor nodes. The 

algorithm implements a Sugeno-type fuzzy interface system to 

determine the estimated location of each sensor node. The 

algorithm is centralized in which it requires the presence of a 

central processing unit to enhance the localization process.  In 

order to improve the accuracy of the localization, we integrate 

a collaborative communication feedback, which allows sensor 

nodes to assist anchor nodes in the localization process 

without extra hardware implementation. The proposed 

approach is a 2D approach and the wireless network is 

stationary. Furthermore, in order to increase the accuracy of 

the estimation, we implement a collaborative communication 

feedback, which gets the ordinary sensor nodes involved in the 

localization process along with the anchor nodes. The 

proposed approach takes the advantage of the accurately 

located nodes to enhance node localization in cost efficient 

way.  

The proposed approach consists of two main phases: 

phase I and phase II, where both of them operates in the awake 

cycle of the sensor node. In this approach we assume that each 

sensor node is synchronized with at least four anchor nodes. 

Therefore, it can exchange data with them on the same cycle 

and is able to listen to location beacons. Location beacons are 

important to determine the distance to each anchor node. In 

the communication process of phase I, which is shown in 

Figure 1, each anchor node frequently transmits beacons to 

broadcast its position. Sensor nodes periodically listen to these 

beacons, and once a sensor node receives at least four beacons 

from four different anchor nodes, it stops listening to more 

beacons. After that, the sensor node gets the positions of the 

four anchor nodes from the received beacons and calculates 

the distance to each anchor node. The distance to each anchor 

node is calculated by measuring RSSI values of each signal. 

RSSI is implemented in almost every sensor node and does 

not require extra hardware implementation. After calculating 

the distances, each sensor node uses the fuzzy-based system, 

which is shown in Figure 2, to get its estimated initial position. 

The fuzzy-based system has a Sugeno-type FIS, which in 

turn has one input and one output. The input of the FIS is the 

calculated distances from the received beacons, and the output 

is the weight values that interpret the distances. Each weight 

value that represents certain distance is obtained based on the 

fuzzy rules that described in Table I. The relationship between 

the distance and the weight is an inverse relationship. The 

weight value is important because it determines the effect of 

each anchor node on the localization of each sensor node. The 

weight value varies between 0 and 1, and it is controlled by 

the value of the distance. If the distance to one of the anchor 

nodes is small, the weight value is high and this indicates that 

the effect of that anchor node in localization is high. In 

contracts, if the distance is high, the effect of the anchor node 

will be small. Therefore, the weight value will be small. The 

distance is set to have five truth values. A = {low, slightly low, 

medium, slightly high, high}. The membership functions of the 

distance are shown in Figure 3. Two types of membership 

functions are used: trapezoidal and symmetric triangles 

membership functions. 

 

Anchor nodeSensor node

Broadcast 
message

Location 
estimation

Location 
message

Fig. 1. The communication process of phase I 

 

 

 

Estimated 
location

Distance 
calculations

Sugeno-type 
FIS

RSSI 
measurements

Weighted 
average

Weight 
values

 
Fig. 2. Fuzzy-based system used by each sensor node 
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Fig. 3. Distance membership functions 

Table I  

Fuzzy rules for the proposed approach 

Rule IF: Distance is THEN: Weight is 

1 Low High 

2 Slightly low Slightly high 

3 Medium Medium 

4 Slightly High Slightly low 

5 High Low 

 

The relationship between the distance and the weight can 

be described as follows: 

                       ( ), where D is the distance, W is 

the weight, A is a set of distance truth values, and f (A) is a 

polynomial function in the input of A, which describes the 

output of the system within the fuzzy region specified in the 

antecedent of the rule to which it is applied. As a result, the 

output weight value W has five truth values: W = {low, 

slightly low, medium, slightly high, high}, where each one has 

the following fuzzy region: W(0)= low= [0 0.3], W(1) 

=slightly low= [0.1 0.5], W(2) = medium = [0.3 0.7], W(3) = 

slightly high= [0.5 0.9], W(4)= high= [0.7 1]. The output 

weight values from the FIS and the positions of the anchor 

nodes are then used as input arguments in the weighted 

average formula to calculate the estimated position (         ) 
of a sensor node as follows: 
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where    and    are the x-y coordinates of the    anchor node, 

and    is the weight value of the    anchor node. As a result, 

each sensor node will have its initial estimated position at the 

end of phase I. 

 

Weighted average is an important concept in descriptive 

statistics and mathematics. If all quantities are weighted 

equally or contribute equally, while calculating the average, it 

is equal to the arithmetic mean. Weighted average accuracy is 

highly dependent on two factors: 1) the accuracy of weight 

values and 2) the number of anchor nodes. As for the first 

factor, the weight values are calculated from the Sugeno-type 

FIS, which provides an adaptive interpretation of distance 

values in a way to get the most representative weight value for 

each one. Hence, the main advantage of using Fuzzy logic in 

this approach is get accurate weight values. On the other hand, 

the second factor depends on the number of anchor nodes, 

which can be increased in order to achieve higher accuracy. 

However, this leads to higher production cost and a difficulty 

in deployment, especially in urban areas. In order to solve this 

issue, we integrate a communication feedback to apparently 

increase the number of anchor nodes. The communication 

feedback is part of phase II. 

In phase II, each sensor node sends a location message to 

one of the anchor nodes that elected to be the master of the 

network or the cluster. The location message includes the 

estimated position from phase I. The master node processes 

and correlates each location and based on the degree of the 

accuracy, it classifies the nodes into two groups: precisely 

located (PL) nodes and not-precisely located (NPL) nodes. 

Here, we assume that the node is precisely located if its 

localization error is less than 5%, and not precisely located, if 

its localization error is greater than or equal to 5%. The 

classification process is important since PL nodes will be used 

as location references along with the anchor nodes. 

After classifying each node, the master node sends an 

order message to each PL node, which informs it to broadcast 

its position (see Figure 4). After broadcasting position 

information by each PL node, each NPL node uses the 

positions of the PL nodes to recalculate its position again. 

Each NPL node measures the RSSI value from each 

broadcasted message, and accordingly calculates the distance 

to each PL node. As in phase I, each NPL uses the Sugeno-

type FIS in Figure 2, to obtain new weight values.  By adding 

the new weight values to the weighted average formula, each 

node recalculates a new position. The process in phase I will 

be repeated considering each PL node as an anchor node. 

Therefore, the number of anchor nodes apparently increases 

without any physical deployment of new anchor nodes. 

Consequently, each sensor node will have more localization 

references, and that increases the accuracy of the weighted 

average formula and therefore increases the accuracy of the 

localization. Finally, each NPL node sends back its new 

estimated location to the master node in a location message.  
 

Master nodeNPL node

Order 
message

Location 
recalculation

PL node

Broadcast 
message

Location 
message

 
Fig. 4. Communication process in phase II 
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B. A Three-Dimensional Localization Algorithm for Wireless 

Sensor Networks Using Artificial Neural Networks 

 

Many localization algorithms for WSN have been 

proposed in the literature. However, localization in three-

dimensional (3D) space has not been studied sufficiently. 

Also, artificial neural networks are not commonly used in 

localization. In this section, we present a 3D localization 

algorithm for wireless sensor networks using artificial neural 

networks. In the proposed approach, the idea of 2D 

localization using neural network is extended to achieve 3D 

localization with low cost, location accuracy, and mobility. 

The first proposed approach relies on fuzzy logic to provide 

cost efficient way to localize sensor nodes. However, it is 

designed for 2D localization, and sensor nodes assumed to be 

stationary. Furthermore, the approach requires the presence of 

a central unit, which increases the communication overheads 

and memory requirements. Here, we present a different 

approach for node localization using artificial neural networks. 

Although, both approaches are range-free and they depend on 

the presence of anchor nodes as well as RSSI measurements, 

they use different artificial intelligence techniques to achieve 

cost efficient localization. In this approach, the idea of the 2D 

localization using neural networks is extended to cover the 

localization in 3D space. The proposed approach is 

implemented in a distributed way, where each sensor node is 

able to locate itself without a central unit. Consequently, this 

reduces the communication traffic and the computing 

complexity in the network. Furthermore, the proposed 

approach is capable of localizing mobile nodes that have 

unpredictable movement patterns.  

The proposed approach utilizes three types of sensor 

nodes: anchor nodes, mobile nodes, and sink nodes. Anchor 

nodes are used as localization references. Mobile nodes are the 

nodes that perform the sensing and data gathering operations. 

Mobile nodes usually have predicted or unpredictable 

movement patterns, which allow them to move and cover 

large areas and perform more functionalities. Hence, they are 

the target of the localization process. In order to save the 

energy of mobile nodes, sink nodes are utilized to collect the 

measured positions and the collected data from each mobile 

node.  

In the awake mode, each anchor node transmits beacons 

to broadcast its position. RSSI-based measurements are used 

to measure the distance between the anchor nodes and the 

mobile nodes. When a mobile node receives at least one 

beacon from four different anchor nodes, it uses RSSI to 

calculate the distance to each anchor node. After that, the 

calculated distances are used in the localization process. In 

this approach we assume that each mobile node is 

synchronized with at least four anchor nodes, so that it can 

exchange data with them and listen to the location beacons on 

the same cycle. This method assists in reducing node 

localization time and in decreasing power consumption due 

being awake without reason. The approach is a distributed 

approach, that is, the localization process is a decentralized, 

where each mobile node is able to locate itself without the 

need of a central unit to achieve that, unlike the fuzzy-based 

approach where the need of a central processing unit is highly 

important to increase the accuracy of the localization. 

In practice, RSSI measurements are highly varied and 

unstable under the environmental noise and the mobility of 

sensor nodes. Therefore, localization process of each mobile 

node is done using a MLP neural network. A major benefit of 

using a neural network is that prior knowledge of the 

environment and noise distribution is not required. Also, 

neural networks generally provide more accuracy than other 

techniques such as Kalman filter [18]. Furthermore, we chose 

to use a MLP neural network because it has the best trade-off 

between accuracy and memory requirements among other 

types of neural networks. 

As shown in Figure 5, the MLP neural network, which is 

used in this approach, is a three-layer network composed of 

four nodes in the input layer, ten nodes in the first and the 

second layers, and three nodes in the output layer. The nodes 

in the first layer use the hyperbolic tangent sigmoid activation 

function, the second layer uses a Log sigmoid activation 

function, and the third layer uses a linear activation function.                       

The network has four inputs (    ), which are the 

measured distances to each anchor node. Also, it has three 

outputs ( ,  , and  ) which are the coordinates of the 

estimated position of the mobile node.  The proposed 

algorithm is designed to locate mobile nodes that have 

unpredictable movement patterns. To keep track of the 

movements, each mobile node has to send its updated location 

to the sink node after each movement. The sink node keeps 

these locations for other purposes such as studying the 

behavior of the mobile nodes and providing new training data 

that could improve the accuracy of node localization. 

 
 

 
Fig. 5. Neural network structure 

IV. SIMULATION RESULTS AND DISCUSSION 

A. A Fuzzy-based Collaborative Localization Algorithm for  

Wireless Sensor Networks 

 

The performance of the fuzzy-based algorithm is 

evaluated using MATLAB. The simulation environment is 

shown in Figure 6. It consists of: 100m X 100m square area, 4 

anchor nodes located at each corner of the squared area and a 

number of randomly distributed sensor nodes with unknown 

positions. The transmission range of each anchor node is 

assumed to be reachable by all sensor nodes. Also, RSSI 
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measurements are assumed to be accurate, therefore the 

calculated distances are accurate. In the simulation process, 

we initially evaluate the performance of phase I. Then, we 

evaluate the performance of the proposed approach which is a 

combination of phase I and phase II.  

 

 
Fig. 6. Simulation environment of the first approach 

As shown in Figure 7, the number of precisely located 

nodes in the proposed approach is higher than the number of 

the precisely located nodes in phase I. Also, as the total 

number of nodes increases, the proposed approach shows 

better localization estimations than phase I. This improvement 

is due to the adding of the collaborative communication 

feedback, which considers the effect (weight) of the PL nodes 

along with the anchor nodes in the weighted average formula. 

Hence, the proposed approach achieves better accuracy with 

minimal cost. However, the proposed approach still does not 

provide high accuracy for all sensor nodes. It provides high 

accuracy for a good percentage of them, though.  

 

 
Fig. 7. Phase I vs. the proposed approach 

 

As for the cost, the proposed approach only deploys four 

anchor nodes to obtain the location of 100 sensor nodes as 

shown in Figure 8. In [19], the authors use 121 anchor nodes 

to estimate the location of 60 sensor nodes which is not cost 

efficient and is hard to be deployed in large areas. In contrast, 

the proposed approach increases the number of localization 

references without any extra cost. Furthermore, the proposed 

approach estimates the location of higher number of sensor 

nodes than [8], they both use the same number of anchor 

nodes, though.  

 

 

Fig. 8. Comparison between the numbers of nodes used in each 

approach 

 

B. A Three-Dimensional Localization Algorithm for Wireless 

Sensor Networks Using Artificial Neural Networks 

 

The performance of the second proposed algorithm is 

evaluated using MATLAB. The simulation environment is 

shown in Figure 9. It consists of: 

                   cubic environment, and four anchor 

nodes. Each anchor node is represented by an asterisk (*). The 

Anchor nodes are placed at 4 corners of the cubic 

environment. A 100 mobile nodes are randomly distributed 

and each one represented by small letter (o). All mobile nodes 

are in one hop distance from all anchor nodes. The RSSI 

measurements and the calculated distances are assumed to be 

noisy. The simulation process consists of two phases: an 

offline phase and an online phase. 

In the offline phase, the proposed neural network is 

trained. Error back propagation training is performed using the 

Levenberg-Marquardt algorithm [20]. The objective of the 

training is to build an accurate model with good estimation 

capabilities when confronted with noisy input values. The 

neural network is trained for 441 epochs. The distances from 

the four anchor nodes are the input values, and the exact 

locations of the sensor nodes are the target values. After 

training the network, it is used in the online phase.  

In the online phase, 3D localization with different 

mobility patterns is evaluated based on three scenarios. The 

average localization error for each mobile node in each 

scenario is the average distance between the estimated 

coordinates and the actual coordinates. 
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Where,     is the average localization error of the    ,    is the 

localization error of the     mobile node,      ,      ,       are 

the estimated coordinate of the     mobile node,    ,    ,     
are real coordinate of the     mobile node, and   is the number 

of movements. To begin with,   is set to be five movements, 

then the proposed approach is evaluated based on the 

following scenarios. 

 

 

 
Fig. 9. Simulation environment of the second approach 

 

Scenario I: One-dimensional Movement 

Initially, the effect of the one-dimensional movement on 

the localization is evaluated. The one-dimensional movement 

represents the movement of earth bound vehicles such as 

trains and cars. In this scenario, each mobile node performs 

five random one-dimensional movements along the x-axis 

with different speeds. Here, the displacement in each 

movement varies between 0.1- 3.0 m. Figure 10 shows the 

average localization error in meters for each mobile node after 

five movements. As shown in the figure, all mobile nodes 

have an average localization error less than 1 m. The overall 

average localization error in this scenario is 0.4706 m.  

 

Scenario II: Two-dimensional Movement 

In this scenario, 3D localization with two-dimensional 

random movement is evaluated. A good example of two-

dimensional movements is pedestrian mobility or robot 

movements. As in the first scenario, five random movements 

are applied with different speeds and again the displacement 

varies between 0.1-3.0 m. As shown in Figure 11, 95% of the 

mobile nodes have a localization error of less than 0.8 m. The 

overall average localization error in this scenario is 0.4855 m. 

 

 

Fig. 10. Localization error in scenario I 

 

 
Fig. 11. Localization error in scenario II 

 
Fig. 12. Localization error in scenario III 
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Scenario III: Three-dimensional Movement 

Finally, each mobile node is set to perform five random 

3D movements. This type of movement could represent 

marine and submarine mobility or aerial mobility. Similar to 

the previous scenarios, the displacement of each movement 

varies between 0.1 to 3.0 m. As shown in Figure 12, 94% of 

the mobile nodes have a localization error less than 0.8 m. The 

overall average localization error in this scenario is 0.4879 m.  

 

To show the effectiveness of the proposed approach, we 

compare it with two 3D localization algorithms. The 3D-WCL 

proposed in [11] and Mamdani/Sugeno FIS proposed in [13]. 

Table II illustrates a comparison between the three 

approaches. The performance of the proposed algorithm 

outperforms the other two approaches. Also, it is important to 

note that the number of anchor nodes involved in the proposed 

approach is only four, while the other two approaches require 

a large number of anchor nodes. Hence, the proposed 

approach is cost efficient and can be implemented in reality. 

 
Table II  

Comparison of different 3D localization algorithms 

 
As exposed in each scenario, the proposed algorithm 

achieves high localization accuracy with different types of 

unpredictable movement patterns. However, what if the 

number of movements   increased? Figure 13 shows the effect 

of increasing   on the average localization error. As shown in 

Figure 13, the average localization error increases as the 

number of movements   increase, and this indicates that the 

neural network is not able give accurate results after certain 

number of movements. For instance, if the number of 

movements reached 60, the average localization error will 

reach 12m, which is high. Therefore, the neural network must 

be trained periodically with a new training data to keep on 

providing high accuracy. 

 

 

 
Fig. 13. The effect of increasing S on the average localization error 

V. CONCLUSION 

In this paper, we propose two efficient localization 

algorithms for WSN using two artificial intelligence 

techniques: Fuzzy logic and neural networks.  The first 

approach uses a Sugeno-type FIS along with a collaborative 

communication feedback to achieve accuracy with minimal 

cost. The approach is centralized and is designed for 2D 

localization. In the second approach, we use a MLP neural 

network to achieve 3D localization. The approach is 

distributed and is able to locate mobile node with 

unpredictable movement patterns.  

The proposed approaches have their own merits and 

drawbacks, making them suitable for unique types of 

topologies. For instance, the fuzzy-based approach is suitable 

to stationary WSN, where sensor nodes reside in static 

positions.  Also, it is suitable to the applications that only 

require 2D localization. Moreover, it is apposite to the 

applications, where the presence of central processing units is 

certain. On the other hand, the neural network-based approach 

is suitable to the applications, where 3D localization is 

essential. It is also suitable to the distributed type of networks, 

which include sensor nodes that are independent and have 

mobility patterns. Although the proposed approaches appear to 

support different types of applications, they both provide cost 

efficient node localization. The proposed approaches are 

summarized in Table III.    

In our analysis, we rely on the simulation to determine the 

degree of efficiency of each proposed approach. However, in 

simulation-based environments, many assumptions need to be 

made. Also simulation does not give a realistic performance 

about some factors such as power budget and noise 

distribution. In the future, we plan to perform experiments to 

validate the simulation results. On the other hand, it is obvious 

that all approaches have their own merits and drawbacks, 

making them limited for certain types of applications. In the 

future, we plan to combine several techniques to support broad 

type of applications with high localization accuracy. 
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Table III  

Summary of the proposed approaches 

Algorithm Type Processing 2D/3D 

case 

Accuracy Communication 

overheads and 

memory 

requirements 

Deployment 

cost of 

anchor 

nodes  

Mobility 

Fuzzy-based 

approach 

Range-

free 

Centralized 2D  Depends on the 

weighted 

average 

High Low Not 

supported 

Neural 

network-

based 

approach 

Range-

free 

Distributed 3D Depends on 

network training 

Low Low Supported 
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