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 
Abstract—The rapid expansion of computer networks in 

number of users, servers, connections and demands for new 
applications, services and protocols, along with the tremendous 
growth in data traffic has claimed the development and 
deployment of high-speed telecommunication systems. At the 
same time the fiber optics has shown significant bandwidth 
increase, providing multi-Gb/s line rates. However, present 
network devices still have limited processing power, which 
makes them unable to satisfy these demands. Therefore, 
telecommunication industry is looking forward for more 
innovative ways of designing flexible, scalable and high 
performance routers architecture. A solution to this problem is 
to use specialized processors, called network processors (NPs). 
These application specific instruction processors (ASIPs) are 
specially tailored to perform packet processing operations and 
their architecture is usually a question of different trade-offs 
between performance, flexibility and price. NPs from various 
vendors have different architectures, and the appropriate NP 
design choice can significantly affect the router architecture and 
its performances. In this paper we give an overview of the 
current trends in NP design, emphasizing the fact that a vide 
variety of NP architectures are composed of multiple equal 
general purpose RISC processor cores. Having this in mind, we 
consider the possibility of augmenting and modifying 32-bit and 
64-bit RISC processor cores, for packet processing application. 
This would require some minor architectural changes in the 
initial RISC cores architecture and their instruction set. The 
proposed NP cores would be implemented in language for 
instruction set architectures (LISA), so their functionality could 
be tested and verified. Furthermore, we would evaluate their 
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performance capabilities, by comparing them with the initial 
simple general purpose RISC cores, and with the micro engine 
processor cores of one of the most famous multi-gigabit network 
processor, Intel IXP1200. Designed NP cores could be further 
used for homogeneous multi-processor NP organization, where 
each core would be processing packets independently of the 
others. We believe that the proposed NP cores would be capable 
to deal with multi-gigabit (10/100 Gb/s) links of Next 
Generation Networks. 
 

Index Terms— IP packet processing, LISA, network 
processor, next generation networks, RISC  
 

I. INTRODUCTION 
HE trend of data, voice and video traffic convergence in 
the Internet, has caused bandwidth requirements growth 

in the data and telecommunication networks that form the 
backbone of the Internet. Therefore, telecommunication links 
and devices should be able to transmit and process huge 
amount of converged data traffic at very high speeds, up to 
multi Gb/s. These requirements are not limitation for the 
telecommunication links, due to the use of fiber optic 
transmission technology. On the other side, network devices 
must provide a solution that would satisfy the requirements 
for high throughput, but as well would provide flexibility in 
supporting new protocols, services and applications (QoS, 
firewalls, VPN, scheduling, flow controls etc), [1] - [3]. 
Additionally, as a result of the changing requirements for 
cost, performance and flexibility, the proposed solution 
should be capable to reach the market rapidly.  
Almost all network devices, including ATM switches, 
Ethernet switches, IP routers, web servers, hardware firewalls 
etc. provide some kind of packet processing. In the past, 
packet processing was implemented in software run on 
general purpose processors (GPP), because that time the 
performance requirements were very low and the networking 
protocols were very simple. However, GPP couldn’t provide 
high performance computing at wire rates. This became a 
huge problem, so the network engineers decided to develop 
hardware-based solutions using application specific integrated 
circuits (ASICs), [1], [4]. Although ASIC circuits could reach 
high speed and processing power, they were very specialized, 
and almost impossible to change, once they have been 
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designed. Consequently, re-programmability couldn’t be 
provided by use of ASIC circuit. This implied development of 
some new technologies such as System on Chip (SoC) design, 
Field programmable gate architecture (FPGA) as well as 
complex programmable logic device (CPLD). All these 
technologies have enabled many new possibilities in 
processor design area. A performance comparison between 
different technologies for network processing implementation 
is given in Fig. 1. 

This evolution resulted in the concept of network processor as 
hardware unit optimized for packet data processing at wire 
rates (multi Gb/s). In general, NPs are defined as chip-
programmable devices, particularly tailored to process 
network packets at very high speeds, [1] - [5]. They are part 
of various networking devices, and are usually implemented 
as application specific instruction processors (ASIP), with 
customized instruction set that may be based on RISC, CISC, 
VLIW etc., [2]. Furthermore, many NP architectures employ 
some improvements, such as parallel computing and pipeline 
techniques. This paper examines current architecture trends, 
prior to evaluating the novel NP cores. 

NPs have proven themselves as the best solution since they 
provide the flexibility of GPP, while keeping high 
performance of ASIC. They also provide many other 
important capabilities, such as scalability, product 
differentiation, reduced cost of ownership, and a faster time-
to-market. In this paper we would provide an outline of the 
achievements in NP design, in order to propose some ideas 
for further improvements. 

NPs architecture design is an ongoing field of research, 
expecting that the NPU market will show strong growth in 

the near future. Over the last few years many companies 
developed their own NPs, so many various NP architectures 
have been applied. What is more, many new ideas, such as 
the NetFPGA architecture, [6], [7], or software routers, [8] 
are constantly emerging. 
The aim of this paper is to propose novel 32-bit and 64-bit 
RISC based NP cores design, as well as to make performance 
estimation of their network processing capabilities. In order 
to achieve the goal, we would try to understand the NP 
processing operation requirements, so that we could research 
the current NP architecture trends. Besides that, we would 
examine various processor design techniques and tools in 
order to choose the most appropriate one, for implementing 
the proposed NP cores. Afterwards we would research the 
opportunity to extend 32-bit RISC based processor, and 
specify it for networking application. To achieve that, we 
would use the well known DLX processor architecture. Later 
we would consider the possibility to augment 64-bit RISC 
processor architecture, so it could be adjusted for network 
processing application. The proposed NP cores would be 
implemented in LISA, chosen as the most appropriate 
language for NP architecture description. The implemented 
NP cores might be tested, and verified within the used 
processor designer tool, so we could indicate that each of 
them is working properly. Additionally we would evaluate the 
achieved network processing performances of the proposed 
NP cores, by executing and analyzing IP packet processing 
programs. The performance estimation is given by comparing 
the number of IP packet processor cycles for the initial 32-bit 
and 64-bit RISC cores, the proposed 32-bit and 64-bit RISC 
based NP cores, and one micro engine of some of the most 
famous multi-gigabit NPs, such as Intel IXP1200. 

The rest of this paper is organized as follows: Section II 
gives an overview of NPs, their key characteristics and 
methods of operation, while outlining current architecture 
trends in NP design. Section III gives an overview of the 
techniques for processor design implementation. Section IV 
clarifies the design and implementation of the 32-bit NP core. 
Section V explains the development of 64-bit NP core and its 
implementation. Afterwards, in section VI, a performance 
evaluation of the novel NP cores is given. The paper 
concludes in section VII. The conclusion outlines the benefits 
of the proposed NP cores.  

II. STATE OF THE ART 
NPs have emerged in the late 1990s as potential technology 

that could handle the complex network processing 
requirements, [2]. Until now, there is no standard architecture 
for NPs, but most of the NP designs share some common 
characteristics that make them some how similar. 
Accordingly, all NPs are usually composed of: many 
processing engines (PE), dedicated hardware accelerators, 
memory resources, network interfaces, and software support, 
[1], [3]. Furthermore, NPs architecture is often improved by 

 

 
 

Fig. 1.  Comparison between different technologies for network processing 
implementation. As shown, ASICs achieve highest performance, on the cost of 
flexibility, whereas GPPs provide most flexibility, but less performance. On the 
other side, NPs characteristics are somewhere between FPGAs and 
Coprocessors, so NPs have proved themselves as the best solution for 
performance/flexibility achievement. 
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use of parallel processing, specialized coprocessors, and 
different techniques for achieving parallelism. According to 
the Flynn’s classification scheme, NPs can be categorized in 
the multiple instruction stream, multiple data stream class 
(MIMD), [2].  

The majority of the commercial NPs, such as EZChip’s 
NP-1-4, Intel's IXP1200, 2400, 2800, 2850 NPs, IBM’s 
Power NP, Motorola’s C-5 NP and many others, are designed 
as multi-core parallel processors. Generally, they could be 
separated in the following two categories: ones that use a 
number of high-end, special-purpose processing cores, like 
EZChip’s NPs and those who use a large number of simple 
RISC processing cores, such as Intel’s IXP NPs. However, all 
NPs are system-on-chip (SoC) designs that employ processor 
cores, memory and I/O on a single chip. In many NPs 
architectures (like Intel’s, Motorola’s, Sitera’s) the processing 
engines are RISC based cores, augmented with specialized 
instructions, multithreading, or pipeline implementation.  

Network devices are usually composed of four functional 
blocks: physical interface, data plane, control plane and 
switching interface, [1]. The basic function of each network 
device is to process the ingress data flow accepted by the 
physical interface, and then forward the packets to an 
outbound port, after the processing is completed. Basically 
network processing can be divided in two categories: control 
plane and data plane processing. Usually, NPs are responsible 
for the fast packet forwarding, executed in the data plane.  
The processing operations performed in the data plane are 
performance critical and must be completed very fast. On the 
other side, the slow packet processing implemented in the 
control plane, doesn’t require high performance computing. 
Accordingly, the control plane performs operations for 
control, configuration and management of the network device 
and is also responsible for routing protocols execution and 
management of routing tables. These control functions 
support and adjust the performing of data plane processing 
operations. Therefore, the control plane is generally 
implemented as a GPP. The switching fabric is another part 
of the network devices, responsible for network traffic 
forwarding from ingress to egress ports. 

Basically, the NP operation begins with receiving an input 
stream of data packets from PHY interface or switch fabric. 
During the packet processing usually only the IP header of 
the received packets is being processed, by parsing, 
analyzing, and modifying its content. Additionally, NPs do 
various packet processing operations such as classification of 
packets, IP route lookup and pattern matching, queue 
management and traffic control. After completing all the 
required processing operations, the packet is sent out through 
the switching fabric to appropriate outbound port, [1] - [3]. 

According to [9], the proper selection of networking 
protocols functionalities, considering the most time-
consuming packet processing operations could significantly 
simplify and accelerate the forwarding process. As a result, 

many different approaches have been used, such as speeding-
up the look-up operations by label concepts use, or avoiding 
some very complex operations like checksum calculation. 
However, it has been shown that the routing table look-up 
operation is the most time consuming operation that has to be 
taken into consideration. Having this in mind, network 
designers should focus their research in two directions: 
speeding-up or avoiding the table search. Therefore, the 
authors of papers [10] and [11] describe and propose faster 
table look-up algorithms, but in paper [9], the authors suggest 
avoiding the time-consuming table searches, by employment 
of source routing. Anyway, speeding up the routing process 
depends not only on the routing algorithm, but on the NPs 
architecture, as well. Consequently, in this paper we would 
try to improve the network processing performances, by 
proposing novel 32-bit and 64-bit RISC-based NP cores, 
specified for network processing application. 

At the present, there are many different NP architectures, 
each using different organization and concepts. However, a 
key point to all of these architectures is that they employ 
multiple processing cores (micro engine), that can process the 
input data streams in parallel. Besides data level parallelism, 
NPs can implement other parallel techniques for achieving 
thread or instruction level parallelism (ILP), [3].  

Very often, NPs packet processing can be accelerated by 
employing, hardware assistance (co-processors, functional 
units), adjusted memory architectures and interconnection 
mechanisms, [2].  Hardwired or reconfigurable coprocessors 
are usually in conjunction with processing cores, performing 
some functions that are computationally intensive to be 
implemented in softer. These special purpose hardware blocks 
are generally used for implementing some time-consuming 
operations like traffic management, packet classification, 
table lookup, and crypto graphing functions, [1], [2]. NP’s 
memory is another very important part of their architecture, 
especially because the processor frequently interacts with it. 
Not to mention that memory performs many important 
operations like storing the program and registers’ content, 
buffering packets, keeping intermediate results, holding, and 
maintaining potentially huge tables and trees for look-ups, 
maintaining statistical tables, and so forth. Consequently, the 
communication between memory and processor should be 
very fast, so that memory could fulfill the speed requirements. 
However, memory size and speed would always be a huge 
trade off. Major improvements can be achieved, by use of 
memory coprocessors for lookup, fast memories like CAM 
and SRAM, or various caching mechanisms, [3]. 

All these functionalities result in a NP architecture that can 
achieve high performances. However, there are additional 
requirements that should be satisfied as well, like flexibility, 
ease of programmability and fast time-to-market, [3]. 
Currently, NP design companies are paying much more 
attention to the programmability, enabling network software 
to be written in a high-level language such as C, and the core 
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routines in microcode, [3], [12]. Since there are much 
different architectures, with complex design and performance 
constraints, current trend is to achieve software uniformity 
and design portability. 

Nowadays, the most famous NPs implement multi-core 
architecture that can operate in parallel, pipeline or hybrid 
mode, [2]. Additionally, according to NPs level of operation 
they are divided in three categories: – entry-, mid- or core-
level NPs. Mid-level NPs do packets processing at higher 
layers, so they implement parallel architectures. On the other 
side, core-level NPs require highest processing speeds at the 
lower network layers, thus they implement pipeline 
architectures, [2]. 

As given in [2], NPs can be classified according to the 
organization of their processing cores and hardware 
accelerators: in pipelines or parallel pools of processors. 
Parallel architectures usually include multiple RISC-based 
homogeneous processing cores, which implement some 
particular instructions for packet processing. Their NP cores 
usually have small data and instruction cache, since they 
don’t interact with each other. Pipeline architectures usually 
employ heterogeneous processing cores optimized for specific 
processing function. The packet processing in the pipeline 
model is divided into multiple stages, whereas each stage is 
responsible to handle some specific networking operation. 
Hence, each processing core has optimized instruction set for 
executing specific pipeline stage function.   

The Intel IXP2800 processor is composed of 16 identical 
multi-threaded RISC processors, organized as a pool of 
parallel homogeneous processing cores, [13], and an 
additional 32-bit XScale processor responsible for control 
plane management. Intel’s architecture organization is 
advantageous in the simplicity of programming the 
processing elements, as they all use the same instruction set, 
and it also allows great flexibility towards ever-changing 
services and protocols. Therefore, Intel IXP2800 can achieve 
up to 10 Gb/s processing speed. On the other hand, Agere’s 
NPs employ pipeline model, where each heterogeneous 
processing core is responsible for one pipeline stage, [2]. 
Furthermore, the EZChip’s NP-1-4 processors are an example 
of a pipeline of heterogeneous multi-core processors. The 
used processing cores are optimized for specific tasks and are 
called Traffic Optimized Processors (TOP cores). Each stage 
of the pipeline is consisted of more duplicated cores, thus if 
one packet takes more time for processing, the whole pipeline 
would not be stalled. The heterogeneousness complicates the 
programming, but allows near-ASIC processing speeds to be 
reached. The newest EZChip NP-4 processor can achieve a 
total throughput of 100 Gb/s, that can be arranged among one 
or more line cards, [14], [15]. 

Our goal would be to design two different network 
processing cores that could further be used in homogeneous 
multi-core parallel organization. Therefore, each NP core 
would process the packets separately of the others, so packets 

that need more processing time won’t stall the packet flow. 

III. PROCESSOR DESIGN TECHNIQUES AND TOOLS  
Processor design is a long, tedious, and error-prone task 

consisting of typically four design phases: architecture 
exploration, software design (assembler, linker, loader, and 
profiler), architecture implementation (RTL generation for 
FPGA or cell-based ASIC) and verification. Therefore, the 
selection of appropriate processor design techniques and tools 
is one of the most important things that should be done, prior 
to the processor design implementation. Furthermore, the 
chosen processor designer tool is supposed to satisfy some 
requirements like optimal processor performance, small die 
size, low power consumption etc. However, there is still no 
solution which enables all these requirements to be satisfied 
at the same time. 

When it comes to processor design, the classic HDL 
methodology, that uses languages such as VHDL, SystemC or 
Verilog, can be a long and tedious process that can be usually 
carried out by only very experienced designers. This is how 
the Architecture Description Languages (ADL) have 
emerged. They enable processor design at higher level of 
abstraction with high degree of automation and unified 
development environment, thus more flexible development 
process. For example, the Language for instruction-set 
architectures (LISA) allows modeling a processor not only 
from instruction-set but also from architecture description 
including pipelining behavior. This allows design and 
development tool consistency over all levels of the design, 
[16]. 

From their introduction until today, ADL’s were subject to 
great number of changes. Today they are becoming an 
irreplaceable modeling tool for special purpose processors 
(like NPs) in academic research and commercial usage. In 
this paper we are going to provide an overview of the 
available processor modeling tools and techniques, in order to 
select the most appropriate one for the NP cores 
implementation. Furthermore we would consider the 
possibility to use FPGA board, as an experimental platform 
for real hardware simulation.   

A. Design Techniques 
In order to design a processor, several stages are required 

including, but not limited to: architecture design, architecture 
implementation, software development, and instruction and 
system verification. Architecture design and implementation 
is typically done by use of processor design tool, which 
supports special description languages purposed for 
representing the hardware operation. Currently, two types of 
description languages are available: Hardware Description 
Languages and Architecture Description languages. 

The complexity of modern processors requires their logic 
design to be extensively tested before they are manufactured. 
Hardware Description Language (HDL) models are created to 
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allow this simulation. Compared with going directly to circuit 
design, HDL modeling dramatically reduces design time and 
logic bugs. HDLs are also designed to be independent of the 
manufacturing process, so that logic designs are moved easily 
from one manufacturing generation to the other, [17]. The 
most commonly used forms of HDL are Verilog and VHDL. 

Architecture Description Languages (ADLs) are becoming 
popular recently because of their quick and optimal design 
convergence achievement capability during the design of 
different kinds of processors. Out of the many available 
ADLs, the preferred one in most cases is Language for 
Instruction Set Architecture (LISA). It provides a lot of 
flexibility and powerful manipulation and verification tools 
that can be used through the design process while reducing 
the gap between the traditional design of a processor using 
VHDL or Verilog and instruction set languages for 
architecture exploration, [18]. 

The main characteristic of LISA is the operation-level 
description of the pipeline which is able to model even 
complex interlocking and bypassing techniques. Instructions 
consist of multiple operations which are defined as register 
transfers during a single control step. Depending on the 
requested accuracy, a control step can be an instruction-, 
clock-, or phase-cycle. Operation scheduling in LISA is based 
on modified Gantt charts (L-charts) specifying time and 
resource allocation of operations and an operation sequencer 
with an ASAP (As Soon As Possible) operation sequencing 
strategy, [19].  

B. Automatic Design Tools 
As processor designs have steadily increased in complexity, 

processor design teams have also grown. To allow continuous 
increases in complexity while preventing design teams from 
growing even further, engineers must rely upon design 
automation, [17]. There are several automated design 
solutions available today, including Tensilica’s Xtensa 
Processor Developer’s Toolkit, MetaCore Application-
Specific Programmable DSP Development System, 
architectural level processor design environment PEAS III, 
tool for automated multiprocessor system design ESPAM, 
Synopsys (former CoWare) Processor Designer and a few 
others. 

Synopsys Processor Designer is an automated, application-
specific embedded processor design and optimization 
environment that slashes months from processor hardware 
design time and engineer-month from the creation of 
application processor-specific software development tools. 
Processor Designer's high degree of automation enables 
design teams to focus on architecture exploration and 
application-specific processor development, rather than on 
consistency checking and verification of individual tools. 

The key to Processor Designer's automation is its Language 
for Instruction Set Architectures, LISA 2.0. In contrast to 
SystemC, which has been developed for efficient specification 

of systems, LISA 2.0 is a processor description language that 
incorporates all necessary processor-specific components such 
as register files, pipelines, pins, memory and caches, and 
instructions. It enables the efficient creation of a single 
"golden" processor specification as the source for the 
automatic generation of the instruction set simulator (ISS) 
and the complete suite of software development tools, like 
Assembler, Linker, Archiver and C-Compiler, and 
synthesizable RTL code. The development tools, together 
with the extensive profiling capabilities of the debugger, 
enable rapid analysis and exploration of the application-
specific processor's instruction set architecture to determine 
the optimal instruction set for the target application domain. 
Processor Designer enables the designer to optimize 
instruction set design, processor micro-architecture and 
memory sub-systems, including caches, [20]. Considering the 
suitability of this processor design tool, we decided to use it 
for LISA implementation of the novel NP cores architecture, 
we are proposing.  

C. Field Programmable Gate Array (FPGA) 
FPGA is a logic device which can be custom configured 

and programmed after its manufacturing (“in the field”). 
Basically, it serves as platform for simulating and testing, any 
kind of custom designed hardware. Its ability for 
reconfiguration, offers various advantages for many 
applications, [21].   

The architecture of FPGAs has become increasingly 
complex and no longer consists of a simple array of lookup 
tables and flip flops connected by programmable routing. 
FPGAs now include on-chip RAM blocks, and multipliers. 
FPGA devices and their architectures vary across device 
families and across vendors. In this work we focus on Xilinx's 
Virtex 5 FPGA family and hence we discuss its architecture 
in more detail. 

XUPV505-LX110T is general purpose evaluation and 
development platform for hardware simulation. It is consisted 
of many components, such as: Xilinx Virtex-5 XC5VLX110T 
FPGA, Flash PROMs, 64-bit wide 256Mbyte DDR2, 
10/100/1000 tri-speed Ethernet PHY interfaces,  RS-232 port, 
16x2 character LCD, and many other I/O devices and ports. 
This platform is very suitable for education and research in 
many different areas like digital system design, embedded 
systems, computer architecture, networking etc., [22]. 

IV. IMPLEMENTATION OF 32-BIT RISC BASED NETWORK 
PROCESSOR CORE 

To facilitate with the increasing demands for high 
performance network processing, we suggested novel NP core 
organization, based on 32-bit RISC architecture. Assuming 
that the Intel IXP multi-gigabit NPs use 32-bit RISC micro 
engines, we decided to use a very simple DLX architecture, 
for the novel RISC based NP core design. DLX is an 
academic hypothetical architecture, developed by John L. 
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Hennessy and David A. Patterson, presented in [23]. In fact 
we are going to augment and extend the initial DLX 
architecture, so it could be capable for performing multi-
gigabit network processing. 

A. DLX Basic Architecture 
DLX is a 32-bit load-store multi-cycle RISC architecture. It 
provides 32 general purpose registers, all of which are 32 bits 
wide. Three types of 32-bit instructions are defined, as shown 
in Table 1. 

As can be seen from Table 1, an R-type instruction code 
consists of six zero-bits, followed by the two registers 
containing the source operands. Next instruction field is the 
destination address register, followed by five unused bits. The 
operation to be executed is encoded in the least significant six 
bits. Unlike R-type, I-type and J-type instructions format 
encode the operation type using the most significant six bits 
of the instruction code. Following instruction fields are source 
register, destination register and immediate value which are 
later sign extended at I-type instructions and the actual 
memory address value on which the program counter would 
point at J-type instructions.  

B. DLX Pipeline 
Earlier we mentioned that DLX is a pipelined architecture. 

Pipelining is one of the key concepts in Computer 
Architecture, defined as an implementation technique in 
which multiple instructions can be executed in overlapping 
fashion. This is possible if the operation tasks performed in 
each cycle of a multi-cycle architecture are clearly defined 
and independent from each other, [24]. 

The DLX pipeline is a five stage pipeline. Each 
instruction’s execution follows some or all of the pipeline 
stages corresponding to these cycles: Instruction Fetch (IF), 
Instruction Decode/Register Read (ID), Execution/Effective 
Address (EX), Memory Access/Branch Completion (MEM), 
and Write-back (WB) cycle. Communication among the 
various stages is accomplished using pipeline registers, as 
shown in Fig.2. 

Instruction Fetch is a primary pipeline cycle in which a 
new instruction is fetched from the instruction memory and 
then sent to the Instruction Register (IR), while Program 
Counter (PC) is incremented by 4. Next, during the 
Instruction Decode/Register Read (ID) cycle, the fetched 
instruction is decoded and register file is accessed in order to 
initialize internal registers. The following cycle is 

Execution/Effective Address, during which the ALU operates 
on the operands prepared in the previous cycle. This 
operation could be computing for the target branch address, a 
register-register ALU operation, a register-immediate ALU 
operation or memory reference address. Next is Memory 
Access/Branch Completion Cycle, during which only those 
instructions requiring memory access are active. Branch 
completion (i.e., branch decision) and updating of the PC are 
also done during this cycle. The last pipeline cycle is Write-
back, during which the result either coming from the ALU or 
the memory is written back to the register file.  

C. LISA Implementation 
 Considering the above description of the DLX processor, 

we implemented it through definition and ADL 
implementation (in LISA 2.0) of several groups of 
instructions. We primarily focused on integer instructions, 
since those are the ones needed for processor extension. DLX 
architecture also supports floating-point operations. 

In order to ease the implementation, we divided integer 
instructions into four groups, based on their function: 
arithmetic instructions, memory-access instructions, control-
flow instructions and test-and-set instructions. All of them 
have some distinctive characteristics, as we will see shortly. 

Instructions are not the only resource needed for DLX 
processor to function properly. Some registers and memory 
are also obligatory. Therefore, 32 general-purpose registers 
(GPRs) were implemented as well as 4 pipeline registers. 
Each of them is 32 bits wide. All of the GPRs can be used as 
sources as well as destination registers, except GPR [0] 
(which is zero-register) and GPR [31] (reserved for copying 
the Instruction Register during jumps).  

Regarding memory, two memory blocks were initially 
defined: program memory and data memory. Each of the two 
is four KB in size. Later, during the extension process, three 
additional memory blocks would be defined. 

 
 
Fig. 2. Pipelined DLX architecture. As shown, DLX load/store architecture 

features a 5-stage instruction pipeline including: instruction fetch (IF), 
instruction decode (ID), execution (EX), memory access (MEM) and write back 
(WB). The communication between pipeline stages is realized by registers, 
placed between two sequential stages.  
 

TABLE I 
DLX INSTRUCTION FORMATS 

Format Bits 

 31-26 25-21 20-16 15-11 1 0 -6 5 - 0 

R-type 0x0 rs1 Rs2 rd not 
used 

op. 
code 

I-type op. 
code rs1 Rd immediate 

J-type op. 
code value 
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D. Arithmetic Instructions 
There are two arithmetic instructions variants: I-type and 

R-type. The former has one of the operands hard coded in the 
instruction code as an immediate value and in latter both 
source operands are registers. The result of the operation is 
always placed back into a register. 

Table 2 depicts implemented arithmetic instructions. Some of 
their characteristic properties are as follows. Extend (imm) 
extends the immediate operand using its most significant bit 
so that it is 32 bits wide. SRA and SRAI are arithmetic right 
shifts. This means that, instead of shifting in zeroes from the 
left, the sign bit of the operand is duplicated. SRL and SRA 
perform identically if Rs1 is positive. If Rs1 is negative (bit 
31 == 1), 1's are shifted in from the left for both SRA and 
SRAI. 

E. Memory-Access Instructions 
 Basic memory-access instruction set was implemented, 

which enables word loading and word storing. Details are 
given in Table 3. Extend (imm) has the same function as 
defined for the arithmetic instructions. 

  
F. Control-Flow and Test-and-Set Instructions 
Control instructions can be classified into two groups: 

conditional jumps and unconditional jumps (branches). 
Unconditional jumping (branching) is actually jumping from 
the current position forward (if c > 0) or backward (if c < 0) 
by c instructions (words). Since instructions can only begin at 
a word boundary, it makes sense giving the offset in words 
rather than in bytes, as this increases the range of the jump by 
a factor of four. Jump means going to an absolute address. 
Here, the address is given as a byte address, and not as a word 
address. Implemented control-flow instructions are given in 
Table 4. 

 
Test-and-set instructions, on the other hand, do not directly 

change the program flow. Instead, they are used before a 
control-flow instruction is executed, to see whether some 
condition(s) are met, and set the flags accordingly. Several 
test-and-set instructions were implemented, but not shown in 
this paper due to lack of space. 

G. Other Resources 
As with any processor, the DLX CPU needs a way to 

communicate to the outside world. This can be done via a few 
simple signals. In addition to a data and address bus (with the 
necessary control signals), DLX needs a RESET signal and a 
clock. These signals and buses are described in this section. 

After powering up the CPU, it needs some way of getting 
into a known state. This can also be done at any point of 
execution when the CPU needs to restore to a reasonable 
starting point. For that purpose, DLX uses the RESET signal. 
When the RESET signal is asserted (high), the CPU loads the 
program counter with 0. After RESET is deasserted, 
execution begins at location 0, which should probably be the 
address of the first instruction of a program to be executed. 

An external clock signal is also required so that DLX 
processor can function the way it is supposed to. This can be 
provided in one of two ways. For debugging, a "manual" 
clock signal is likely to be the best. This signal should allow 
us to manually set the clock signal to high and low 
alternately. Since this CPU is being designed in a simulator 
and cycle time is unimportant, this method will allow us to 
take the time examining the CPU after each clock cycle. Once 
the CPU is working, however, we should use a "real" clock. 
For that purpose, we can create one in the simulator. 
However, we should make sure the cycle time is sufficiently 
long. If it isn't, the CPU may not work 

H. Processor Verification 
The verification of implemented DLX processor 

functionality is done by comparing the result obtained in 
simulation and the one attained using existing and already 
verified processor architecture. The same result achieved in 
both simulation and existing hardware, proves the 
functionality of the novel implemented NP core. According to 
that, we simulated the proposed NP core in Synopsys 
processor debugger tool, which is an integrated part of the 
processor designer tool, used for the NP core design. This 

 

TABLE IV 
IMPLEMENTED CONTROL-FLOW INSTRUCTIONS 

Instruction Syntax Operation Type 

bnez bnez   
rd,rs1,imm 

PC += (rs1 != 0 ? 
extend(imm) : 0 ) I 

beqz beqz   
rd,rs1,imm 

PC += (rs1 == 0 ? 
extend(imm) : 0) I 

blt blt       
rd,rs1,imm 

PC += (rd < rs1 ? 
extend(imm) : 0) I 

jump jump   val PC+= extend(val) J 
jal jal       val  r31=PC+4; PC+= 

extend(val) J 

 

 

TABLE III 
IMPLEMENTED MEMORY-ACCESS INSTRUCTIONS 

Instruction Syntax Operation Type 

lw lw   rd,rs1,imm rd = MEM[rs1 + 
extend(imm)] I 

sw sw   rd,rs1,imm MEM[rs1 + 
extend(imm)] = rd I 

 

 

TABLE II 
IMPLEMENTED ARITHMETIC INSTRUCTIONS 

Instruction Syntax Operation Type 
add add   rd,rs1,rs2 rd = rs1 + rs2 R 
sub sub   rd,rs1,rs2 rd = rs1 - rs2 R 
and and   rd,rs1,rs2 rd = rs1 && rs2 R 
or or      rd,rs1,rs2 rd = rs1 || rs2 R 
xor xor    rd,rs1,rs2 rd = rs1 ^ rs2 R 
addi addi  rd,rs1,imm rd = rs1 + 

extend(imm) 
I 

subi subi  rd,rs1,imm rd = rs1 – 
extend(imm) 

I 

andi andi  rd,rs1,imm rd = rs1 && imm I 
ori ori     rd,rs1,imm rd = rs1 || imm I 
xori xori   rd,rs1,imm rd = rs1 ^  imm I 
sll sll     rd,rs1,rs2 rd = rs1 << (rs2 % 8) R 
srl srl     rd,rs1,rs2 rd = rs1 >> (rs2 % 8) R 
sra sra    rd,rs1,rs2 same as srl* R 
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simulation environment allowed us to analyze and test the 
execution of assembly programs, written using the NP core 
instruction set. We executed the assembly programs, and 
during the simulation, we could examine when and how the 
processor resources (registers, pipeline registers or memory) 
were updated, which stage of the pipeline was performed, 
which operation was executed at that moment, which 
instruction could stall the pipeline and etc. 

The DLX operation was verified with two different 
assembly language programs, one of which contains simple 
mathematical operations, while the second one implements 
the bubble-sort algorithm. Using the former, every instruction 
of the processor’s instruction set was proven to be working 
properly. The latter program verified the processor’s ability to 
cope with more time-consuming tasks, while generating the 
expected results. Therefore, we can outline that the DLX 
processor hardware implementation is correctly completed. 
The DLX processor provides all the required functionalities. 

I. DLX Extension for Network Processing Application 
After verifying processor’s functionality, our next task was 

its extension, so that it could work as a NP core. This 
extended processor would be able to process network packets 
in hardware, speeding up the routing process. 

The bare DLX is general purpose architecture. As 
mentioned before, NPs do make use of general purpose 
processing functionality, but on the other hand, they must 
provide application specific functionalities, as required in 
network devices. These application specific functionalities 
include header processing, classification and routing, 
policing, queuing and finally packet forwarding. 

In order to meet these requirements, we implemented two 
new, network processing specific instructions. Outline of their 
characteristics is given in Table 5.  

 
Once a new packet arrives, it should be buffered in order to 

be processed and later sent to the output. When it comes to 
buffering input packets, there are two main approaches, as 
discussed in [25]. One alternative is to write packets directly 
to the input buffer and then process the headers, reading them 
in from there. A second alternative is to stream packets 
through the header-processing unit before they are stored in 
the buffer. Here, we use a combination of the two: as packets 
arrive, their header is written in a small, but fast header input 
buffer, while the packet content is written in larger, but 
slower buffer. 

Header input buffer is implemented as memory range of 
6000B, allowing maximum 100 packet headers to be stored 
simultaneously. In order to enable header loading from this 

buffer, a specific instruction was implemented (LDHDR). It 
places every header word into a separate, predefined register, 
so that after its execution the whole header is available in 
registers. While loading the header, this instruction also 
computes its checksum. Invalid headers are not processed any 
further. Once the header is completely processed, the 
corresponding packet should be stored into an output buffer, 
waiting to be forwarded. This output buffer is implemented as 
memory range too, this time 512KB in size, which is enough 
for 8 complete packets. Again, we have implemented a 
specific instruction for this purpose (STHDR). It reads all 
predefined registers, storing their content in consequent 
memory locations. 

All those modifications and newly implemented 
instructions should enable the novel NP core to process 
network packets, provided they are already somehow placed 
in memory. Additionally, we improved the NP core 
architecture by defining alias registers, which would provide 
direct access to the appropriate IP header fields, placed in the 
header input buffer. All instructions could use this alias 
registers as operands. The extended 32-bit RISC-based 
architecture is shown in Fig. 3. 

  
In order to verify processor’s functionality, a custom made 

IP processing program was written. In it, we statically place 
packets in memory. These packets are to be processed and 
forwarded as needed. At the beginning of the program, 32 
bits (the first word) of each packet header is read into 
processor registers. Packet version (4 bits), Header length (4 
bits), Type of service (8 bits) and Packet length (16 bits) are 

 

 
 

Fig. 3. Proposed architecture of 32-bit RISC based NP core. The DLX RISC 
core was extended with input and output buffer, intended for storing the IP 
header. Additionally, the NP core instruction set was augmented with some 
novel instructions that simplify the packet processing. Each NP instruction 
could directly manipulate with the IP header fields, addressed by alias registers.  
 

 

TABLE V 
IMPLEMENTED NETWORK PROCESSING INSTRUCTIONS 

Instruction Syntax Operation Type 

ldhdr ldhdr r1 cnt dst [dst..dst+cnt]= 
MEM[r1..r1+cnt] I 

sthdr sthdr r1 cnt src MEM[r1..r1+cnt]=
[src..src+cnt] I 
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then available in general purpose register (GPR[0]). Until 
now, only IP packets can be processed, so once the correct 
version is ensured, the rest of the header is loaded. This is 
done using LDHDR instruction. As a result, the rest of the 
header is now available in registers 1 to 4 (GPR[1]-GPR[4]). 
While loading the header, a checksum is also computed. Two 
conditions must be met in order to continue processing: 
checksum must be correct and packet’s destination address 
should not match any IP address of the processing machine. 

After executing this program using a simulator for the new 
processor, we were able to compare results obtained from the 
simulation with those we had computed. Results matched, 
packets were correctly routed (written to output buffer), and 
routing table searches yielded correct next hops. This verifies 
correctness and applicability of the novel NP core. 

V. IMPLEMENTATION OF 64-BIT RISC BASED NETWORK 
PROCESSOR CORE 

In order to achieve better network processing 
performances, we decided to implement 64-bit RISC based 
NP core, so we could measure its processing speed and 
compare it with the previous designed NP core. We believe 
that data-width incensement would influence on the packet 
processing speed. Once again, we use a very simple RISC 
architecture with Harvard organization. The use of RISC 
architecture has shown many advantageous in various multi-
gigabit NPs, such as Intel IXP1200. During the NP core 
design, we would try to enrich the initial architecture of a 64-
bit RISC core, and augment its fundamental instruction set. 
We hope that with appropriate internal hardware and 
software interventions, the proposed NP core could be 
involved in a multi-Gb/s routing applications.  

A. Basic NP Core Architecture 
The proposed NP core is based on standard 64-bit RISC 

processor architecture, augmented with several hardware 
accelerators and adjusted for IP packet processing. The NP 
core uses Harvard organization, which is very advantageous, 
since read/write operations to the data/program memory can 
be performed at the same time. Furthermore, the NP core 
employs RISC architecture, which allows execution of short 
and simple one cycle instructions, and implements ILP by 5-
stage (fetch, decode, execute, memory access and write back) 
pipeline. Additionally, the RISC based 64-bit NP core is 
capable of transferring 64-bits at a given moment. Actually, 
the main idea for designing this NP core is the possibility of 
modifying 64-bit general purpose RISC processor and 
adapting it for network processing application. We believe 
that the proposed NP core would be able to speed up the 
routing process and would achieve high network processing 
performance. 

The proposed NP core architecture is composed of: internal 
program and data memory (instruction and data cache), 64–
bit ALU, two operand and one result register, 128 general 

purpose registers and 64 packet header registers (packet 
header buffer). All the data paths between processor register, 
memory and other structures are 64-bits wide. The processor 
core, as usual, includes program counter and instruction 
register, responsible for instruction execution control. 
Additionally, the NP core employs buffer status register, 
which can be used for storing some important information (IP 
version, header length etc.) during the packet processing. 
Furthermore, the NP core implements hardware accelerator 
for checksum calculation. This way, the processor speeds-up 
the execution of a very complex and time-consuming 
operation. The proposed internal architecture of the 64-bit NP 
core is presented in Fig. 4. 

  
B. Network Processing 
We consider general packet processing for both IP versions. 

IPv4 packets are processed by executing the following 
operations: verification of packet header fields (version, 
packet length, source and destination address), CRC 
validation, route table look up, simple changes of some 
header fields (decrement of time-to-live), calculation of new 
CRC value and forwarding to outbound port, [25]. On the 
other side, IPv6 packets processing excludes some of these 
operations, such as CRC code validation and calculation. 
Additionally, IPv6 header, employs hop count limit field (its 
value is incremented during the packet processing), instead of 
time-to-live (TTL), [26]. 

All the IP processing operations are supported by the 64–
bit ALU, working with two sources, and one destination 
operand register. The ALU allows basic arithmetic/logic 
operations and additional simultaneous shifting of the second 
operand. 

C. Packet Header Buffer 
Packets received on the MAC interface, are stored in the 

data memory, and after their processing is finished, they are 
sent out to the forwarding engine. Usually, only the IP packet 
header is being processed by the NP core, so in order to 
accelerate its processing, the header is loaded and stored in 
additional 64 packet header registers. The packet header 

 

 
 

Fig. 4. Proposed architecture of 64-bit RISC based NP core. The initial 64-
bit RISC core was extended with packet header buffer, responsible for storing 
the IP header. The NP core could perform very fast manipulation with the IP 
header, since the header was already placed in the NP core registers and thanks 
to the alias registers defined for each IP header field. The instruction set was 
extended with some network instructions, such as for checksum calculation. 
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registers enable completely storing of each IPv4 header 
(including the option fields) or IPv6 header (including one 
extension header). This header registers provide fast data 
access and manipulation, since each IP header field can be 
individually and directly accessed, changed, and afterwards, 
restored in memory with the new (re)computed values. The 
NP core allows direct specifying of each IP header field as 
operand in NP instructions for IP packet processing.  

D. Alias Registers 
The NP core is composed of 128 general purpose registers, 

and 64 packet header registers. All of them can be addressed 
with completely 8 bits. The codes starting with b00, b01 or 
b10 are used to denote register indexes, and the remaining 64 
codes, starting with b11 are used for addressing the packet 
header fields, that are in fact alias registers. Therefore, the 
last 64 codes are divided, one half for IPv4 fields, and the 
other for IPv6 fields. Then, for example, the first general 
purpose register is addressed as b000000000, and the first 
field of the packet header (IPv4), is addressed as b11000000. 
All instructions can work with these alias registers as 
operands. This allows for a more flexible (and faster) packet 
header processing and greater convenience to the 
programmer. When the compiler is built, this kind of access 
to the packet header fields will be allowed via system calls. 

E. Instruction Set 
The NP core implements enchanted instruction set which is 

specially tailored to network processing application. 
Accordingly, it employs several specific instructions for 
hardware accelerators control, and CRC code validation and 
calculation. The NP core instructions have RISC based 
format, and they are additionally adjusted for IP header fields 
(for both IP versions) manipulation during the network 
processing. This involves utilization of an additional 
addressing mode that allows direct access to the IPv4 and 
IPv6 packet header fields by specifying their names (ex. 
ip4_ver, ip4_header_length, etc.).  

The instruction set is composed of some very simple 
general purpose and several special purpose instructions. The 
instructions are 64-bits wide, and can be given in one of the 
following three instruction formats: register, immediate or 
control (R, I and C format, accordingly) type.  

The register instructions such as sub, add, xor etc. are 
three-address instructions, which operate with register value 
operands. Additionally, these instructions allow shifting of 
the second operand, before the execution of some 
arithmetical/logical instruction. On the other side, the 
immediate instructions (load, store, add, etc.) are responsible 
for register-to-memory or memory-to-register transfer, and 
conditional brunches. These instructions always include at 
least one immediate value operand. However, according to the 
operands used, some of the instructions (ex. comparison, 
addition) can be implemented as either R-type or I-type. The 
last instruction format, C – type, is used to express: 

unconditional branching, procedure calls, CRC code 
validation and calculation, and trap instructions. The 
instruction set of the proposed NP core is shown in Fig. 5. 

 
F. Addressing Modes 
The NP core is RISC based, so it should support very 

simple addressing modes, [2]. As a result, it implements 
simple addressing modes like register, immediate and index 
addressing. Additionally, the most of the instruction 
operations are executed by memory or register accesses. Some 
of the instruction operands can be provided as alias registers, 
specified by the appropriate IP header field name.  

 

 
 
Fig. 5. Instruction set of the 64-bit RISC based NP core. The instruction set 

was extended with some specific instructions, such as CRC code check and 
calculation. All the instructions could operate with the IP header fields (alias 
registers), as instruction operands. 
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G. LISA Implementation and Processor Verification 
The proposed NP core architecture was modeled using the 

language for instructions set architectures - LISA. This 
modeling language is general enough to model any kind of 
instruction set driven processors, and yet powerful enough to 
model highly specific instruction set processors, [27]. 

Therefore we used it to model the proposed 64-bit NP core, 
and analyze its characteristics. We defined its memory and 
bus architecture, a standard 5-stage instruction pipeline and 
the instruction set specific to the network processing. From 
the LISA model we simulated the processor within the 
Synopsys processor designer tool, and afterwards we verified 
its functionality and performance within the Synopsys 
processor debugger tool. Accordingly, we wrote some 
assembler programs to prove that the NP instructions are 
working properly. The obtained simulation results allowed us 
to verify the NP core capability to perform network 
processing.  

H. FPGA Implementation 
The processor designer environment includes processor 

generator tool, which allows automated HDL code generation 
from the LISA model. The attained HDL code can be used for 
investigation at a lower level.  

In very near future, we are going to simulate the proposed 
NP core on a Xilinx VIRTEX 5 FPGA board. This could help 
us to achieve performance estimation that would be closer to 
real hardware. Hence, there are some issues that need to be 
taken in consideration, such as circuit complexity, power 
consumption and overheating. These characteristics might 
significantly influence on the overall performance that could 
be achieved. 

VI. PERFORMANCE ESTIMATION 
The present transition from circuit switch to packet switch 

networks has caused network traffic doubling every 12 – 18 
months, [2]. Consequently, it is expected that until 2015 the 
Internet throughput would increase to 1 Tb/s. At the same 
time, processors performance is limited by Moore’s law and 
power constraints. As a result, NPs should provide high speed 
computing, while overcoming all these limitations, and as 
well they should scale with the increasing computing 
performances. 

In order to estimate the performance trade-offs for the 
proposed NP RISC based cores, we provide some simple 
computations for calculating the theoretical maximum of 
instruction cycles allowed for each IP packet processing at the 
desired speeds of 10/100 Gb/s. The results of the equations 
given in (1) and (2) can be used as a theoretical limit which 
can be compared with the NP cores results. Consequently, 
this way we can estimate the network processing performance 
capabilities of the proposed NP cores. 

 

data rateAverage rate of packets [number of packets/s] 
average size of packets

   (1) 

 
1Average time for processing one packet [ s]

average rate of packets

average time for processing one packet [number of cycles]        
one processor cycle time in s

 




 

 

    (2) 

 
Therefore, if the NP cores are working at 2GHz frequency, 

and average data packet size is 512B, the theoretical number 
of processor cycles acceptable for multi-gigabit processing of 
single packet is: 820/82 processor cycles for attaining 10/100 
Gb/s packet processing speeds, accordingly. In order to satisfy 
these high performance requirements, NP cores must 
implement some parallelization techniques or hardware 
accelerators. Accordingly, the both NP cores employed a 
standard 5 stages pipeline, which allowed us to increase the 
packet processing throughput. Additionally, we could 
minimize the dependences between sequential instructions, 
and therefore pipeline stalls, by reorganizing and reordering 
the IP processing assembler programs code, executed on the 
NP cores. 

Assembly programs execution was monitored using 
Synopsys processor debugger tool. While proving processor’s 
design correctness and testing its functionality, this tool 
allowed us to also estimate its performance. As mentioned 
earlier, it allows a designer to track all changes raised in 
memory and registers (including pipeline registers), as well 
as additional custom resources. We used custom resources 
section to monitor values in global variables, as well as their 
effect over program execution. We took advantage of another 
possibility the tool offers – tracing. This allowed us to 
estimate the number of cycles needed for each instruction 
execution. 

Considering the proposed 32-bit and 64-bit RISC based NP 
cores, we evaluated their performance by analyzing assembler 
programs for general IPv4 and IPv6 packet processing. We 
simulated these programs and estimated the number of 
processor cycles needed for each type of IP processing. 
Additionally we considered that the NP cores can achieve 
different results, according to the memory type used 
(DRAM/SRAM), [11]. In our analyses, we compared the 
network processing performance of the proposed 32-bit and 
64-bit RISC based NP core with the general 32-bit and 64-bit 
RISC core, and afterwards we measured the possible 
improvements. Attained results for each of the processing 
cores, using DRAM/SRAM memories are shown in Fig. 6 
and 7, accordingly. 

Fig 6 depicts that the modified 32-bit NP RISC core, 
utilizing DRAM memory, achieves IPv4/IPv6 processing for 
435 and 665 processing cycles, accordingly. Furthermore, the 
modified 64-bit NP RISC core attains better results, finishing 
the IPv4/IPv6 processing for only 355, and 500 processor 
cycles. On the other side, Fig. 7 presents that the modified 
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32-bit NP RISC core, using SRAM memory, achieves IP 
processing for 135, and 185 processor cycles, for IPv4, and 
IPv6 packets, accordingly. Additionally, the modified 64-bit 
NP RISC core achieves better results, finishing the IPv4/IPv6 
processing for only 115, and 140 processor cycles. 

 

 
In the both cases, the modified RISC NP cores achieve 

better results, compared to the general purpose RISC 
processing cores. The processor cycles gain, by utilizing the 
novel NP cores is given in Fig. 8.  

The results given in Fig. 8 prove that the proposed NP 
cores achieve some performance improvements. Actually, the 
proposed 32-bit NP RISC core, using DRAM memory, 
accelerates the packet processing by 25% and 2% for Ipv4, 
and IPv6 packets, accordingly. The same NP core, using 
SRAM memory achieves 52% and 7,5% processor cycles 
gain, for Ipv4, and IPv6 packets, accordingly. For the 32-bit 
NP RISC core using DRAM memory the achieved 
improvements are: 25% and 3% for Ipv4, and IPv6 packet 
processing, accordingly. Additionally, the same NP core 
using SRAM memory achieves 52% and 10% processor 
cycles gain, for Ipv4, and IPv6 packets, accordingly. 

 
These results show that the proposed NP cores, can achieve 

multi-gigabit processing in the theoretical boundaries of at 
least 12-19 Gb/s. The initial results are satisfying, so in very 
near future we would consider the possibility to design multi-
core NP architecture, with homogeneous NP cores. For that 
reason, we made an investigation of the performance 
achievements of the micro engines in the very well known 
Intel IXP1200 network processor. According to [28], a single 
Intel IXP1200 micro engine needs totally 710 processor 
cycles, for packet processing. These processor cycles include: 
280 cycles of registers instructions, and 430 cycles of memory 
delay. According to that, the proposed NP cores achieve very 
reasonable performances, similar to the Intel IXP 1200 micro 
engines, as shown in Fig. 6 and 7. Therefore, the authors 
should continue the research and consequently design multi-
core NP architecture.  

VII. CONCLUSION 
In this paper, we are proposing two novels RISC based NP 

cores that should be able to cope with multi-gigabit networks. 
We initially described the NP cores architecture, including 
their instruction set, registers and additional resources, and 
afterwards we implemented them in Language for Instruction 
Set Architecture, using the Synopsys processor designer tool. 
This environment allowed us to verify the NP cores 
functionalities and measure their network processing 
performances.  

The proposed NP cores are specialized for network 
processing application. Their key architectural aspects are: 
enhanced instruction set, implementation of five stage 
pipeline, execution of complex instructions in one cycle, use 
of packet header buffer for holding the IP header, and use of 
alias registers for easier manipulation with the IP header 
fields. We have shown that the proposed architectural 
modifications have significantly improved the network 
processing capabilities of the initial general purpose RISC 
processors. Designed NP cores are able to fulfill the current 
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Fig. 8. Ipv4 and IPv6 processor cycles gain, attained with the novel NP 

cores. The results show that the proposed NP cores achieve faster IPv4 and IPv6 
processing, and consequently better network processing performances. At least, 
they are within 12-19 Gb/s boundaries of the theoretical limit. 
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Fig. 7. Number of IP packet processing cycles (IPv4 and IPv6) for each of 

the defined processing cores: 32-bit GPP RISC, 32-bit NP RISC, 64-bit GPP 
RISC and 64-bit NP RISC. All these processing cores utilize faster SRAM 
memory. The initial results show that the proposed 32-bit and 64-bit NP RISC 
cores improve the network processing performance, compared to the general 
purpose RISC cores.   
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Fig. 6. Number of IP packet processing cycles (IPv4 and IPv6), for each of 

the defined processing cores: 32-bit GPP RISC, 32-bit NP RISC, 64-bit GPP 
RISC and 64-bit NP RISC. All these processing cores utilize slower DRAM 
memory. The initial results show that the proposed 32-bit and 64-bit NP RISC 
cores improve the network processing performance, compared to the general 
purpose RISC cores.   
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network processing speeds and could be able to cope with 
multi-gigabit (12-19 Gb/s) links of Next Generation 
Networks.  

Since the NP cores, can achieve similar network processing 
performance as a single micro engine of the very well known 
Intel IXP1200 NP, in a very near future we would consider 
the possibility of designing multi-core NP with homogeneous 
NP cores. Additionally, we could investigate the ability to use 
the designed NP cores as hardware support for novel routing 
protocols intended to speed-up the network routing. 
Therefore, there is ongoing work for performing additional 
hardware and software simulations in order to accomplish 
these aims. 

REFERENCES 
[1] H. Jonathan Chao, Bin Liu, High Performance Switches and Routers 

High speed switches and routers, Wiley-IEEE Press, May 2007 
[2] Ran Giladi, Network Processors - Architecture, Programming and 

Implementation, Morgan Kaufmann Publisher, Ben-Gurion University of 
the Negev and EZchip Technologies Ltd., 2008 

[3] Mahmood Ahmadi, Stephan Wong, “Network Processors: Challenges and 
Trends”, Proceedings of the 17th Annual Workshop on Circuits, Systems 
and Signal Processing,, ProRisc, Veldhoven, The Netherlands, November 
2006, pp. 222-232 

[4] Panos C. Lekkas, Network Processors: Architectures, Protocols and 
Platforms, McGraw-Hill Professional, 2003 

[5] Mohammad Shorfuzzaman, Rasit Eskicioglu, Peter Graham, 
“Architectures for Network Processors: Key Features, Evaluation, and 
Trends”, Proc. on Communications in Computing, 2004, pp.141-146 

[6] NetFPGA Online Guide, [online]. Available: http://netfpga.org/  
[Accessed 10 May 2011] 

[7] Jad Naous, Sara Bolouki, Glen Gibb, Nick McKeown, “NetFPGA: 
Reusable Router Architecture for Experimental Research”, Proceedings of 
the ACM workshop on Programmable routers for extensible services of 
tomorrow, Stanford University, California, USA, 2008 

[8] Michele Petracca, Robert Birkea, Andrea Bianco, “HERO: High-speed 
enhanced routing operation in software routers NICs” , Proceedings of the 
4th international telecommunication networking workshop on QoS in 
multiservice IP networks, Politec. di Torino, 2008 

[9] Simon Hauger, Thomas Wild, Arthur Mutter, Andreas Kirstädter, Kimon 
Karras, Rainer Ohlendorf, Frank Feller, and Joachim Scharf, “Packet 
Processing at 100 Gbps and Beyond—Challenges and Perspectives”, in 
Proceedings of the 10. ITG Symposium on Photonic Networks, May 2009 

[10] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at 
memory access speeds,” in Proc. IEEE INFOCOM’98, Session 10B-1, San 
Francisco, CA, 1998, pp. 1240–1247. 

[11] W. Eatherton, G. Varghese, Z. Dittia, “Tree bitmap: Hardware/Software IP 
Lookups with Incremental Updates”, SIGCOMM Comput. Commun. 
Rev., vol. 34, no. 2, 2004. 

[12] M. Gries, C. Kulkarni, C. Sauer, K. Keutzer, “Exploring Trade-Offs in 
Performance and Programmability of Processing Element Topologies for 
Network Processors”, 2nd Workshop on Network Processors (NP2) at the 
9th International Symposium on High Performance Computer 
Architecture, 2003, pp. 75–87 

[13] Intel IXP2800 Network Processor® Product Brief, For OC-192/10 Gbps 
network edge and core applications, Intel Corporation, 2004 

[14] NP-4, 100-Gigabit Network Processor for Carrier Ethernet 
Applications, Product Brief , EZchip Technologies, 2010 

[15] NP-3, 30-Gigabit Network Processor with Integrated Traffic 
Management, Product Brief, EZchip Technologies,2010 

[16] Uve Meyer-Base, Alonzo Vera, Suhasini Rao, Karl Lenk, Marios Pittichis, 
“ FPGA wavelet processor design using language for instruction-set 
architecture (LISA)”, Proc. SPIE Int. Soc. Opt. Eng., April 2007, Vol. 
6576, pp. 65760U-1-12 

[17] Grant McFarland, Microprocessor design: a practical guide from design 
planning to manufacturing, The McGraw-Hill Companies, 2006 

[18] Umakanta Nanda, Kamalakanta Mahapatra, “Design of an application 
specific instruction set processor using LISA”, International conference on 
Advanced Computing and Communication, 2010. 

[19] Vojin Zivojnovic, Stefan Pees, Heinrich Meyr, “LISA - Machine 
Description Language and Generic Machine Model for HW/ SW CO-
Design”, White paper, 1996. 

[20] Automating the Design and Implementation of Custom Processors, 
[online]. Available: http://www.synopsys.com [Accessed 10 May 2011] 

[21] Pong P. Chu, FPGA prototyping by VHDL examples: Xilinx Spartan-3 
version, John Wiley & Sons, 2008 

[22] Xilinx University Program XUPV5-LX110T Development System, 
[online]. Available: http://www.xilinx.com [Accessed 10 May 2011] 

[23] Hennessy, John L., and Patterson, David A., Computer Architecture: A 
Quantitative Approach 2nd Edition, Morgan Kaufmann Publishers, 1996 

[24] Roger Luis Uy, Jonathan Lee, Jonathan Ray Roque, “ DARC: DLX 
Architecture Simulator”, Proceedings of the 4th Philippine Computing  
Science Congress, 2004 

[25] Andreas Moestedt, Peter Sjödin, Torsten Köhler, “Header Processing 
Requirements and Implementation Complexity for IPv4 Routers”, White 
paper, HP  Laboratories  Bristol, September, 1998 

[26] Internet Protocol, Version 6 (IPv6) Specification, IETF Standard 
RFC2460. Available:  
http://www.ietf.org/rfc/rfc2460.txt  

[27] LISA Language Reference Manual, Product Version V2009.1.1, 
CoWare, CoWare Processor Designer Product Family, 2009 

[28] Niti Madan, “Asynchronous micro engines for network processing”, 
Master Thesis, School of Computing, University of Utah, 2006 

 
 
 

Danijela Jakimovska obtained bachelor and master 
degree at the Faculty of Electrical Engineering and 
Information Technologies, Univ. “Ss. Cyril and 
Methodius”, Skopje, R. Macedonia, in 2008, 2010, 
respectively. Her major fields of studies include computer 
engineering, and information technologies 
She currently works as teaching and research assistant in 
the computer science department at the Faculty of 
Electrical Engineering and Information Technologies, 
Univ. “Ss. Cyril and Methodius” – Skopje, R. 

Macedonia. She started to work at this Faculty in 2008, as Laboratory assistant. 
During here work experience she has participated in some national and 
international projects. In 2010 she made two month scientific research in 
Processor architectures laboratory at École Polytechnique Fédérale de Lausanne 
(EPFL). She has also participated in the DAAD founded project “Embedded 
System Design” from 2009-2011. She has published several scientific papers as 
author or coauthor on national and international conferences. Currently her main 
areas of research include network processors, computer architectures, processor 
design, multi-gigabit networks etc.   
Msc Jakimovska is member of IEEE Women in Engineering, IEEE Circuits and 
Systems Society, IEEE Computer Society and IEEE Communications Society, 
since 2010, member of Association of Computer Machinery since 2011, and 
alumnae of Board of European students of Technology Skopje, since 2009.   
 

Aristotel Tentov obtained bachelor, master and Ph.D. 
degree at the Faculty of Electrical Engineering and 
Information Technologies, Univ. “Ss. Cyril and 
Methodius”, Skopje, R. Macedonia, in 1983,  1989 and 
1994, respectively. His major fields of studies include 
computer engineering, information and communication 
technologies, system-on-chip, computer-communication 
systems performance analysis and modeling, and 
embedded systems design. 
He is currently a full professor in the computer science 

department at the Faculty of Electrical Engineering and Information 
Technologies, Univ. “Ss. Cyril and Methodius” – Skopje, R. Macedonia. He is 
an author/coauthor of more than 35 scientific papers on conferences, 
symposiums and journals, and author/coauthor on more than 40 
national/international projects and technical reports. He is a member of the 
Program Committees on more than 20 International conferences. His main areas 
of research include: Computer Architectures; Processor Architectures; Wired, 
wireless, and mobile networking; Mission critical systems and networks; 
Avionics; Multiprocessor and Multi-core Systems; Embedded systems; High 
Performance Computing; System-on-chip; RFID devices and environments; and 
Process Control; 
Dr. Tentov is a member of IEEE since 1988 and of ACM since 2001. He is a 
member of IEEE Technical Committees on: Computer Communications, 
Distributed Processing, Real-Time Systems and Simulation. 


