
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), May Edition, 2011

28


Abstract—The rapid expansion of computer networks in

number of users, servers, connections and demands for new
applications, services and protocols, along with the tremendous
growth in data traffic has claimed the development and
deployment of high-speed telecommunication systems. At the
same time the fiber optics has shown significant bandwidth
increase, providing multi-Gb/s line rates. However, present
network devices still have limited processing power, which
makes them unable to satisfy these demands. Therefore,
telecommunication industry is looking forward for more
innovative ways of designing flexible, scalable and high
performance routers architecture. A solution to this problem is
to use specialized processors, called network processors (NPs).
These application specific instruction processors (ASIPs) are
specially tailored to perform packet processing operations and
their architecture is usually a question of different trade-offs
between performance, flexibility and price. NPs from various
vendors have different architectures, and the appropriate NP
design choice can significantly affect the router architecture and
its performances. In this paper we give an overview of the
current trends in NP design, emphasizing the fact that a vide
variety of NP architectures are composed of multiple equal
general purpose RISC processor cores. Having this in mind, we
consider the possibility of augmenting and modifying 32-bit and
64-bit RISC processor cores, for packet processing application.
This would require some minor architectural changes in the
initial RISC cores architecture and their instruction set. The
proposed NP cores would be implemented in language for
instruction set architectures (LISA), so their functionality could
be tested and verified. Furthermore, we would evaluate their

Manuscript received May 10, 2011. This work was supported by the Faculty
of Electrical Engineering and Information Technologies – Skopje, as part of the
project “Routing and Traffic control in Next Generation Computer Networks”,
2011-2012.

Danijela Jakimovska, MSc, is teaching and research assistant at the Faculty
of Electrical Engineering and Information Technologies, Ss. Cyril and
Methodius University, Skopje, R. Macedonia (phone: +3892-3099-153, fax:
+3892-3064-262, e-mail: danijela@feit.ukim.edu.mk).

Aristotel Tentov, PhD, is full professor at the Faculty of Electrical
Engineering and Information Technologies, Ss. Cyril and Methodius University,
Skopje, R. Macedonia (e-mail: toto@feit.ukim.edu.mk).

Sashka Gjorgjievska, final year student in BSc, is laboratory assistant at the
Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and
Methodius University, Skopje, R. Macedonia (e-mail:
Saska.GJorgjievska@feit.ukim.edu.mk).

Goce Dokoski, MSc, is teaching and research assistant at the Faculty of
Electrical Engineering and Information Technologies, Ss. Cyril and Methodius
University, Skopje, R. Macedonia (e-mail: gocedoko@feit.ukim.edu.mk).

Marija Kalendar, MSc, is teaching and research assistant and PhD student at
the Faculty of Electrical Engineering and Information Technologies, Ss. Cyril
and Methodius University, Skopje, R. Macedonia (e-mail:
marijaka@feit.ukim.edu.mk).

performance capabilities, by comparing them with the initial
simple general purpose RISC cores, and with the micro engine
processor cores of one of the most famous multi-gigabit network
processor, Intel IXP1200. Designed NP cores could be further
used for homogeneous multi-processor NP organization, where
each core would be processing packets independently of the
others. We believe that the proposed NP cores would be capable
to deal with multi-gigabit (10/100 Gb/s) links of Next
Generation Networks.

Index Terms— IP packet processing, LISA, network
processor, next generation networks, RISC

I. INTRODUCTION
HE trend of data, voice and video traffic convergence in
the Internet, has caused bandwidth requirements growth

in the data and telecommunication networks that form the
backbone of the Internet. Therefore, telecommunication links
and devices should be able to transmit and process huge
amount of converged data traffic at very high speeds, up to
multi Gb/s. These requirements are not limitation for the
telecommunication links, due to the use of fiber optic
transmission technology. On the other side, network devices
must provide a solution that would satisfy the requirements
for high throughput, but as well would provide flexibility in
supporting new protocols, services and applications (QoS,
firewalls, VPN, scheduling, flow controls etc), [1] - [3].
Additionally, as a result of the changing requirements for
cost, performance and flexibility, the proposed solution
should be capable to reach the market rapidly.
Almost all network devices, including ATM switches,
Ethernet switches, IP routers, web servers, hardware firewalls
etc. provide some kind of packet processing. In the past,
packet processing was implemented in software run on
general purpose processors (GPP), because that time the
performance requirements were very low and the networking
protocols were very simple. However, GPP couldn’t provide
high performance computing at wire rates. This became a
huge problem, so the network engineers decided to develop
hardware-based solutions using application specific integrated
circuits (ASICs), [1], [4]. Although ASIC circuits could reach
high speed and processing power, they were very specialized,
and almost impossible to change, once they have been

Performance Estimation of Novel 32-bit and
64-bit RISC based Network Processor Cores

Danijela Jakimovska, Student Member, IEEE, Aristotel Tentov, Member, IEEE, Sashka Gjorgjievska,
Goce Dokoski, Marija Kalendar, Member, IEEE

T

29

designed. Consequently, re-programmability couldn’t be
provided by use of ASIC circuit. This implied development of
some new technologies such as System on Chip (SoC) design,
Field programmable gate architecture (FPGA) as well as
complex programmable logic device (CPLD). All these
technologies have enabled many new possibilities in
processor design area. A performance comparison between
different technologies for network processing implementation
is given in Fig. 1.

This evolution resulted in the concept of network processor as
hardware unit optimized for packet data processing at wire
rates (multi Gb/s). In general, NPs are defined as chip-
programmable devices, particularly tailored to process
network packets at very high speeds, [1] - [5]. They are part
of various networking devices, and are usually implemented
as application specific instruction processors (ASIP), with
customized instruction set that may be based on RISC, CISC,
VLIW etc., [2]. Furthermore, many NP architectures employ
some improvements, such as parallel computing and pipeline
techniques. This paper examines current architecture trends,
prior to evaluating the novel NP cores.

NPs have proven themselves as the best solution since they
provide the flexibility of GPP, while keeping high
performance of ASIC. They also provide many other
important capabilities, such as scalability, product
differentiation, reduced cost of ownership, and a faster time-
to-market. In this paper we would provide an outline of the
achievements in NP design, in order to propose some ideas
for further improvements.

NPs architecture design is an ongoing field of research,
expecting that the NPU market will show strong growth in

the near future. Over the last few years many companies
developed their own NPs, so many various NP architectures
have been applied. What is more, many new ideas, such as
the NetFPGA architecture, [6], [7], or software routers, [8]
are constantly emerging.
The aim of this paper is to propose novel 32-bit and 64-bit
RISC based NP cores design, as well as to make performance
estimation of their network processing capabilities. In order
to achieve the goal, we would try to understand the NP
processing operation requirements, so that we could research
the current NP architecture trends. Besides that, we would
examine various processor design techniques and tools in
order to choose the most appropriate one, for implementing
the proposed NP cores. Afterwards we would research the
opportunity to extend 32-bit RISC based processor, and
specify it for networking application. To achieve that, we
would use the well known DLX processor architecture. Later
we would consider the possibility to augment 64-bit RISC
processor architecture, so it could be adjusted for network
processing application. The proposed NP cores would be
implemented in LISA, chosen as the most appropriate
language for NP architecture description. The implemented
NP cores might be tested, and verified within the used
processor designer tool, so we could indicate that each of
them is working properly. Additionally we would evaluate the
achieved network processing performances of the proposed
NP cores, by executing and analyzing IP packet processing
programs. The performance estimation is given by comparing
the number of IP packet processor cycles for the initial 32-bit
and 64-bit RISC cores, the proposed 32-bit and 64-bit RISC
based NP cores, and one micro engine of some of the most
famous multi-gigabit NPs, such as Intel IXP1200.

The rest of this paper is organized as follows: Section II
gives an overview of NPs, their key characteristics and
methods of operation, while outlining current architecture
trends in NP design. Section III gives an overview of the
techniques for processor design implementation. Section IV
clarifies the design and implementation of the 32-bit NP core.
Section V explains the development of 64-bit NP core and its
implementation. Afterwards, in section VI, a performance
evaluation of the novel NP cores is given. The paper
concludes in section VII. The conclusion outlines the benefits
of the proposed NP cores.

II. STATE OF THE ART
NPs have emerged in the late 1990s as potential technology

that could handle the complex network processing
requirements, [2]. Until now, there is no standard architecture
for NPs, but most of the NP designs share some common
characteristics that make them some how similar.
Accordingly, all NPs are usually composed of: many
processing engines (PE), dedicated hardware accelerators,
memory resources, network interfaces, and software support,
[1], [3]. Furthermore, NPs architecture is often improved by

Fig. 1. Comparison between different technologies for network processing
implementation. As shown, ASICs achieve highest performance, on the cost of
flexibility, whereas GPPs provide most flexibility, but less performance. On the
other side, NPs characteristics are somewhere between FPGAs and
Coprocessors, so NPs have proved themselves as the best solution for
performance/flexibility achievement.

30

use of parallel processing, specialized coprocessors, and
different techniques for achieving parallelism. According to
the Flynn’s classification scheme, NPs can be categorized in
the multiple instruction stream, multiple data stream class
(MIMD), [2].

The majority of the commercial NPs, such as EZChip’s
NP-1-4, Intel's IXP1200, 2400, 2800, 2850 NPs, IBM’s
Power NP, Motorola’s C-5 NP and many others, are designed
as multi-core parallel processors. Generally, they could be
separated in the following two categories: ones that use a
number of high-end, special-purpose processing cores, like
EZChip’s NPs and those who use a large number of simple
RISC processing cores, such as Intel’s IXP NPs. However, all
NPs are system-on-chip (SoC) designs that employ processor
cores, memory and I/O on a single chip. In many NPs
architectures (like Intel’s, Motorola’s, Sitera’s) the processing
engines are RISC based cores, augmented with specialized
instructions, multithreading, or pipeline implementation.

Network devices are usually composed of four functional
blocks: physical interface, data plane, control plane and
switching interface, [1]. The basic function of each network
device is to process the ingress data flow accepted by the
physical interface, and then forward the packets to an
outbound port, after the processing is completed. Basically
network processing can be divided in two categories: control
plane and data plane processing. Usually, NPs are responsible
for the fast packet forwarding, executed in the data plane.
The processing operations performed in the data plane are
performance critical and must be completed very fast. On the
other side, the slow packet processing implemented in the
control plane, doesn’t require high performance computing.
Accordingly, the control plane performs operations for
control, configuration and management of the network device
and is also responsible for routing protocols execution and
management of routing tables. These control functions
support and adjust the performing of data plane processing
operations. Therefore, the control plane is generally
implemented as a GPP. The switching fabric is another part
of the network devices, responsible for network traffic
forwarding from ingress to egress ports.

Basically, the NP operation begins with receiving an input
stream of data packets from PHY interface or switch fabric.
During the packet processing usually only the IP header of
the received packets is being processed, by parsing,
analyzing, and modifying its content. Additionally, NPs do
various packet processing operations such as classification of
packets, IP route lookup and pattern matching, queue
management and traffic control. After completing all the
required processing operations, the packet is sent out through
the switching fabric to appropriate outbound port, [1] - [3].

According to [9], the proper selection of networking
protocols functionalities, considering the most time-
consuming packet processing operations could significantly
simplify and accelerate the forwarding process. As a result,

many different approaches have been used, such as speeding-
up the look-up operations by label concepts use, or avoiding
some very complex operations like checksum calculation.
However, it has been shown that the routing table look-up
operation is the most time consuming operation that has to be
taken into consideration. Having this in mind, network
designers should focus their research in two directions:
speeding-up or avoiding the table search. Therefore, the
authors of papers [10] and [11] describe and propose faster
table look-up algorithms, but in paper [9], the authors suggest
avoiding the time-consuming table searches, by employment
of source routing. Anyway, speeding up the routing process
depends not only on the routing algorithm, but on the NPs
architecture, as well. Consequently, in this paper we would
try to improve the network processing performances, by
proposing novel 32-bit and 64-bit RISC-based NP cores,
specified for network processing application.

At the present, there are many different NP architectures,
each using different organization and concepts. However, a
key point to all of these architectures is that they employ
multiple processing cores (micro engine), that can process the
input data streams in parallel. Besides data level parallelism,
NPs can implement other parallel techniques for achieving
thread or instruction level parallelism (ILP), [3].

Very often, NPs packet processing can be accelerated by
employing, hardware assistance (co-processors, functional
units), adjusted memory architectures and interconnection
mechanisms, [2]. Hardwired or reconfigurable coprocessors
are usually in conjunction with processing cores, performing
some functions that are computationally intensive to be
implemented in softer. These special purpose hardware blocks
are generally used for implementing some time-consuming
operations like traffic management, packet classification,
table lookup, and crypto graphing functions, [1], [2]. NP’s
memory is another very important part of their architecture,
especially because the processor frequently interacts with it.
Not to mention that memory performs many important
operations like storing the program and registers’ content,
buffering packets, keeping intermediate results, holding, and
maintaining potentially huge tables and trees for look-ups,
maintaining statistical tables, and so forth. Consequently, the
communication between memory and processor should be
very fast, so that memory could fulfill the speed requirements.
However, memory size and speed would always be a huge
trade off. Major improvements can be achieved, by use of
memory coprocessors for lookup, fast memories like CAM
and SRAM, or various caching mechanisms, [3].

All these functionalities result in a NP architecture that can
achieve high performances. However, there are additional
requirements that should be satisfied as well, like flexibility,
ease of programmability and fast time-to-market, [3].
Currently, NP design companies are paying much more
attention to the programmability, enabling network software
to be written in a high-level language such as C, and the core

31

routines in microcode, [3], [12]. Since there are much
different architectures, with complex design and performance
constraints, current trend is to achieve software uniformity
and design portability.

Nowadays, the most famous NPs implement multi-core
architecture that can operate in parallel, pipeline or hybrid
mode, [2]. Additionally, according to NPs level of operation
they are divided in three categories: – entry-, mid- or core-
level NPs. Mid-level NPs do packets processing at higher
layers, so they implement parallel architectures. On the other
side, core-level NPs require highest processing speeds at the
lower network layers, thus they implement pipeline
architectures, [2].

As given in [2], NPs can be classified according to the
organization of their processing cores and hardware
accelerators: in pipelines or parallel pools of processors.
Parallel architectures usually include multiple RISC-based
homogeneous processing cores, which implement some
particular instructions for packet processing. Their NP cores
usually have small data and instruction cache, since they
don’t interact with each other. Pipeline architectures usually
employ heterogeneous processing cores optimized for specific
processing function. The packet processing in the pipeline
model is divided into multiple stages, whereas each stage is
responsible to handle some specific networking operation.
Hence, each processing core has optimized instruction set for
executing specific pipeline stage function.

The Intel IXP2800 processor is composed of 16 identical
multi-threaded RISC processors, organized as a pool of
parallel homogeneous processing cores, [13], and an
additional 32-bit XScale processor responsible for control
plane management. Intel’s architecture organization is
advantageous in the simplicity of programming the
processing elements, as they all use the same instruction set,
and it also allows great flexibility towards ever-changing
services and protocols. Therefore, Intel IXP2800 can achieve
up to 10 Gb/s processing speed. On the other hand, Agere’s
NPs employ pipeline model, where each heterogeneous
processing core is responsible for one pipeline stage, [2].
Furthermore, the EZChip’s NP-1-4 processors are an example
of a pipeline of heterogeneous multi-core processors. The
used processing cores are optimized for specific tasks and are
called Traffic Optimized Processors (TOP cores). Each stage
of the pipeline is consisted of more duplicated cores, thus if
one packet takes more time for processing, the whole pipeline
would not be stalled. The heterogeneousness complicates the
programming, but allows near-ASIC processing speeds to be
reached. The newest EZChip NP-4 processor can achieve a
total throughput of 100 Gb/s, that can be arranged among one
or more line cards, [14], [15].

Our goal would be to design two different network
processing cores that could further be used in homogeneous
multi-core parallel organization. Therefore, each NP core
would process the packets separately of the others, so packets

that need more processing time won’t stall the packet flow.

III. PROCESSOR DESIGN TECHNIQUES AND TOOLS
Processor design is a long, tedious, and error-prone task

consisting of typically four design phases: architecture
exploration, software design (assembler, linker, loader, and
profiler), architecture implementation (RTL generation for
FPGA or cell-based ASIC) and verification. Therefore, the
selection of appropriate processor design techniques and tools
is one of the most important things that should be done, prior
to the processor design implementation. Furthermore, the
chosen processor designer tool is supposed to satisfy some
requirements like optimal processor performance, small die
size, low power consumption etc. However, there is still no
solution which enables all these requirements to be satisfied
at the same time.

When it comes to processor design, the classic HDL
methodology, that uses languages such as VHDL, SystemC or
Verilog, can be a long and tedious process that can be usually
carried out by only very experienced designers. This is how
the Architecture Description Languages (ADL) have
emerged. They enable processor design at higher level of
abstraction with high degree of automation and unified
development environment, thus more flexible development
process. For example, the Language for instruction-set
architectures (LISA) allows modeling a processor not only
from instruction-set but also from architecture description
including pipelining behavior. This allows design and
development tool consistency over all levels of the design,
[16].

From their introduction until today, ADL’s were subject to
great number of changes. Today they are becoming an
irreplaceable modeling tool for special purpose processors
(like NPs) in academic research and commercial usage. In
this paper we are going to provide an overview of the
available processor modeling tools and techniques, in order to
select the most appropriate one for the NP cores
implementation. Furthermore we would consider the
possibility to use FPGA board, as an experimental platform
for real hardware simulation.

A. Design Techniques
In order to design a processor, several stages are required

including, but not limited to: architecture design, architecture
implementation, software development, and instruction and
system verification. Architecture design and implementation
is typically done by use of processor design tool, which
supports special description languages purposed for
representing the hardware operation. Currently, two types of
description languages are available: Hardware Description
Languages and Architecture Description languages.

The complexity of modern processors requires their logic
design to be extensively tested before they are manufactured.
Hardware Description Language (HDL) models are created to

32

allow this simulation. Compared with going directly to circuit
design, HDL modeling dramatically reduces design time and
logic bugs. HDLs are also designed to be independent of the
manufacturing process, so that logic designs are moved easily
from one manufacturing generation to the other, [17]. The
most commonly used forms of HDL are Verilog and VHDL.

Architecture Description Languages (ADLs) are becoming
popular recently because of their quick and optimal design
convergence achievement capability during the design of
different kinds of processors. Out of the many available
ADLs, the preferred one in most cases is Language for
Instruction Set Architecture (LISA). It provides a lot of
flexibility and powerful manipulation and verification tools
that can be used through the design process while reducing
the gap between the traditional design of a processor using
VHDL or Verilog and instruction set languages for
architecture exploration, [18].

The main characteristic of LISA is the operation-level
description of the pipeline which is able to model even
complex interlocking and bypassing techniques. Instructions
consist of multiple operations which are defined as register
transfers during a single control step. Depending on the
requested accuracy, a control step can be an instruction-,
clock-, or phase-cycle. Operation scheduling in LISA is based
on modified Gantt charts (L-charts) specifying time and
resource allocation of operations and an operation sequencer
with an ASAP (As Soon As Possible) operation sequencing
strategy, [19].

B. Automatic Design Tools
As processor designs have steadily increased in complexity,

processor design teams have also grown. To allow continuous
increases in complexity while preventing design teams from
growing even further, engineers must rely upon design
automation, [17]. There are several automated design
solutions available today, including Tensilica’s Xtensa
Processor Developer’s Toolkit, MetaCore Application-
Specific Programmable DSP Development System,
architectural level processor design environment PEAS III,
tool for automated multiprocessor system design ESPAM,
Synopsys (former CoWare) Processor Designer and a few
others.

Synopsys Processor Designer is an automated, application-
specific embedded processor design and optimization
environment that slashes months from processor hardware
design time and engineer-month from the creation of
application processor-specific software development tools.
Processor Designer's high degree of automation enables
design teams to focus on architecture exploration and
application-specific processor development, rather than on
consistency checking and verification of individual tools.

The key to Processor Designer's automation is its Language
for Instruction Set Architectures, LISA 2.0. In contrast to
SystemC, which has been developed for efficient specification

of systems, LISA 2.0 is a processor description language that
incorporates all necessary processor-specific components such
as register files, pipelines, pins, memory and caches, and
instructions. It enables the efficient creation of a single
"golden" processor specification as the source for the
automatic generation of the instruction set simulator (ISS)
and the complete suite of software development tools, like
Assembler, Linker, Archiver and C-Compiler, and
synthesizable RTL code. The development tools, together
with the extensive profiling capabilities of the debugger,
enable rapid analysis and exploration of the application-
specific processor's instruction set architecture to determine
the optimal instruction set for the target application domain.
Processor Designer enables the designer to optimize
instruction set design, processor micro-architecture and
memory sub-systems, including caches, [20]. Considering the
suitability of this processor design tool, we decided to use it
for LISA implementation of the novel NP cores architecture,
we are proposing.

C. Field Programmable Gate Array (FPGA)
FPGA is a logic device which can be custom configured

and programmed after its manufacturing (“in the field”).
Basically, it serves as platform for simulating and testing, any
kind of custom designed hardware. Its ability for
reconfiguration, offers various advantages for many
applications, [21].

The architecture of FPGAs has become increasingly
complex and no longer consists of a simple array of lookup
tables and flip flops connected by programmable routing.
FPGAs now include on-chip RAM blocks, and multipliers.
FPGA devices and their architectures vary across device
families and across vendors. In this work we focus on Xilinx's
Virtex 5 FPGA family and hence we discuss its architecture
in more detail.

XUPV505-LX110T is general purpose evaluation and
development platform for hardware simulation. It is consisted
of many components, such as: Xilinx Virtex-5 XC5VLX110T
FPGA, Flash PROMs, 64-bit wide 256Mbyte DDR2,
10/100/1000 tri-speed Ethernet PHY interfaces, RS-232 port,
16x2 character LCD, and many other I/O devices and ports.
This platform is very suitable for education and research in
many different areas like digital system design, embedded
systems, computer architecture, networking etc., [22].

IV. IMPLEMENTATION OF 32-BIT RISC BASED NETWORK
PROCESSOR CORE

To facilitate with the increasing demands for high
performance network processing, we suggested novel NP core
organization, based on 32-bit RISC architecture. Assuming
that the Intel IXP multi-gigabit NPs use 32-bit RISC micro
engines, we decided to use a very simple DLX architecture,
for the novel RISC based NP core design. DLX is an
academic hypothetical architecture, developed by John L.

33

Hennessy and David A. Patterson, presented in [23]. In fact
we are going to augment and extend the initial DLX
architecture, so it could be capable for performing multi-
gigabit network processing.

A. DLX Basic Architecture
DLX is a 32-bit load-store multi-cycle RISC architecture. It
provides 32 general purpose registers, all of which are 32 bits
wide. Three types of 32-bit instructions are defined, as shown
in Table 1.

As can be seen from Table 1, an R-type instruction code
consists of six zero-bits, followed by the two registers
containing the source operands. Next instruction field is the
destination address register, followed by five unused bits. The
operation to be executed is encoded in the least significant six
bits. Unlike R-type, I-type and J-type instructions format
encode the operation type using the most significant six bits
of the instruction code. Following instruction fields are source
register, destination register and immediate value which are
later sign extended at I-type instructions and the actual
memory address value on which the program counter would
point at J-type instructions.

B. DLX Pipeline
Earlier we mentioned that DLX is a pipelined architecture.

Pipelining is one of the key concepts in Computer
Architecture, defined as an implementation technique in
which multiple instructions can be executed in overlapping
fashion. This is possible if the operation tasks performed in
each cycle of a multi-cycle architecture are clearly defined
and independent from each other, [24].

The DLX pipeline is a five stage pipeline. Each
instruction’s execution follows some or all of the pipeline
stages corresponding to these cycles: Instruction Fetch (IF),
Instruction Decode/Register Read (ID), Execution/Effective
Address (EX), Memory Access/Branch Completion (MEM),
and Write-back (WB) cycle. Communication among the
various stages is accomplished using pipeline registers, as
shown in Fig.2.

Instruction Fetch is a primary pipeline cycle in which a
new instruction is fetched from the instruction memory and
then sent to the Instruction Register (IR), while Program
Counter (PC) is incremented by 4. Next, during the
Instruction Decode/Register Read (ID) cycle, the fetched
instruction is decoded and register file is accessed in order to
initialize internal registers. The following cycle is

Execution/Effective Address, during which the ALU operates
on the operands prepared in the previous cycle. This
operation could be computing for the target branch address, a
register-register ALU operation, a register-immediate ALU
operation or memory reference address. Next is Memory
Access/Branch Completion Cycle, during which only those
instructions requiring memory access are active. Branch
completion (i.e., branch decision) and updating of the PC are
also done during this cycle. The last pipeline cycle is Write-
back, during which the result either coming from the ALU or
the memory is written back to the register file.

C. LISA Implementation
 Considering the above description of the DLX processor,

we implemented it through definition and ADL
implementation (in LISA 2.0) of several groups of
instructions. We primarily focused on integer instructions,
since those are the ones needed for processor extension. DLX
architecture also supports floating-point operations.

In order to ease the implementation, we divided integer
instructions into four groups, based on their function:
arithmetic instructions, memory-access instructions, control-
flow instructions and test-and-set instructions. All of them
have some distinctive characteristics, as we will see shortly.

Instructions are not the only resource needed for DLX
processor to function properly. Some registers and memory
are also obligatory. Therefore, 32 general-purpose registers
(GPRs) were implemented as well as 4 pipeline registers.
Each of them is 32 bits wide. All of the GPRs can be used as
sources as well as destination registers, except GPR [0]
(which is zero-register) and GPR [31] (reserved for copying
the Instruction Register during jumps).

Regarding memory, two memory blocks were initially
defined: program memory and data memory. Each of the two
is four KB in size. Later, during the extension process, three
additional memory blocks would be defined.

Fig. 2. Pipelined DLX architecture. As shown, DLX load/store architecture

features a 5-stage instruction pipeline including: instruction fetch (IF),
instruction decode (ID), execution (EX), memory access (MEM) and write back
(WB). The communication between pipeline stages is realized by registers,
placed between two sequential stages.

TABLE I
DLX INSTRUCTION FORMATS

Format Bits

 31-26 25-21 20-16 15-11 1 0 -6 5 - 0

R-type 0x0 rs1 Rs2 rd not
used

op.
code

I-type op.
code rs1 Rd immediate

J-type op.
code value

34

D. Arithmetic Instructions
There are two arithmetic instructions variants: I-type and

R-type. The former has one of the operands hard coded in the
instruction code as an immediate value and in latter both
source operands are registers. The result of the operation is
always placed back into a register.

Table 2 depicts implemented arithmetic instructions. Some of
their characteristic properties are as follows. Extend (imm)
extends the immediate operand using its most significant bit
so that it is 32 bits wide. SRA and SRAI are arithmetic right
shifts. This means that, instead of shifting in zeroes from the
left, the sign bit of the operand is duplicated. SRL and SRA
perform identically if Rs1 is positive. If Rs1 is negative (bit
31 == 1), 1's are shifted in from the left for both SRA and
SRAI.

E. Memory-Access Instructions
 Basic memory-access instruction set was implemented,

which enables word loading and word storing. Details are
given in Table 3. Extend (imm) has the same function as
defined for the arithmetic instructions.

F. Control-Flow and Test-and-Set Instructions
Control instructions can be classified into two groups:

conditional jumps and unconditional jumps (branches).
Unconditional jumping (branching) is actually jumping from
the current position forward (if c > 0) or backward (if c < 0)
by c instructions (words). Since instructions can only begin at
a word boundary, it makes sense giving the offset in words
rather than in bytes, as this increases the range of the jump by
a factor of four. Jump means going to an absolute address.
Here, the address is given as a byte address, and not as a word
address. Implemented control-flow instructions are given in
Table 4.

Test-and-set instructions, on the other hand, do not directly

change the program flow. Instead, they are used before a
control-flow instruction is executed, to see whether some
condition(s) are met, and set the flags accordingly. Several
test-and-set instructions were implemented, but not shown in
this paper due to lack of space.

G. Other Resources
As with any processor, the DLX CPU needs a way to

communicate to the outside world. This can be done via a few
simple signals. In addition to a data and address bus (with the
necessary control signals), DLX needs a RESET signal and a
clock. These signals and buses are described in this section.

After powering up the CPU, it needs some way of getting
into a known state. This can also be done at any point of
execution when the CPU needs to restore to a reasonable
starting point. For that purpose, DLX uses the RESET signal.
When the RESET signal is asserted (high), the CPU loads the
program counter with 0. After RESET is deasserted,
execution begins at location 0, which should probably be the
address of the first instruction of a program to be executed.

An external clock signal is also required so that DLX
processor can function the way it is supposed to. This can be
provided in one of two ways. For debugging, a "manual"
clock signal is likely to be the best. This signal should allow
us to manually set the clock signal to high and low
alternately. Since this CPU is being designed in a simulator
and cycle time is unimportant, this method will allow us to
take the time examining the CPU after each clock cycle. Once
the CPU is working, however, we should use a "real" clock.
For that purpose, we can create one in the simulator.
However, we should make sure the cycle time is sufficiently
long. If it isn't, the CPU may not work

H. Processor Verification
The verification of implemented DLX processor

functionality is done by comparing the result obtained in
simulation and the one attained using existing and already
verified processor architecture. The same result achieved in
both simulation and existing hardware, proves the
functionality of the novel implemented NP core. According to
that, we simulated the proposed NP core in Synopsys
processor debugger tool, which is an integrated part of the
processor designer tool, used for the NP core design. This

TABLE IV
IMPLEMENTED CONTROL-FLOW INSTRUCTIONS

Instruction Syntax Operation Type

bnez bnez
rd,rs1,imm

PC += (rs1 != 0 ?
extend(imm) : 0) I

beqz beqz
rd,rs1,imm

PC += (rs1 == 0 ?
extend(imm) : 0) I

blt blt
rd,rs1,imm

PC += (rd < rs1 ?
extend(imm) : 0) I

jump jump val PC+= extend(val) J
jal jal val r31=PC+4; PC+=

extend(val) J

TABLE III
IMPLEMENTED MEMORY-ACCESS INSTRUCTIONS

Instruction Syntax Operation Type

lw lw rd,rs1,imm rd = MEM[rs1 +
extend(imm)] I

sw sw rd,rs1,imm MEM[rs1 +
extend(imm)] = rd I

TABLE II
IMPLEMENTED ARITHMETIC INSTRUCTIONS

Instruction Syntax Operation Type
add add rd,rs1,rs2 rd = rs1 + rs2 R
sub sub rd,rs1,rs2 rd = rs1 - rs2 R
and and rd,rs1,rs2 rd = rs1 && rs2 R
or or rd,rs1,rs2 rd = rs1 || rs2 R
xor xor rd,rs1,rs2 rd = rs1 ^ rs2 R
addi addi rd,rs1,imm rd = rs1 +

extend(imm)
I

subi subi rd,rs1,imm rd = rs1 –
extend(imm)

I

andi andi rd,rs1,imm rd = rs1 && imm I
ori ori rd,rs1,imm rd = rs1 || imm I
xori xori rd,rs1,imm rd = rs1 ^ imm I
sll sll rd,rs1,rs2 rd = rs1 << (rs2 % 8) R
srl srl rd,rs1,rs2 rd = rs1 >> (rs2 % 8) R
sra sra rd,rs1,rs2 same as srl* R

35

simulation environment allowed us to analyze and test the
execution of assembly programs, written using the NP core
instruction set. We executed the assembly programs, and
during the simulation, we could examine when and how the
processor resources (registers, pipeline registers or memory)
were updated, which stage of the pipeline was performed,
which operation was executed at that moment, which
instruction could stall the pipeline and etc.

The DLX operation was verified with two different
assembly language programs, one of which contains simple
mathematical operations, while the second one implements
the bubble-sort algorithm. Using the former, every instruction
of the processor’s instruction set was proven to be working
properly. The latter program verified the processor’s ability to
cope with more time-consuming tasks, while generating the
expected results. Therefore, we can outline that the DLX
processor hardware implementation is correctly completed.
The DLX processor provides all the required functionalities.

I. DLX Extension for Network Processing Application
After verifying processor’s functionality, our next task was

its extension, so that it could work as a NP core. This
extended processor would be able to process network packets
in hardware, speeding up the routing process.

The bare DLX is general purpose architecture. As
mentioned before, NPs do make use of general purpose
processing functionality, but on the other hand, they must
provide application specific functionalities, as required in
network devices. These application specific functionalities
include header processing, classification and routing,
policing, queuing and finally packet forwarding.

In order to meet these requirements, we implemented two
new, network processing specific instructions. Outline of their
characteristics is given in Table 5.

Once a new packet arrives, it should be buffered in order to

be processed and later sent to the output. When it comes to
buffering input packets, there are two main approaches, as
discussed in [25]. One alternative is to write packets directly
to the input buffer and then process the headers, reading them
in from there. A second alternative is to stream packets
through the header-processing unit before they are stored in
the buffer. Here, we use a combination of the two: as packets
arrive, their header is written in a small, but fast header input
buffer, while the packet content is written in larger, but
slower buffer.

Header input buffer is implemented as memory range of
6000B, allowing maximum 100 packet headers to be stored
simultaneously. In order to enable header loading from this

buffer, a specific instruction was implemented (LDHDR). It
places every header word into a separate, predefined register,
so that after its execution the whole header is available in
registers. While loading the header, this instruction also
computes its checksum. Invalid headers are not processed any
further. Once the header is completely processed, the
corresponding packet should be stored into an output buffer,
waiting to be forwarded. This output buffer is implemented as
memory range too, this time 512KB in size, which is enough
for 8 complete packets. Again, we have implemented a
specific instruction for this purpose (STHDR). It reads all
predefined registers, storing their content in consequent
memory locations.

All those modifications and newly implemented
instructions should enable the novel NP core to process
network packets, provided they are already somehow placed
in memory. Additionally, we improved the NP core
architecture by defining alias registers, which would provide
direct access to the appropriate IP header fields, placed in the
header input buffer. All instructions could use this alias
registers as operands. The extended 32-bit RISC-based
architecture is shown in Fig. 3.

In order to verify processor’s functionality, a custom made

IP processing program was written. In it, we statically place
packets in memory. These packets are to be processed and
forwarded as needed. At the beginning of the program, 32
bits (the first word) of each packet header is read into
processor registers. Packet version (4 bits), Header length (4
bits), Type of service (8 bits) and Packet length (16 bits) are

Fig. 3. Proposed architecture of 32-bit RISC based NP core. The DLX RISC
core was extended with input and output buffer, intended for storing the IP
header. Additionally, the NP core instruction set was augmented with some
novel instructions that simplify the packet processing. Each NP instruction
could directly manipulate with the IP header fields, addressed by alias registers.

TABLE V
IMPLEMENTED NETWORK PROCESSING INSTRUCTIONS

Instruction Syntax Operation Type

ldhdr ldhdr r1 cnt dst [dst..dst+cnt]=
MEM[r1..r1+cnt] I

sthdr sthdr r1 cnt src MEM[r1..r1+cnt]=
[src..src+cnt] I

36

then available in general purpose register (GPR[0]). Until
now, only IP packets can be processed, so once the correct
version is ensured, the rest of the header is loaded. This is
done using LDHDR instruction. As a result, the rest of the
header is now available in registers 1 to 4 (GPR[1]-GPR[4]).
While loading the header, a checksum is also computed. Two
conditions must be met in order to continue processing:
checksum must be correct and packet’s destination address
should not match any IP address of the processing machine.

After executing this program using a simulator for the new
processor, we were able to compare results obtained from the
simulation with those we had computed. Results matched,
packets were correctly routed (written to output buffer), and
routing table searches yielded correct next hops. This verifies
correctness and applicability of the novel NP core.

V. IMPLEMENTATION OF 64-BIT RISC BASED NETWORK
PROCESSOR CORE

In order to achieve better network processing
performances, we decided to implement 64-bit RISC based
NP core, so we could measure its processing speed and
compare it with the previous designed NP core. We believe
that data-width incensement would influence on the packet
processing speed. Once again, we use a very simple RISC
architecture with Harvard organization. The use of RISC
architecture has shown many advantageous in various multi-
gigabit NPs, such as Intel IXP1200. During the NP core
design, we would try to enrich the initial architecture of a 64-
bit RISC core, and augment its fundamental instruction set.
We hope that with appropriate internal hardware and
software interventions, the proposed NP core could be
involved in a multi-Gb/s routing applications.

A. Basic NP Core Architecture
The proposed NP core is based on standard 64-bit RISC

processor architecture, augmented with several hardware
accelerators and adjusted for IP packet processing. The NP
core uses Harvard organization, which is very advantageous,
since read/write operations to the data/program memory can
be performed at the same time. Furthermore, the NP core
employs RISC architecture, which allows execution of short
and simple one cycle instructions, and implements ILP by 5-
stage (fetch, decode, execute, memory access and write back)
pipeline. Additionally, the RISC based 64-bit NP core is
capable of transferring 64-bits at a given moment. Actually,
the main idea for designing this NP core is the possibility of
modifying 64-bit general purpose RISC processor and
adapting it for network processing application. We believe
that the proposed NP core would be able to speed up the
routing process and would achieve high network processing
performance.

The proposed NP core architecture is composed of: internal
program and data memory (instruction and data cache), 64–
bit ALU, two operand and one result register, 128 general

purpose registers and 64 packet header registers (packet
header buffer). All the data paths between processor register,
memory and other structures are 64-bits wide. The processor
core, as usual, includes program counter and instruction
register, responsible for instruction execution control.
Additionally, the NP core employs buffer status register,
which can be used for storing some important information (IP
version, header length etc.) during the packet processing.
Furthermore, the NP core implements hardware accelerator
for checksum calculation. This way, the processor speeds-up
the execution of a very complex and time-consuming
operation. The proposed internal architecture of the 64-bit NP
core is presented in Fig. 4.

B. Network Processing
We consider general packet processing for both IP versions.

IPv4 packets are processed by executing the following
operations: verification of packet header fields (version,
packet length, source and destination address), CRC
validation, route table look up, simple changes of some
header fields (decrement of time-to-live), calculation of new
CRC value and forwarding to outbound port, [25]. On the
other side, IPv6 packets processing excludes some of these
operations, such as CRC code validation and calculation.
Additionally, IPv6 header, employs hop count limit field (its
value is incremented during the packet processing), instead of
time-to-live (TTL), [26].

All the IP processing operations are supported by the 64–
bit ALU, working with two sources, and one destination
operand register. The ALU allows basic arithmetic/logic
operations and additional simultaneous shifting of the second
operand.

C. Packet Header Buffer
Packets received on the MAC interface, are stored in the

data memory, and after their processing is finished, they are
sent out to the forwarding engine. Usually, only the IP packet
header is being processed by the NP core, so in order to
accelerate its processing, the header is loaded and stored in
additional 64 packet header registers. The packet header

Fig. 4. Proposed architecture of 64-bit RISC based NP core. The initial 64-
bit RISC core was extended with packet header buffer, responsible for storing
the IP header. The NP core could perform very fast manipulation with the IP
header, since the header was already placed in the NP core registers and thanks
to the alias registers defined for each IP header field. The instruction set was
extended with some network instructions, such as for checksum calculation.

37

registers enable completely storing of each IPv4 header
(including the option fields) or IPv6 header (including one
extension header). This header registers provide fast data
access and manipulation, since each IP header field can be
individually and directly accessed, changed, and afterwards,
restored in memory with the new (re)computed values. The
NP core allows direct specifying of each IP header field as
operand in NP instructions for IP packet processing.

D. Alias Registers
The NP core is composed of 128 general purpose registers,

and 64 packet header registers. All of them can be addressed
with completely 8 bits. The codes starting with b00, b01 or
b10 are used to denote register indexes, and the remaining 64
codes, starting with b11 are used for addressing the packet
header fields, that are in fact alias registers. Therefore, the
last 64 codes are divided, one half for IPv4 fields, and the
other for IPv6 fields. Then, for example, the first general
purpose register is addressed as b000000000, and the first
field of the packet header (IPv4), is addressed as b11000000.
All instructions can work with these alias registers as
operands. This allows for a more flexible (and faster) packet
header processing and greater convenience to the
programmer. When the compiler is built, this kind of access
to the packet header fields will be allowed via system calls.

E. Instruction Set
The NP core implements enchanted instruction set which is

specially tailored to network processing application.
Accordingly, it employs several specific instructions for
hardware accelerators control, and CRC code validation and
calculation. The NP core instructions have RISC based
format, and they are additionally adjusted for IP header fields
(for both IP versions) manipulation during the network
processing. This involves utilization of an additional
addressing mode that allows direct access to the IPv4 and
IPv6 packet header fields by specifying their names (ex.
ip4_ver, ip4_header_length, etc.).

The instruction set is composed of some very simple
general purpose and several special purpose instructions. The
instructions are 64-bits wide, and can be given in one of the
following three instruction formats: register, immediate or
control (R, I and C format, accordingly) type.

The register instructions such as sub, add, xor etc. are
three-address instructions, which operate with register value
operands. Additionally, these instructions allow shifting of
the second operand, before the execution of some
arithmetical/logical instruction. On the other side, the
immediate instructions (load, store, add, etc.) are responsible
for register-to-memory or memory-to-register transfer, and
conditional brunches. These instructions always include at
least one immediate value operand. However, according to the
operands used, some of the instructions (ex. comparison,
addition) can be implemented as either R-type or I-type. The
last instruction format, C – type, is used to express:

unconditional branching, procedure calls, CRC code
validation and calculation, and trap instructions. The
instruction set of the proposed NP core is shown in Fig. 5.

F. Addressing Modes
The NP core is RISC based, so it should support very

simple addressing modes, [2]. As a result, it implements
simple addressing modes like register, immediate and index
addressing. Additionally, the most of the instruction
operations are executed by memory or register accesses. Some
of the instruction operands can be provided as alias registers,
specified by the appropriate IP header field name.

Fig. 5. Instruction set of the 64-bit RISC based NP core. The instruction set

was extended with some specific instructions, such as CRC code check and
calculation. All the instructions could operate with the IP header fields (alias
registers), as instruction operands.

38

G. LISA Implementation and Processor Verification
The proposed NP core architecture was modeled using the

language for instructions set architectures - LISA. This
modeling language is general enough to model any kind of
instruction set driven processors, and yet powerful enough to
model highly specific instruction set processors, [27].

Therefore we used it to model the proposed 64-bit NP core,
and analyze its characteristics. We defined its memory and
bus architecture, a standard 5-stage instruction pipeline and
the instruction set specific to the network processing. From
the LISA model we simulated the processor within the
Synopsys processor designer tool, and afterwards we verified
its functionality and performance within the Synopsys
processor debugger tool. Accordingly, we wrote some
assembler programs to prove that the NP instructions are
working properly. The obtained simulation results allowed us
to verify the NP core capability to perform network
processing.

H. FPGA Implementation
The processor designer environment includes processor

generator tool, which allows automated HDL code generation
from the LISA model. The attained HDL code can be used for
investigation at a lower level.

In very near future, we are going to simulate the proposed
NP core on a Xilinx VIRTEX 5 FPGA board. This could help
us to achieve performance estimation that would be closer to
real hardware. Hence, there are some issues that need to be
taken in consideration, such as circuit complexity, power
consumption and overheating. These characteristics might
significantly influence on the overall performance that could
be achieved.

VI. PERFORMANCE ESTIMATION
The present transition from circuit switch to packet switch

networks has caused network traffic doubling every 12 – 18
months, [2]. Consequently, it is expected that until 2015 the
Internet throughput would increase to 1 Tb/s. At the same
time, processors performance is limited by Moore’s law and
power constraints. As a result, NPs should provide high speed
computing, while overcoming all these limitations, and as
well they should scale with the increasing computing
performances.

In order to estimate the performance trade-offs for the
proposed NP RISC based cores, we provide some simple
computations for calculating the theoretical maximum of
instruction cycles allowed for each IP packet processing at the
desired speeds of 10/100 Gb/s. The results of the equations
given in (1) and (2) can be used as a theoretical limit which
can be compared with the NP cores results. Consequently,
this way we can estimate the network processing performance
capabilities of the proposed NP cores.

data rateAverage rate of packets [number of packets/s]
average size of packets

 (1)

1Average time for processing one packet [s]

average rate of packets

average time for processing one packet [number of cycles]
one processor cycle time in s

 




 (2)

Therefore, if the NP cores are working at 2GHz frequency,

and average data packet size is 512B, the theoretical number
of processor cycles acceptable for multi-gigabit processing of
single packet is: 820/82 processor cycles for attaining 10/100
Gb/s packet processing speeds, accordingly. In order to satisfy
these high performance requirements, NP cores must
implement some parallelization techniques or hardware
accelerators. Accordingly, the both NP cores employed a
standard 5 stages pipeline, which allowed us to increase the
packet processing throughput. Additionally, we could
minimize the dependences between sequential instructions,
and therefore pipeline stalls, by reorganizing and reordering
the IP processing assembler programs code, executed on the
NP cores.

Assembly programs execution was monitored using
Synopsys processor debugger tool. While proving processor’s
design correctness and testing its functionality, this tool
allowed us to also estimate its performance. As mentioned
earlier, it allows a designer to track all changes raised in
memory and registers (including pipeline registers), as well
as additional custom resources. We used custom resources
section to monitor values in global variables, as well as their
effect over program execution. We took advantage of another
possibility the tool offers – tracing. This allowed us to
estimate the number of cycles needed for each instruction
execution.

Considering the proposed 32-bit and 64-bit RISC based NP
cores, we evaluated their performance by analyzing assembler
programs for general IPv4 and IPv6 packet processing. We
simulated these programs and estimated the number of
processor cycles needed for each type of IP processing.
Additionally we considered that the NP cores can achieve
different results, according to the memory type used
(DRAM/SRAM), [11]. In our analyses, we compared the
network processing performance of the proposed 32-bit and
64-bit RISC based NP core with the general 32-bit and 64-bit
RISC core, and afterwards we measured the possible
improvements. Attained results for each of the processing
cores, using DRAM/SRAM memories are shown in Fig. 6
and 7, accordingly.

Fig 6 depicts that the modified 32-bit NP RISC core,
utilizing DRAM memory, achieves IPv4/IPv6 processing for
435 and 665 processing cycles, accordingly. Furthermore, the
modified 64-bit NP RISC core attains better results, finishing
the IPv4/IPv6 processing for only 355, and 500 processor
cycles. On the other side, Fig. 7 presents that the modified

39

32-bit NP RISC core, using SRAM memory, achieves IP
processing for 135, and 185 processor cycles, for IPv4, and
IPv6 packets, accordingly. Additionally, the modified 64-bit
NP RISC core achieves better results, finishing the IPv4/IPv6
processing for only 115, and 140 processor cycles.

In the both cases, the modified RISC NP cores achieve

better results, compared to the general purpose RISC
processing cores. The processor cycles gain, by utilizing the
novel NP cores is given in Fig. 8.

The results given in Fig. 8 prove that the proposed NP
cores achieve some performance improvements. Actually, the
proposed 32-bit NP RISC core, using DRAM memory,
accelerates the packet processing by 25% and 2% for Ipv4,
and IPv6 packets, accordingly. The same NP core, using
SRAM memory achieves 52% and 7,5% processor cycles
gain, for Ipv4, and IPv6 packets, accordingly. For the 32-bit
NP RISC core using DRAM memory the achieved
improvements are: 25% and 3% for Ipv4, and IPv6 packet
processing, accordingly. Additionally, the same NP core
using SRAM memory achieves 52% and 10% processor
cycles gain, for Ipv4, and IPv6 packets, accordingly.

These results show that the proposed NP cores, can achieve

multi-gigabit processing in the theoretical boundaries of at
least 12-19 Gb/s. The initial results are satisfying, so in very
near future we would consider the possibility to design multi-
core NP architecture, with homogeneous NP cores. For that
reason, we made an investigation of the performance
achievements of the micro engines in the very well known
Intel IXP1200 network processor. According to [28], a single
Intel IXP1200 micro engine needs totally 710 processor
cycles, for packet processing. These processor cycles include:
280 cycles of registers instructions, and 430 cycles of memory
delay. According to that, the proposed NP cores achieve very
reasonable performances, similar to the Intel IXP 1200 micro
engines, as shown in Fig. 6 and 7. Therefore, the authors
should continue the research and consequently design multi-
core NP architecture.

VII. CONCLUSION
In this paper, we are proposing two novels RISC based NP

cores that should be able to cope with multi-gigabit networks.
We initially described the NP cores architecture, including
their instruction set, registers and additional resources, and
afterwards we implemented them in Language for Instruction
Set Architecture, using the Synopsys processor designer tool.
This environment allowed us to verify the NP cores
functionalities and measure their network processing
performances.

The proposed NP cores are specialized for network
processing application. Their key architectural aspects are:
enhanced instruction set, implementation of five stage
pipeline, execution of complex instructions in one cycle, use
of packet header buffer for holding the IP header, and use of
alias registers for easier manipulation with the IP header
fields. We have shown that the proposed architectural
modifications have significantly improved the network
processing capabilities of the initial general purpose RISC
processors. Designed NP cores are able to fulfill the current

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

32-bit NP
RISC using

DRAM

32-bit NP
RISC using

SRAM

64-bit NP
RISC using

DRAM

64-bit NP
RISC using

SRAM

Pr
oc

es
so

r c
yc

le
s

ga
in

 (%
)

IPv4 IPv6

Fig. 8. Ipv4 and IPv6 processor cycles gain, attained with the novel NP

cores. The results show that the proposed NP cores achieve faster IPv4 and IPv6
processing, and consequently better network processing performances. At least,
they are within 12-19 Gb/s boundaries of the theoretical limit.

0

50

100

150

200

250

300

32-bit RISC 32-bit NP
RISC

64-bit RISC 64-bit NP
RISC

N
um

be
r o

f p
ro

ce
ss

or
 c

yc
le

s

IPv4
IPv6

Fig. 7. Number of IP packet processing cycles (IPv4 and IPv6) for each of

the defined processing cores: 32-bit GPP RISC, 32-bit NP RISC, 64-bit GPP
RISC and 64-bit NP RISC. All these processing cores utilize faster SRAM
memory. The initial results show that the proposed 32-bit and 64-bit NP RISC
cores improve the network processing performance, compared to the general
purpose RISC cores.

0

100

200

300

400

500

600

700

800

32-bit RISC 32-bit NP RISC 64-bit RISC 64-bit NP RISC

N
um

be
r o

f p
ro

ce
ss

or
 c

yc
le

s

IPv4
IPv6

Fig. 6. Number of IP packet processing cycles (IPv4 and IPv6), for each of

the defined processing cores: 32-bit GPP RISC, 32-bit NP RISC, 64-bit GPP
RISC and 64-bit NP RISC. All these processing cores utilize slower DRAM
memory. The initial results show that the proposed 32-bit and 64-bit NP RISC
cores improve the network processing performance, compared to the general
purpose RISC cores.

40

network processing speeds and could be able to cope with
multi-gigabit (12-19 Gb/s) links of Next Generation
Networks.

Since the NP cores, can achieve similar network processing
performance as a single micro engine of the very well known
Intel IXP1200 NP, in a very near future we would consider
the possibility of designing multi-core NP with homogeneous
NP cores. Additionally, we could investigate the ability to use
the designed NP cores as hardware support for novel routing
protocols intended to speed-up the network routing.
Therefore, there is ongoing work for performing additional
hardware and software simulations in order to accomplish
these aims.

REFERENCES
[1] H. Jonathan Chao, Bin Liu, High Performance Switches and Routers

High speed switches and routers, Wiley-IEEE Press, May 2007
[2] Ran Giladi, Network Processors - Architecture, Programming and

Implementation, Morgan Kaufmann Publisher, Ben-Gurion University of
the Negev and EZchip Technologies Ltd., 2008

[3] Mahmood Ahmadi, Stephan Wong, “Network Processors: Challenges and
Trends”, Proceedings of the 17th Annual Workshop on Circuits, Systems
and Signal Processing,, ProRisc, Veldhoven, The Netherlands, November
2006, pp. 222-232

[4] Panos C. Lekkas, Network Processors: Architectures, Protocols and
Platforms, McGraw-Hill Professional, 2003

[5] Mohammad Shorfuzzaman, Rasit Eskicioglu, Peter Graham,
“Architectures for Network Processors: Key Features, Evaluation, and
Trends”, Proc. on Communications in Computing, 2004, pp.141-146

[6] NetFPGA Online Guide, [online]. Available: http://netfpga.org/
[Accessed 10 May 2011]

[7] Jad Naous, Sara Bolouki, Glen Gibb, Nick McKeown, “NetFPGA:
Reusable Router Architecture for Experimental Research”, Proceedings of
the ACM workshop on Programmable routers for extensible services of
tomorrow, Stanford University, California, USA, 2008

[8] Michele Petracca, Robert Birkea, Andrea Bianco, “HERO: High-speed
enhanced routing operation in software routers NICs” , Proceedings of the
4th international telecommunication networking workshop on QoS in
multiservice IP networks, Politec. di Torino, 2008

[9] Simon Hauger, Thomas Wild, Arthur Mutter, Andreas Kirstädter, Kimon
Karras, Rainer Ohlendorf, Frank Feller, and Joachim Scharf, “Packet
Processing at 100 Gbps and Beyond—Challenges and Perspectives”, in
Proceedings of the 10. ITG Symposium on Photonic Networks, May 2009

[10] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proc. IEEE INFOCOM’98, Session 10B-1, San
Francisco, CA, 1998, pp. 1240–1247.

[11] W. Eatherton, G. Varghese, Z. Dittia, “Tree bitmap: Hardware/Software IP
Lookups with Incremental Updates”, SIGCOMM Comput. Commun.
Rev., vol. 34, no. 2, 2004.

[12] M. Gries, C. Kulkarni, C. Sauer, K. Keutzer, “Exploring Trade-Offs in
Performance and Programmability of Processing Element Topologies for
Network Processors”, 2nd Workshop on Network Processors (NP2) at the
9th International Symposium on High Performance Computer
Architecture, 2003, pp. 75–87

[13] Intel IXP2800 Network Processor® Product Brief, For OC-192/10 Gbps
network edge and core applications, Intel Corporation, 2004

[14] NP-4, 100-Gigabit Network Processor for Carrier Ethernet
Applications, Product Brief , EZchip Technologies, 2010

[15] NP-3, 30-Gigabit Network Processor with Integrated Traffic
Management, Product Brief, EZchip Technologies,2010

[16] Uve Meyer-Base, Alonzo Vera, Suhasini Rao, Karl Lenk, Marios Pittichis,
“ FPGA wavelet processor design using language for instruction-set
architecture (LISA)”, Proc. SPIE Int. Soc. Opt. Eng., April 2007, Vol.
6576, pp. 65760U-1-12

[17] Grant McFarland, Microprocessor design: a practical guide from design
planning to manufacturing, The McGraw-Hill Companies, 2006

[18] Umakanta Nanda, Kamalakanta Mahapatra, “Design of an application
specific instruction set processor using LISA”, International conference on
Advanced Computing and Communication, 2010.

[19] Vojin Zivojnovic, Stefan Pees, Heinrich Meyr, “LISA - Machine
Description Language and Generic Machine Model for HW/ SW CO-
Design”, White paper, 1996.

[20] Automating the Design and Implementation of Custom Processors,
[online]. Available: http://www.synopsys.com [Accessed 10 May 2011]

[21] Pong P. Chu, FPGA prototyping by VHDL examples: Xilinx Spartan-3
version, John Wiley & Sons, 2008

[22] Xilinx University Program XUPV5-LX110T Development System,
[online]. Available: http://www.xilinx.com [Accessed 10 May 2011]

[23] Hennessy, John L., and Patterson, David A., Computer Architecture: A
Quantitative Approach 2nd Edition, Morgan Kaufmann Publishers, 1996

[24] Roger Luis Uy, Jonathan Lee, Jonathan Ray Roque, “ DARC: DLX
Architecture Simulator”, Proceedings of the 4th Philippine Computing
Science Congress, 2004

[25] Andreas Moestedt, Peter Sjödin, Torsten Köhler, “Header Processing
Requirements and Implementation Complexity for IPv4 Routers”, White
paper, HP Laboratories Bristol, September, 1998

[26] Internet Protocol, Version 6 (IPv6) Specification, IETF Standard
RFC2460. Available:
http://www.ietf.org/rfc/rfc2460.txt

[27] LISA Language Reference Manual, Product Version V2009.1.1,
CoWare, CoWare Processor Designer Product Family, 2009

[28] Niti Madan, “Asynchronous micro engines for network processing”,
Master Thesis, School of Computing, University of Utah, 2006

Danijela Jakimovska obtained bachelor and master
degree at the Faculty of Electrical Engineering and
Information Technologies, Univ. “Ss. Cyril and
Methodius”, Skopje, R. Macedonia, in 2008, 2010,
respectively. Her major fields of studies include computer
engineering, and information technologies
She currently works as teaching and research assistant in
the computer science department at the Faculty of
Electrical Engineering and Information Technologies,
Univ. “Ss. Cyril and Methodius” – Skopje, R.

Macedonia. She started to work at this Faculty in 2008, as Laboratory assistant.
During here work experience she has participated in some national and
international projects. In 2010 she made two month scientific research in
Processor architectures laboratory at École Polytechnique Fédérale de Lausanne
(EPFL). She has also participated in the DAAD founded project “Embedded
System Design” from 2009-2011. She has published several scientific papers as
author or coauthor on national and international conferences. Currently her main
areas of research include network processors, computer architectures, processor
design, multi-gigabit networks etc.
Msc Jakimovska is member of IEEE Women in Engineering, IEEE Circuits and
Systems Society, IEEE Computer Society and IEEE Communications Society,
since 2010, member of Association of Computer Machinery since 2011, and
alumnae of Board of European students of Technology Skopje, since 2009.

Aristotel Tentov obtained bachelor, master and Ph.D.
degree at the Faculty of Electrical Engineering and
Information Technologies, Univ. “Ss. Cyril and
Methodius”, Skopje, R. Macedonia, in 1983, 1989 and
1994, respectively. His major fields of studies include
computer engineering, information and communication
technologies, system-on-chip, computer-communication
systems performance analysis and modeling, and
embedded systems design.
He is currently a full professor in the computer science

department at the Faculty of Electrical Engineering and Information
Technologies, Univ. “Ss. Cyril and Methodius” – Skopje, R. Macedonia. He is
an author/coauthor of more than 35 scientific papers on conferences,
symposiums and journals, and author/coauthor on more than 40
national/international projects and technical reports. He is a member of the
Program Committees on more than 20 International conferences. His main areas
of research include: Computer Architectures; Processor Architectures; Wired,
wireless, and mobile networking; Mission critical systems and networks;
Avionics; Multiprocessor and Multi-core Systems; Embedded systems; High
Performance Computing; System-on-chip; RFID devices and environments; and
Process Control;
Dr. Tentov is a member of IEEE since 1988 and of ACM since 2001. He is a
member of IEEE Technical Committees on: Computer Communications,
Distributed Processing, Real-Time Systems and Simulation.

