
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunication(JSAT), March Edition, 2012

Network Emulator with Virtual Host
and Packet Diversion

Kunio Goto

Abstract—In this research, we have re-designed the network
emulator, GINE (Goto’s IP Network Emulator), which is a
user space program on Linux. It runs on standard Linux
kernel with some options enabled. It is aimed to be used for
performance evaluation of network application over wide-area
network, development of new network service and education.

GINE is based on custom queues which represent telecommu-
nication lines with delay, loss, and bandwidth. The queues are
driven by a short periodic timer(up to 20 micro second). Routers
and switches are either emulated by the program components, or
by virtual network host and kernel bridge. They are connected
one another in the program via custom frame queues. Real
frames(packets) input from datalink socket or Linux netfilter
NFQUEUE socket are forwarded and output to the real network.

The new version has become stable. Also it includes graphical
user interface, and, therefore, it can be used without program-
ming. The emulator can be used as end-to-end path emulation
and/or a testbed network consists of 20 to 30 hosts and routers
including application servers on a PC. Further, multiple instances
of the emulator on a PC and separate PCs can be connected to
one another to construct a combined larger emulated network.

Index Terms—network, emulation, virtualization

I. I NTRODUCTION

In performance evaluation of wide area network applica-
tions, it is necessary to impose various network impediments
on them. While a network simulator is used to analyze the
behavior of the given network model, a network emulator actu-
ally stores and forwards packets incoming from real networks,
and therefore should run in real time.

There are several commercial network emulators based on
expensive hardware([1], [2], [3]). Also non-expensive com-
mercial software emulators such as [4], [5] are available, but
customization is difficult. As a result, they are not very widely
used in network research community.

There are several open source emulators[6]. Dummynet[7]
is a simple bandwidth limit and delay emulation included in
FreeBSD kernel options. NIST Net[8] is an excellent network
emulation tool implemented in the Linux kernel. It is very fast
by taking advantage of its loadable Linux kernel module but
lacks IPv6 capability and does not support network topology
description. IMUNES[9] is based on virtual IP network stacks
with heavy kernel customization on FreeBSD and achieves
high throughput of several hundreds Mbps.

NCTUns[10] simulator/emulator is based on its own IP
divert mechanism and process/thread scheduling using its
custom Linux kernel. It also includes many datalink layer em-
ulation modules including wireless. However, as an emulator,

Manuscript submitted March 10, 2012.
K. Goto is with the Department of Systems Design and Engineering,

Nanzan University, 28 Seirei-cho, Seto, Aichi 489-0863, Japan (e-mail:
goto@nanzan-u.ac.jp)

its routing/forwarding performance does not seems to be very
high (less than 100Mbps).

We have been developing a software called GINE (Goto’s IP
Network Emulator)[11] since 2004. It used IPv4 divert socket
patch[12] and IPv6 patch developed by the authors.

In our previous research[13] in 2008, the emulator has been
improved in two points: elimination of kernel customization
and real router/host functionality. To achieve the first goal,
packet diversion method was changed from Linux divert socket
to the standard kernel feature of Netfilter NFQUEUE[14]
(kernel version 2.6.14 or later). For the second objective,
Network Namespace[15] is utilized. Network Namespace is
a virtual kernel network stack implementation as a part of
container based host virtualization. It appeared in Linux kernel
2.6.26 (July, 2008) and then became stable in 2.6.30 (July,
2009).

One of similar software network emulators using Network
Namespace is the Coreemu([16], [17], [18]). While link em-
ulations in coremu are implemented with Netem[19] in the
kernel. In GINE, link emulations are implemented as a user
program for flexibility. While the time resolution is limitedto
1 msec in netem, it is 100 micro sec(usec) or less in GINE.
Also GINE includes simple emulated router and LAN switches
in addition to virtual network stack host/routers. Combining
those components, the emulator becomes a more powerful
network performance evaluation tool for network professional
and educators. In this research, our system is re-designed
for stability and graphical user interface (GUI) with archive
function.

In the next section, capability of GINE is briefly explained.
In section III, the architecture of the emulator is described.
In section IV, the software implementation issues are dis-
cussed. In section V, the emulator is evaluated in terms of
frame forwarding performance and link emulation accuracy.In
sectionVI, application of the GINE libraries for new network
applications and event driven simulation are introduced. In the
last section, concluding remarks are given.

II. EMULATOR CAPABILITY

In this section, capability of GINE is briefly explained.

A. Flexible Link Emulation for IPv4/v6

The first advantage of the emulator over Nist Net is IPv6
support and filter by IP address and prefix length, protocol,
TCP/UDP port, and ICMP type/code. An example is shown
in Fig.1. As shown in Fig.1, our emulator is able to impose
different delay, loss, and bandwidth limit to the packets from
Host A to B and those from Net C to D. Also, the link

13

Host A Host B

Router

Host B to Host A

Host A to Host B

Net C to Net D

Net D to Net C

GINE (with random delay, loss, bandwidth limit etc.)

eth0 eth1

NETWORK C

Router

NETWORK D

Host X

emulated Link

(1)
(2)

Fig. 1. Case 1: Link emulation with different parameters

parameters for the other direction can be defined differently.
Note that packets are normally forwarded by the kernel routing
function. Then packets should be diverted to the emulator
program withiptables or ip6tables command.

B. Combination of Virtual Host, Emulated Router, and Emu-
lated Switch

The second merit is to represent a rather complex net-
work consists of many routers and links. Fig.2 illustrates
an example. A network similar to the example is suitable
for performance evaluation of network application with cross
traffic and static or dynamic routing practice. In Fig.2, two

Host S

GINE

eth0 eth1
R R R

R

R R

NETNS NETNS

NETNS NETNS NETNS

R

Host B

cross traffic

sink

Host A
Router

NETWORK

R NETNS: GINE Router :
Network
Namespace

: emulated Link: GINE Switch

Host X

(1) (2)

(5)

(4)

(6)

(3)
NETNS

(7)

Fig. 2. Link and router emulation with cross traffic

kinds of routers are used. An ‘R’ denotes a router represented
by a program module. It supports ARP, ICMP ECHO for IPv4
and part of ICMPv6 to represents neighbor discovery and
ECHO. However, R is not capable of dynamic routing. An
‘NETNS’ denotes a virtual network space. It acts as a virtual
network host or router with dynamic routing. Also emulated
switch is provided as shown in the figure. Kernel bridge may
be used for the switch instead. Application servers such as a
Web server and routing daemon can be invoked on NETNS
hosts.

In the figure, The packets fromHost A to Host B, and vice
versa are separately diverted to the emulator processes andgo
through the 4 emulated routers or NETNS.

Cross traffic can be injected at any emulated router from
external hosts. In the figure, cross traffic is generated byHost
S and injected at the first router from left and exits at the
second router. Sink node simply absorbs input packets. Also
GINE includes packet generator. Similar network is used for
evaluating multi-path transmission scheme in [20].

C. Connection of Emulator Instances

If the processing power of a PC is not enough or topology
becomes too complex for a large network emulation, then the
whole network can be divided into two or more parts and
each part can be run on different PCs (or on the same PC, if
desirable).

Fig. 3 shows an example. In the figure, two emulator in-

UDP
Tunnel

Fig. 3. Connection of two emulator instances

stances are shown. Each of them consists of a virtual host and
a switch. The switches in different emulators are connected
via UDP tunnel, and, therefore, the two emulator instances
are connected each other. Note that multiple instances of the
emulator can be invoked on the same CPU, if the CPU load
permits.

III. A RCHITECTURE

In this section, the GINE software architecture is described.
While kernel implementation is the most efficient, user space
program implementation is more flexible. Therefore, we have
developed the emulator as a user space program.

A. Link Emulation with Custom Queue and Periodic Timer

A FrameQueue is the component for link delay, loss,
and bandwidth limit emulation. Also it can be used as a
generic frame/data buffer. The original version was in [11]
and includes only frame data. The current version includes
processing of out-of-band data for Netfilter NFQUEUE.

FrameQueue is a bidirectional linked list of Frame objects
arranged in the order of scheduled departure time as shown
in Fig.4. When a frame arrives at the queue, departure time is
calculated by adding a constant or random delay to the arrival
time. And the frame is inserted into the queue in departure
time order. When the frame at the head leaves the queue,
transmission time schedule of the next packet is calculated
by eq.(1) according to the transmission time of the frame at
the head of the queue.

next frame departure time(s)

= max(next frame scheduled departure time(s),

head frame departure time(s)

+
size of the head frame(bit)

bandwidth(bps)
) (1)

14

Tail P1 P0 Head
prev

next

prev prev

next next

P1.dept > P0.dept

next

P2

next prev

P1.dept > P2.dept > P0.dept

Head
prev

next

P0Tail P1
prev prev

next

Next arrival

Fig. 4. Frame queue in departure time order

This emulates delay and capacity of a transmission link
at the same time. Delay is generated as a pseudo random
number according to a given probability distribution, such
as uniform, exponential, normal, Pareto, or arbitrary distri-
bution given in a table, with correlation between subsequent
frames. Frame(packet) loss is generated similarly according to
independent constant bit error rate or frame loss probability.
Also frame loss generator with simple 2-state Markov chain
is provided.

The custom frame queues are driven by a very short periodic
timer. In other words, each frame queue is checked when the
timer expires to see if there is a head frame scheduled to depart
by the time. The details are described in section IV-B.

B. Communication between Virtual Host/Router

Network Namespace is a part of Linux kernel virtual
host function. We use only network virtualization and do
not use file system nor process virtualization since it is
rather inconvenient for network emulation purpose. Network
Namespace creates a different network stack as shown in Fig.5.
To use the network namespace, recompilation of generic kernel

Application layer

Protocol agnostic interface

Network protocol

System call interface

Device agnostic interface

Device drivers

Kernel space

User space

Virtualized

Physical device hardware

Fig. 5. Network Namespace

(recommended 2.6.32 or later) with ‘CONFIGNET NS=y’,
is necessary if it is not included.

Then, the system call;

syscall(__NR_unshare,CLONE_NEWNET|CLONE_NEWNS);

binds the calling process and its child processes with the
newly created network namespace.

Since network interfaces including loopback interface(lo)
and Unix domain sockets are not shared among virtual network

stacks and the host OS’s original network stack, a special
virtual network device, calledVirtual Ethernet Pair(veth
device), must be used. When a frame is received by one
side of a veth, it is forwarded to the other side. Therefore,
communication between independent network stacks becomes
possible by attaching each side of the veth device to two
different virtual network stacks (or leaving one in host OS).
Fig.6 shows the way of communication between them in the
proposed network emulator. Communication between virtual

veth0 veth1

NETNS

lo

NETNS

lo

LEFT

lo

RIGHT

lo
vethLeft

(PID:100) (PID:200)

OS OS

vethRight

NETNS renamed LEFT, RIGHT
veth0, veth1 renamed vethLeft, vethRight

loeth0

loeth0

Fig. 6. Communication between virtual hosts

host and emulated router is a little troublesome, but possible
with emulated switch, datalink socket, and frame queues. Fig.7
illustrates an example. Note that IP address is not assignedto

NETNSGINE
Router

GINE Switch

FrameQueue

FrameQueue

enableArp (1)

ifnum=1

veth01(IP address)

veth00 (No IP address)

FrameQueue

FrameQueue

ifnum=0 (5)

IP adderss,
MAC address

No IP adderss,
No MAC address

connect ("veth00")

Fig. 7. Communication between virtual host and emulated router

the switch side of a virtual Ethernet pair.
IP addresses can be assigned to both side if necessary, but

it is not desirable in the case. If IP address is assigned to
the switch side of the virtual Ethernet pair, it becomes visible
from the host OS. Then the packet is forwarded by the kernel,
i.e. bypasses the emulator.

C. Graphical User Interface

GINE was originally designed for students familiar with
IP networking and object oriented programming. However,
it is a rather difficult task even for them to write a main
program, which represents connection of network components,
especially without drawing a network figure. Also, there will
be greater merit to make the emulator used without program-
ming. Therefore, graphical user interface (GUI) is designed
as an add-on for GINE. Fig.8 illustrates the interface between
GINE and its GUI. As shown in the figure, the interface is
concentrated around the classGineBaseObject to make the
relationship between the core library classes and GUI classes
simple. Object archiver is also included in GineBaseObject.

IV. I MPLEMENTATION

In this section, software implementation issues are dis-
cussed. GINE is written in C++ with GNU CommonCpp[21]
library classes (6000 LOC; Line of Codes). GUI is also written
in C++ with Qt4[22] library classes (800 LOC).

15

GUI tool GINE

libs
include

libs
include

<<interface>>
GineBaseObject

+createInstanceOf (id, objname)
 : GineBaseObject*

...
+saveAll (filename) : bool

Fig. 8. Interface between GINE and GUI

A. Essential Library Classes

Fig.9 shows the GINE essential library classes. Dotted

Thread

TimerProcessQueue Input

PFPacketIn NFQueueIn DivertIn PcapIn

FrameQueue

SinkQueue

Forwarder

PFPacketOut NFQueueOut DivertOut RawOut Switch Router

Class : GINE class

: GNU common C++ classClassBaseObject

GineBaseObject

NSpace

Veth

QMainWindow QWidget QLabel

MainWindow Dialog DragWidget DragLabel

<<interface>>
: Qt classClass

DelayGenerator LossGenerator

Fig. 9. Essential library classes

rectangles are GNU CommonCpp or Qt classes, and Solid
rectangles are GINE classes. Upper part includes GINE GUI
classes and lower part includes GINE core classes.

An Input class object receives packets from a socket and
stores them into aFrameQueueobject. It runs autonomously
as a thread with read wait at a socket.NFQueueIn and
PFPacketIn are the classes for input from NFQUEUE and
datalink layer socket, respectively.PcapIn (libpcap) andDi-
vertIn (works only with custom kernel) are alternatives.

A Forwarder class object is not a thread. Instead, a
ProcessQueuethread object periodically checks for all the
registered FrameQueue objects and calls the packet forwarding
method in the Forwarder class. Then the method moves the
frame at the head of the FrameQueue to a network interface or
next FrameQueue object. Multiple FrameQueue objects may
be registered in a ProcessQueue object to avoid creating too
many threads in the emulator.

Fig.10 shows object dependency. Frame represents data
which includes frame header and payload and used by all
objects.

B. Periodic Timer Implementation

Three types of periodic timers using RTC, AUDIO, and
NANOSLEEP are implemented, for the case that more than
one periodic timers are required on a CPU.

With older kernels, resolution of Linux Real Time
Clock(RTC) was limited to 1/8192 sec. With the recent kernel,
our experiments showed the resolution seems to be up to

Input

Forwarder

ProcessQueue

Timer

FrameQueue
LossGenerator

DelayGenerator

(include sub-class)

Frame

PcapIn

NFQueueIn

NFQueueOut

DivertIn

DivertOut

(include sub-class)

Route

RoutingTable

Router

RawOut

PFPacketOut

PFPacketIn

Switch

Fig. 10. Object relations

1/32768 sec (30 usec) in RTC emulation mode. Although RTC
is stable, it is used only in a single process because it is based
on the clock hardware.

Similarly, AUDIO timer is based on the read time for an
audio sample from the audio device and used by a single
process. Theoretically, its resolution is the sampling rate of
the audio device, typically, 44.1kHz or 48kHz(20 usec).

nanosleep() with Linux High Resolution Timer provides
short sleep about 100 micro sec (depends on CPU). The merit
of nanosleep() based periodic timer is that nanosleep() canbe
used in multiple processes at the same time.

C. Delay Distribution

Exponential random numbers are converted from uniform
random numbers generated by re-entrant version of drand48()
library function. Lookup table (size 65536) is initializedac-
cording to the arbitrary probability distribution given. Table
lookup is preferred since lookup is faster than executing
complex mathematical function, typically, inverse of the prob-
ability distribution function. Also measured distribution can be
used to initialize the lookup table.

In addition to independent delay, linear correlation between
delays for successive packets is implemented as eq.(2) [8].

delay = c · delayprevious + (1− c) · delayrandom (2)

where−1.0 ≤ c ≤ 1.0 (usuallyc ≥ 0).
For example,c = 0.8 significantly reduces variance and

slightly changes mean from those of the original distribution.

D. NETNS Command Execution and Terminal Control

While command execution in a created network namespace
(NETNS) is not easy without a terminal, opening terminals for
all NETNS is not desirable for many NETNS (child) process
executions. It consumes a lot of memory and makes confusion.

Then opening/closing selected terminals is a better ap-
proach. Note that terminal invoked in the child process cannot
use main window(Xserver) because TCP, UDP, and Unix do-
main communication are independent among different network
namespaces. Fig.11 illustrates the communication betweenthe
emulator parent process and its child NETNS process using
pseudo tty and xterm connecting specified pty.

16

Parent Process Child Process

(1) open("/dev/ptmx");
create master, slave

(4) fork()
create Child

(5) create NETNS with syscall()

(6) attach slave as stdio

openTerminal()

closeTerminal() kill xterm_PID

createNETNS();

(7) /bin/bash with execl()

get terminal infomation

(2) open("/dev/tty");

(3) set terminal Infomation to slave

fork() connect tty to xterm
 and start xterm

send message
(8)

(10)
execCommand(command)

(9) exec "command"
receive
messageecho "command completed"

(11)
(12)

(13) (14)

master slave

(8)

Fig. 11. NETNS process and terminal, command execution

E. Object Archiver

Object archiver is mandatory for GUI. A user writes a new
network configuration, then wants to saves and edits it as
in a word processor. Fig.12 shows the scheme. Fortunately,

outputEngine

Engine class

object,
id, objname

file
(binary)

Engine class

inputEngine

archiveList

saveAll (filename) loadAll (filename)

map

createInstanceOf (id, objname)

object

write ()

read ()object

object,
id, objname

GineBaseObject class

object,
id, objname

object,
id, objname

(a)

(b) getValue()

(c) setValue()

(d)

(e) (f)

(g)

Fig. 12. Object archiver

CommonCpp includesBaseObject and Engine class which
consistently provide persistent object archiver to the child
class of BaseObject. Actual read/write methods should be
implemented in each child class. By adding GineBaseObject
(BaseObject subclass), object archiver is easily used fromGUI
or C++ main program.

F. Graphical User Interface

Fig.13 shows an example of GUI window. GINE object
templates are represented by upper rectangle buttons with
class name. A template is dragged and corresponding GINE
object with automatic numbering is created when dropped. If
the created object button is double-clicked, property window
will appear and parameters can be modified. Lines between
connected objects are automatically drawn as in Fig. 17. If

Fig. 13. Graphical User Interface

NSpace button is right-clicked, a terminal window (xterm) of
the NETNS will open. Choice of timer, control of execution,
file menus are also available.

V. EVALUATION

In this section, performance of the emulator measured in
the experiments is described. Table I shows the PCs used for
the experiments.PC1 and PC2 have 4 64bit CPU cores and
2 64bit cores, respectively.

TABLE I
PC SPEC

PC1 DELL PowerEdge 840
CPU Intel Xeon X3220 2.40GHz x86 CoreTM 2 Quad (core 4)
Memory 2GB DDR2 PC2-5300E 667MHz ECC, Swap 4GB
OS Ubuntu 9.04 (Jaunty Jackalope) 64bit OS
Kernel Linux kernel 2.6.31 (NETNS enabled)

PC2 Panasonic Let’s note CF-W7
CPU Intel CoreTM 2 Duo U7600 1.20GHz
Memory 2GB DDR2 PC2-5300 667MHz, Swap 4GB
OS Ubuntu 9.04 (Jaunty Jackalope) 64bit OS
Kernel Linux kernel 2.6.31 (NETNS enabled)

A. Number of NETNS Instances

Table II shows how many network stacks can be invoked
on a PC.

TABLE II
MAXIMUM NUMBER OF NETWORK NAMESPACES(NETNS)

PC1 PC2
open files limit 32bit OS 64bit OS 32bit OS 64bit OS

1024 (default) 508 508 508 508
1048576 (max) 508 2858 508 4726

As Table II shows, the first limiting factor is the maximum
number of open files (default 1024) limit the number of
network stacks. The limit with default max open files is
about 512 because 2 pseudo terminal devices are used per
NETNS. Several hundreds might be a reasonable number of
network stacks since memory swapping occurs at 1200 and
also PCs slow down with many number of processes. The

17

second theoretical limiting factor is the maximum number of
processes (pidmax = 32768) on 32bit OS, while it is 4 million
on 64bit OS, and the actual number of threads(processes) never
reaches the limit.

B. Forwarding Performance

Frame(packet) forwarding performance is measured through
the experiments. Frame(Packet) forwarding performance was
measured for the network shown in Fig.14 with PC1 in Table
I. Throughputs were measured withiperf [23], and delay and
loss were measured with ping command.

NETNS0

Cross traffic

TCP Client TCP Server

UDP Client UDP Server

Packet flow

NETNS9 NETNS10

NETNS5

NETNS6

NETNS1 NETNS2 NETNS3 NETNS4

interface
 down

NETNS7 NETNS8
backup line

30Mbps

Fig. 14. Small network with dynamic routing(RIP)

1) Network Namespace Routers:The network in Fig.14
consists of 7 IPv4 routers and 4 IPv4 hosts. All hosts and
routers are represented by network namespaces. The purpose
of the example is to measure throughput and to demonstrate
slow route change of RIP. Therefore, RIPv2 in Quagga[24]
is invoked on each router. Link capacities of all links are
unlimited except for the link betweenNETNS7 andNETNS8,
which is of 30 Mbps with the FrameQueue.

Table III shows throughput betweenNETNS0andNETNS6
when network namespaces are directly connected with Virtual
Ethernet Pairs (veth). Therefore, link capacities are unlimited.
For pure IPv6 network, only NETNS0 to NETNS6 are emu-
lated with static routing for throughput comparison. The results

TABLE III
THROUGHPUT(NO FRAMEQUEUE)

from NETNS0 TCPv4/v6(Mbps) UDPv4(Mbps)

to NETNS1 (hop 1) 1542/1460 1070
to NETNS2 (hop 2) 1013/949 1052
to NETNS3 (hop 3) 1010/722 970
to NETNS4 (hop 4) 925/631 889
to NETNS5 (hop 5) 861/555 818
to NETNS6 (hop 6) 800/500 766

in Table III are the upper limit of the performance, since only
kernel function of network namespaces and virtual Ethernet
pairs are used. Note that IPv6 TCP throughput is lower than
IPv4. The reason might be TCP max segment is smaller in
IPv6 and IPv6 packet forwarding performance in the kernel is
lower than IPv4.

2) Network Namespace Routers and FrameQueues:Then
Table IV shows the same model, but in addition to network
namespaces and virtual Ethernet pairs, the network consists of
FrameQueues, a timer, and datalink socket I/O.

TABLE IV
THROUGHPUT(W/ FRAMEQUEUE, NO LIMIT)

from NETNS0 TCP tput(Mbps) UDP tput(Mbps)

to NETNS1 (hop 1) 828 683
to NETNS2 (hop 2) 448× 2 = 896 431
to NETNS3 (hop 3) 302× 3 = 906 240
to NETNS4 (hop 4) 234× 4 = 936 180
to NETNS5 (hop 5) 194× 5 = 970 162
to NETNS6 (hop 6) 176× 6 = 1056 104

The Maximum total throughput in the emulator, 1056 Mbps
is in hop 6 case (176 Mbps on 6 links), but the end-to-
end throughputs are much lower than the results in Table III
because of 15 more threads and socket I/O.

One way to achieve higher throughput in this configuration
is using GINE emulated routers instead of network names-
pace routers. Dynamic routing is, however, impossible with
emulated routers.

3) External Hosts and Emulated Routers:Table V shows
throughputs measured with iperf (one way traffic) between two
external real hosts connected vian number of emulated routers
in series. Throughputs are higher than in the previous example

TABLE V
THROUGHPUT(CHAIN OF n EMULATED ROUTERS)

n TCP(Mbps) UDP(Mbps)
1 730 770

10 550 580
20 300 280
30 210 220
40 190 180
50 135 150
60 110 120

of Network Namespace routers except forn = 1 case. In this
experiment, 730 Mbps might be the maximum throughput of
the Linux kernel with the 1000BASE-T NIC used.

C. Link Emulation Accuracy

To evaluate delay emulation accuracy, different constant
delays are imposed on each link but only one way (from left
to right) in the first example. The left to right link delays
between NETNS1 and NETNS5 are set as 50, 100, 200, 300
msec, respectively. And the measured total delay was 651.3
msec (650 msec theoretical).

Fig. 15 illustrates the result of shifted exponential random
delay emulation. The dotted bold line in Fig. 15 denotes
theoretical density function (constant 10 msec + exponential
mean 10 msec). Emulated exponential distribution measured
with ping in 10 msec interval did not show good match with
the theoretical line.

Then experiment with 100 msec interval ping was con-
ducted. In the case of 100 msec interval, it showed much
better match. Exponential density is heavy tailed and not very
realistic. The effect of correlation factor is clearly shown.

Successive packet transmission with random delay in short
interval may cause reordering. In the samples used in Fig.
15, the numbers of reordering are0, 1, and 1242 in 10000

18

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60 70 80 90 100

RTT(msec)

Density

10ms+exp(mean 10ms)

emulated (corr=0, 10ms)

emulated (corr=0.8, 10ms)

emulated (corr=0, interval 100ms)

Fig. 15. Density of emulated exponential delay

packets for exponential with 100 msec interval, correlatedwith
10 msec interval, and exponential with 10ms, respectively.

Similarly to evaluate packet loss emulation accuracy, same
packet loss probabilities of 0.1 are imposed on the left to right
links between NETNS1 and NETNS5. The measured end-to-
end packet loss was 0.327 and close to the theoretical value
of 1− 0.94 = 0.3439.

Table VI shows the results for the effect of bandwidth
limit. Note the bandwidth set by the emulator are in Ethernet
frame (without counting preamble and FCS), and, therefore,
TCP throughput is about 96% of the frame throughput. As

TABLE VI
THROUGHPUT(BANDWIDTH LIMIT)

Limit point set bw(Mbps) TCP bw(bps)

NETNS0 - NETNS1 1000 149.85M
NETNS0 - NETNS1 100 98.4M
NETNS0 - NETNS1 20 19.23M
NETNS0 - NETNS1 10 9.63M
NETNS0 - NETNS1 1 991.4k
NETNS0 - NETNS1 0.1 98.7k

the table shows, bandwidth limit up to 100 Mbps seems to
work correctly. Unfortunately, 150 Mbps throughput for 1000
Mbps bandwidth is lower than expected. Improvement of the
program is necessary.

VI. A PPLICATIONS OF THEGINE AND ITS L IBRARIES

Educational examples and some examples of new appli-
cations with the GINE library classes are introduced in this
section.

A. Routing experiments and Cross Traffic Injection

Small networks up to 20 nodes are relatively easily con-
figured with the emulator by C++ programing or by using
the GUI. To appeal the usefulness of the emulator and as
educational example, consider the network of Fig.14.

The network interface ofNETNS3 was brought down
during the emulation run to confirm route change. Routes were
re-calculated in about 150 to 180 seconds after the link down.

Also an experiment with cross traffic injection were con-
ducted. Fig.16 shows the change of TCP throughput from
NETNS0 to NETNS6. Throughputs in this figure are calcu-
lated fromtcpdump log. A TCP stream has been transmitted
for 100 seconds from NETNS0 to NETNS6 (bandwidth 30
Mbps). During the TCP transmission, UDP cross traffic from
NS9 to NS10 was injected from time 30 to 40 (second) at
10Mbps, and at 20Mbps from time 60 to 70 (second). As

Throughput(Mbps)

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
sec

UDP Cross traffic

TCP

traffic in traffic out

traffic in

traffic out

Fig. 16. Effect of UDP cross traffic to TCP traffic

Fig.16 shows TCP throughput went down by 10 Mbps from
time 30 to 40 and by 20 Mbps from time 60 to 70.

B. Testing New Network Application within a PC

It is useful to develop a new network application in the
emulated network, since real application runs on a virtual host
and a testbed network is prepared in a PC. Not only Linux but
other virtual OS can be connected via virtual network interface
or packet diversion.

1) Traffic Limiter Bridge: We have been developing a net-
work traffic limiter (called GateKeeper) as a Linux user space
PC bridge software for limiting traffic against network attacks
such as denial of services[25]. It is a custom bridge with
bandwidth limit, delay, or packet loss filter. The application
uses PFPacketIn/Out class for Ethernet frame input/output.
Essential program components for this application are packet
filters. The other components are easily written with For-
warder, FrameQueue, ProcessQueue, and Timer classes.

2) IPv6/v4 Translator: Fig.17 shows an example for
IPv6/v4 translator and its testbed network. The translator
uses PFPacketIn/Out class for Ethernet frame input/output. All
the translation procedures are implemented in the user space
application. IP and TCP/UDP/ICMP headers in a frame from
a NIC(Network Interface Card) are translated with checksum
recalculation according to the translation rules and a new
frame is assembled and delivered to the other NIC. Long
IPv4 packet is fragmented. Note that the translator runs on
a real host as well as on a virtual host (Network Namespace).
The network configuration was edited with the graphical user
interface in this case.

26NSpacearound the center denotes the translator, and
left and right rectangles represent IPv4 and IPv6 network,

19

IPv6 DNS

Translator IPv6 router and hostsIPv4 router and hosts

RouterRouter

Fig. 17. IPv6/v4 translator and testbed network

respectively.Translator is a separate special bridge program
using GINE library classes. A DNS server program is invoked
on 33NameSpaceto represent IPv6 DNS server. Being able
to emulate seven hosts on a single PC and to invoke arbitrary
program on virtual hosts are major merits of the emulator.

C. Event Driven Simulation

Event driven simulation or custom node emulation can be
easily programmed with GINE library classes. For example, a
simulation program for M/M/1 queueing system is written as
follows. 1) Define a Server class as a subclass of Forwarder
and connect a FrameQueue to the Server as the event input
queue. 2) Describe the state transition and generate events
(next arrival, next departure) and their scheduled time with
random number generator (DelayGenerator class), then store
the events in the event queue. 3) In the main program, create
Server, register the FrameQueue in a ProcessQueue, start
Timer, generate the first arrival. By adjusting timescale, the
program will run in real-time, fast, or slow.

VII. C ONCLUSION

In this research, we have re-designed the network emulator,
GINE (Goto’s IP Network Emulator).

In the new version, realistic dynamic routing and host
emulation have been successfully implemented on standard
Linux kernel. Also, graphical user interface is added, and,
therefore, the emulator becomes useful to those who do
not have programming experience. The source codes and
manuals will be available soon athttp://h303c0.sd.nanzan-
u.ac.jp/GINE/.

Future works includes improvement of the graphical user
interface and frame forwarding speed, also, porting to other
operating system, writing help message and manuals.

REFERENCES

[1] Empirix Inc. Empirix hammer test solution. (accessed Mar. 2012).
[Online]. Available: http://www.empirix.com/

[2] Shunra Software Ltd. Virtual enterprise product family.(accessed Mar.
2012). [Online]. Available: http://www.shunra.com/

[3] Simena. Simena ne. (accessed Mar. 2012). [Online]. Available:
http://www.simena.net/NetworkEmulator.htm

[4] Packetstorm Communications, Inc. Home page(product guide).
(accessed Mar. 2012). [Online]. Available: http://www.packetstorm.com/

[5] ZTI Computing & Telecom. Netdisturb. (accessed Mar. 2012). [Online].
Available: http://www.zti-telecom.com/pages/main-netdisturb.htm

[6] L. Nussbaum and O. Richard, “A comparative study of network link
emulators,” in Proc. of Communications and Networking Simulation
Symposium 2009 (CNS), 2009.

[7] L. Rizzo. Ip dummynet. (accessed Mar. 2012). [Online]. Available:
http://info.iet.unipi.it/∼/ip dummynet/

[8] M. Carson and D. Santay, “Nist net – a linux-based
network emulation tool,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 111–126,
2003, (http://www.itl.nist.gov/div892/itg/
carson/nistnet/).

[9] M. Zec, “Operating system support for integrated network emulation
in imunes,” in Operating System and Architectural Support for the on
demand IT InfraStructure / ASPLOS-XI, Boston, America, 2004.

[10] S. Wang and C. Chou, “Innovative network emulations using the
nctuns tool,” in Computer Networking and Networks, S. Shan-
non, Ed. Nova Science Publishers, 2006, ch. 7, pp. 159–189,
(http://nsl10.csie.nctu.edu.tw/).

[11] A. Ihara, S. Murase, and K. Goto, “Ipv4/v6 network emulator using
divert socket,” inProc. of 18th International Conference on Systems
Engineering(ICSE2006), Coventry, UK, 2006, pp. 159–166.

[12] IPdivert project. Divert sockets for linux. (accessedMar. 2012).
[Online]. Available: http://sourceforge.net/projects/ipdivert/

[13] Y. Sugiyama and K. Goto, “Design and implementation of a network em-
ulator using virtual network stack,” inProc. of the Seventh International
Symposium on Operations Research and Its Applications (ISORA2008),
also in Lecture Notes in Operations Research, vol. 8, 2008, pp. pp.351–
358.

[14] Harald, W. libnetfilterqueue project. (accessed Mar. 2012). [Online].
Available: http://www.netfilter.org/projects/

[15] lxc Linux Containers. lxc Linux Containers. (accessedMar. 2012).
[Online]. Available: http://lxc.sourceforge.net/

[16] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-time
network emulator,” inProc. of IEEE MILCOM Military Communications
Conference 2008(MILCOM), 2008, pp. 221–227.

[17] J. Ahrenholz, “Comparison of core network emulation platforms,” in
Proc. of IEEE Military Communications Conference Conference 2010
(MILCOM), 2010, pp. 864–869.

[18] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the core
and emane network emulators,” inProc. of IEEE MILCOM Military
Communications Conference 2012 (MILCOM), 2011, pp. 1870–1875.

[19] A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A.Wang, “An
empirical study of netem network emulation functionalities,” in Proc.
of 20th International Conference on Computer Communicatins and
Networks (ICCCN), 2011, pp. 1–6.

[20] T. Kawamoto and K. Goto, “Design and evaluation of ip multipath
transmission with feedback,” inSystems Science, Vol.35/No.2, Nov.
2009, pp. 73–79.

[21] Free Software Foundation. Gnu common c++. (accessed Mar.2012).
[Online]. Available: http://www.gnu.org/software/commoncpp/

[22] Nokia. Qt - a cross-platform application and ui framework. (accessed
Mar. 2012). [Online]. Available: http://qt.nokia.com/

[23] NLANR. Iperf. The tcp/udp bandwidth measurement tool. (accessed
Mar. 2012). [Online]. Available: http://dast.nlanr.net/projects/Iperf/

[24] Ishiguro Kunihiro, et al. Quagga software routing suite. (accessed Mar.
2012). [Online]. Available: http://www.quagga.net/

[25] M. Aoyama, M. Kojima, and K. Goto, “Design and implementation of
a traffic limiter for network security,” inProc. of 16th International
Conference on Systems Science, vol. II, 2007, pp. 213–220.

Kunio Goto was born in Shiga, Japan, in 1957. He received the B.E. degree
from Kyoto University, in 1980, and the M.E. and Doctor of Engineering
in applied mathematics and physics from Kyoto University, Kyoto, Japan in
1982 and 1987, respectively.

In 1985, he joined the Department of Business Administration,Nanzan
University, Nagoya, Japan as an assistant professor, and in1998 became a
Professor. Since 2000, he has been with the Department of Telecommunication
Engineering, and since 2009, Department of Systems Design andEngineer-
ing, Nanzan University, Seto, Japan. His current research interests include
performance evaluation of computer network and computer network security.
He has been a member of IEEE, ACM, IPSJ, IEICE, and ORSJ.

20

