

 56

Abstract—In this paper we examine an approach where, in

order to reduce the communication overhead in a fully

distributed, dynamic self-organizing network, nodes maintain a

cache about the topology of their vicinity, and keep this data

structure up-to-date throughout minor and rapid changes in the

network. We plotted six complex caching strategies, defining

when to establish the cache and when to update its content, and

evaluated them with two different network dynamics profiles

along a clustering and load-balancing scenario through

simulation. Smart caching strategies beat the original non-cached

approach both in speed and communication overhead. The

difference between strategies is more visible with the moderate

network changes, as the rapid change acts as a natural

performance booster by bringing new potential load-balancing

partners into the vicinity at no cost. The winner of the examined

strategies uses a change sensitive cache update where the amount

of change in the two-hop neighborhood is approximated by the

observed change among direct neighbors.

Index Terms—Ambient Intelligence, Clustering methods,

Protocols, Topology.

I. INTRODUCTION

In Ambient Intelligence and Pervasive Computing scenarios
[1], [2], multitudes of networked elements provide the user
with services in a way that makes use of the distributed yet
networked setting. Elements of the network themselves and so
their services may be very diverse, and may also be highly
dynamic in time. The ability of automatic self-organization is
becoming an important requirement in these scenarios, as
networked elements need to cooperate, share resources,
communicate, or discover each other effectively, without help
of an external ‘network manager’.
While human network managers possess information about the
state of the whole network, in case of self-organization, nodes
need to rely on locally available information - even if it is
incomplete and non-objective - when making their autonomous
decisions.
Self-organization often uses simple algorithms that have
emergent properties, i.e. the multitude of executions result in a

Manuscript received March 07, 2011.
Márton Legény was with the Budapest University of Technology and

Economics, Hungary, H1117 Budapest, Magyar tudosok krt 2. (e-mail:
legeny@hit.bme.hu). Now he works as a Software Engineer at Nokia Siemens
Networks in Hungary.

Borbála Katalin Benkı is with the Budapest University of Technology and
Economics, Hungary, H1117 Budapest, Magyar tudosok krt 2. (phone: 36-1-
4633219; fax: 36-1-4633263; e-mail: bbenko@hit.bme.hu).

complex, “intelligent” high-level behavior which is of a
different quality than the simple building blocks themselves.
Emergent algorithms are often inspired by biological, chemical
or physical phenomena like swarms, insect colonies, human
brain or the immune system. These paradigms were used in
numerous ways to solve problems in computer networks, for
example load balancing [3], [4], [5], [6]. Self-organization in
overlay networks [7], [8] is also widely used for deploying
distributed applications (mostly used in P2P data sharing
systems) without the need for a supervising entity such as in
[9], [10] and [11].
Clustering - in a self-organizing network - means that entities
of the network search for other entities that meet a certain
criterion (e.g. similarity in case of normal clustering or
complementariness in inverse clustering) and establish
connections with them in form of an overlay network. Load
balancing is a use case of clustering when entities distribute
their local load with members of the cluster. While the
efficient creation of clusters is a prerequisite for good load
balancing, it is not a sufficient condition: a load balancing
algorithm must also answer the questions when and with which
cluster member to share the load, and what information to use
(collect, store and update) when making these decisions.
Our work focuses on biologically inspired, fully distributed
self-organization algorithms for large overlay networks, with
an emphasis on clustering and load balancing.
In this paper we describe an approach when the entities
participating in the clustering and load balancing procedure
maintain a cache about the topology of its vicinity in order to
speed up self-organization and also to decrease the number of
messages sent during the process. Section II describes basic
self-organization algorithms that will be extended with
topology cache. Section III tackles with considerations
regarding the topology cache: establishment strategies and
approaches to keep it up-to-date. Section IV elaborates on the
load balancing problem used during the evaluation. We
evaluated various caching strategies along different network
dynamism characteristics; the results are summarized in
Section V. Finally, in Section VI we conclude the work.
The novelty of this paper is the integration of topology caching
with emergent self-organization algorithms.

II. CLUSTERING ALGORITHMS IN MOBILE NETWORKS

While numerous clustering algorithms are known today, we
chose a specific algorithm family for this paper, known as On-
Demand clustering.

Topology Cache aided Self-Organization
for Ad-hoc Mobile Networks

Márton Legény, Borbála Katalin Benkı

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), March Edition, 2011

 57

A. Basic On-Demand Clustering

On-Demand Clustering (ODC) [12], [13], [14] is an emergent
self-organization algorithm, developed at BT Labs, with
beneficial properties on the node degree. The algorithm can be
summarized as follows.
• The clustering process is initiated on demand, i.e. when a

node is in need of expanding its cluster.
• The node where the demand for clustering raises, called

initiator, selects one of its neighbors to serve as match
maker.

• The match maker looks for a matching node, one that
meets the initiator’s clustering criterion, among its own
neighbors.

• When a match is found, the initiator and the match
establish a link, while, in order to keep the total number of
links under control, the match maker removes its own link
towards the match. This process is called rewiring.

It has been shown that ODC results in an emergent self-
organization behavior, i.e. clusters are formed and expanded
when local demand for that rises. However, ODC may not
perform equally well in all cases. While the strict locality
principle in the match search guarantees that the
communication overhead remains under control; it sometimes
prevents the fast formation of clusters, especially in case of
sparser or type-wise highly diverse networks, where a suitable
match if often not present amongst the match maker’s one-hub
neighbors. The locality principle in these cases causes not
large enough clusters or not fast enough clustering.

B. Spyglass

Spyglass [15] [16] is a match-centric extension of ODC, where
the match maker is able look one hop farther than in the
original algorithm. Spyglass differs from ODC in the last two
bullet points, so, in the behavior of the match maker and in the
details of rewiring.
• The match maker looks for a matching node, one that

meets the initiator’s clustering criterion, among its own
neighbors. When no match is found, the match maker
continues with checking its two-hop neighbors (the
neighbors of its neighbors) for a match.

• When a match is found, the initiator and the match
establish a link, while, in order to keep the total number of
links under control, the match maker removes its own link
towards the match (in case of it being a direct neighbor) or
towards the neighbor that links to the match (in case of a
two-hub neighbor).

The motivation behind Spyglass was to overcome the very
strict locality principle of ODC without losing the beneficial
properties of the original algorithm. However, looking at
second-hop neighbors is an operation of exponential cost, so
some kind of optimization – such as caching – is inevitable.
We decided to maintain a cache about the vicinity’s topology,
called Neighbor Cache (NC).
In Spyglass, just like in ODC, the communication is message
based. Messages are used for the clustering itself (for example
match search request, link establishment) and also for the
purpose of gathering information about neighbors for the
Neighbor Cache.

When a NC is available at the match maker, containing the
neighbors of its neighbors, the match maker can use this data
structure for finding a suitable match for the initiator without
needing to send a single message to its neighbors.

III. TOPOLOGY CACHING STRATEGIES

In [16] we showed that caching the overlay topology is an
efficient method for reducing the communication overhead, i.e.
the number of administrative messages sent between nodes,
when the topology of the network is quasi-static.
In this paper we tackle with cache handling strategies for
networks where the topology keeps changing from time to
time, including highly dynamic topologies such as mobile or
ad-hoc networks.
Building or rebuilding the neighbor cache from scratch
requires a vast amount of communication messages, so the
cache maintenance strategy, defining when and what to
build/update, may have a significantly influence on the number
of messages sent. Having a full neighbor cache at all nodes
may also be unnecessary, as, only nodes playing the match
maker role utilize this data structure.
On the other hand, the validity and freshness of the cached
content is also of high importance, as the NC should support
and not hinder the formation of clusters. To keep the cache up-
to-date is especially vital when the underlying topology
changes, introducing new potential matches or removing
existing ones.
Ideally, a good tradeoff between the communication overhead
and the freshness of the cache should be found.
The cache management should, in our point of view, include
the following aspects: (i) Cache Building Strategy: describing
when to establish the local Neighbor Cache, (ii) Cache Update
Strategy: defining when to rebuild or refresh the contents of
the cache and/or check its validity, (iii) Fallback Policy: what
to do when no match is found in the neighbor cache or the
cache-based result is corrupt.

A. General Directions

We considered the following caching directions:
• No caching. Reference algorithm, no cache is used.
• Static pre-caching. The cache is built up for all nodes

before the simulation starts. Reference algorithm, helps in
separating caching overhead from the actual clustering
traffic.

• On demand cache establishment (and its variants). The
cache is built ‘on demand’, that is, when the node becomes
match maker. The main advantage of this method is that it
is concentrating the efforts on nodes where the cache is
actually required. Variants include:
o Conditional on demand caching, where the initiator

or the neighborhood needs to meet a certain criterion
in order to establish the cache, and

o Random on demand caching, where the choice
whether or not to build the cache when the request
arrives is made randomly.

While at first site cache building and cache update seems to be
distinct, moreover, fairly independent aspects, some analysis
leads to the conclusion that the longer the system’s life time

 58

the more important the refresh strategy becomes, and basically,
with time, the refresh strategy overtakes the role of cache

establishment. Hence, as the original cache establishment
method will be suppressed by the cache update strategy on the
long term anyway, we think it is sufficiently justified to use the
same strategy for cache establishment as for cache update.

B. Cache Rebuild Strategies

We examined the following build and rebuild strategies (all of
which were originally designed as update directions for the on-
demand cache establishment):
• Random (re)build. When becoming match maker, the

node makes a random choice whether or not to
build/refresh the cache. When “no refresh” is decided, the
existing cache - if any - is used for answering the initiator’s
request.

• Size-sensitive random (re)build. Variant of the previous
one, the random choice depends on the size of the cache.
The consideration behind this method is that in denser parts
of the network the chance of experiencing a topology
change is higher than in rare segments (supposing that the
probability of a change is independent and is the same in
all nodes). This approach models the density of the
network segment with the size of the neighbor cache.

• Success based (re)build. The match maker maintains a
(sliding window) history about the success of the last n
queries; and, when the success rate goes below a limit, the
neighbor cache gets rebuilt. This strategy was designed to
better accommodate to the “real” local needs of the
neighboring initiators: as long as the cache works
successfully, no communication should be wasted on
updates.

• Change based (re)build. The cache gets rebuilt when the
match maker senses a high enough change in its
environment (direct neighbors). Optimally, if a node could
observe all changes at no cost, this information could lead
to mathematically optimal update strategies. In case of
change based refresh, instead of truly observing all changes
of the two-hop neighborhood, we approximate that with
observing the direct neighbors only (which can be done
without cost, by watching the channels themselves).

• Type-sensitive change based (re)build. A variant of
change based refresh, when, as the demand arrives, not
only the amount of the observed change is considered for
the decision, but also its class (color): only such change
classes matter that match with the request. This way, it is
possible to exclude the effect of practically irrelevant
changes from the decision.

C. Fallback Strategies

As for fallback strategies, two possibilities were considered.
• Fallback when no cache. The algorithm falls back to the

original excessive (message based) lookup only when there
is no cache available at the node. Whenever a cache is
present - may it be up-to-date or very old - the cache based
answer will be used in answering the initiator’s query.

• Fallback when lookup unsuccessful. Any time when a
serving a query is unsuccessful from the cache (no match is

found), the algorithm falls back to the original excessive
lookup. Please note that this strategy neutralizes the effects
of a possibly poor cache refresh, while on the other hand, it
also wastes a large amount of communication messages
when the lookup is unsuccessful due to topologic causes
(e.g. there is really no match in the neighborhood). Even
worse, the excessive overhead may get accumulated in the
effected network part, occupying the communication
channels repeatedly and hindering the real traffic. That is
why this fallback strategy is used for comparison purposes
only in our analysis.

IV. CLUSTERING BASED LOAD BALANCING

Load balancing task is a common application area of
clustering. We use a model where a load balancing problem
generates the demand for the clustering.
The model is the following.
• The overlay network consists of colored nodes and links

between them.
• Each node is able to process only those jobs that match its

color.
• Links are not colored.
• Jobs enter the overlay network via colored workload

generators, each statically attached to a matching-color
node.

• Workload generators generate jobs and put them on the
queue of the attached node. The expected value of the
generation rate is constant.

• Nodes consume jobs from their local queue.
• When a node feels to be overloaded, it shares the local

workload with its matching neighbors by transferring jobs
from the local queue to them over a link. The sharing
decision is also bound to specific conditions on the remote
queue length (the acceptor cannot be overloaded) and the
capacity of the link.

• When a node cannot find enough appropriate neighbor to
share the load with, a demand for clustering occurs.

Hence, clustering is aimed to reorganize the overlay topology
and to create a new link to a suitable node on demand.

Note that the load balancing task introduces certain changes in
the requirements towards the clustering algorithm. When
talking about a single clustering algorithm, the resulting cluster
size is the most important goodness metrics. However, when
clustering serves load balancing purposes, the need for the
cluster size is limited. We do not need to generate the possible
largest clusters, instead, just large enough clusters for the local
excess workload (the creation of clusters larger than that
would not bring further advantages but would cost
communication messages). On the other hand, the clustering
speed becomes more vital for load balancing: the initiator
needs the match urgently. Given that the job generation rate is
constant, every unsuccessful search for a match just worsens
the initiator’s situation.

 59

V. EVALUATION

In this chapter we present our simulation results regarding the
cache maintenance methods, with a focus on the
communication overhead and the clustering / load balancing
performance. After describing the test setting and the
evaluation criteria, we elaborate on the details of the
simulation results of the various algorithms and network
change characteristics.

A. Test Setting

1) Simulation Setting

Measurements were conducted on a showcase network
consisting of 10,000 nodes and 25,125 links initially, with
random graph topology [17], and workload generators
attached to 5% of the nodes. Nodes belong to 10 different
classes (colors), and load balancing swings into action once
the local queue length exceeds the static limit of 5 unprocessed
jobs. The choice of network size and density was motivated by
our previous work on static topologies [15], where this
network size was found to be convenient for demonstrating the
scalability of the emergent algorithms as well as for pointing
out the differences between directions.

The simulation was limited to 500 rounds. Each workload
generator had a static limit of generating 500 jobs at most. The
generation rate changes between 1 and 10 jobs per round, as is
constant for the life time of the generator.

We simulated the same scenario (excess workload triggers
self-organization) for all examined caching strategies along
two network dynamics profiles.

2) Network Dynamics

The dynamics of the network was modeled by three factors: (i)
Node Disappearance: nodes disappear from time to time. (ii)
Node Appearance: new nodes keep appearing in each round.
(iii) Node Movement: nodes change their location a bit in each
round, resulting in new physical neighborhood relationships.
We used a physical proximity model for generating the initial
overlay topology. Nodes were distributed randomly over a
geographic area of 1000×1000 m. Nodes within a visibility
distance (10m) ‘see’ each other, i.e. are connected by a link.
Links generated by the self-organization process (overlay
links) may exceed this visibility limit as long as the original
initiator and match maker originating the link remain visible
for each other. Node mobility was modeled with the random
movement mobility pattern: a step into a randomly selected
direction with the default speed. After mobility, when two
nodes that used to see each other are now out of range, we
took a worst-case view by removing all overlay links that
originated from the two node’s former neighborhood. This is a
pessimistic view, as the overlay links in practice would not
need to go down as long as alternative routes exist between
them. However, we believe that a worst-case assumption is
better to be used during evaluation than a too optimistic
assumption.
Node appearance was modeled in form of creating new nodes
at random locations. Node disappearance is modeled in form

of removing randomly selected nodes from the current
population (i.e. the properties of the node, such as age,
connectedness or location, did not play a role when making the
selection).
We defined two essentially different network change profiles.
• Slow changing static sized network. In each 50 steps

long window 10% of the nodes disappear, 10% new nodes
appear, and 50% of the nodes move with a speed of
1 m/movement.

• Fast changing static sized network. In each 10 steps long
window 10% of the nodes disappear, 10% new nodes
appear, and 50% of the nodes move with speed of
3 m/movement.

In both profiles, the size of the network remains quasi static
(the ratio of disappearance equals to the ratio of new node
generation), hence the network itself will neither expand nor
shrink.

3) Examined Strategies

The following cache strategies were examined.
• No Cache. No cache is used.
• On Demand Cache. Cache is established when the node

becomes match maker. Cache is rebuilt when the request
cannot be served from the current cache.

• On Demand Cache with PreCaching. All nodes are
equipped with a cache at startup (at no cost). The cache is
updated when the node becomes match maker and cannot
serve the request from the current cache.

• Random Cache. When the node becomes match maker, a
random decision is taken whether to build/update the
cache. No fallback is used when the query is unsuccessful.

• Size Sensitive Random cache. The same as Random, but
the probability of update is proportional to the number of
direct neighbors.

• SuccessBased cache. Cache is built/rebuilt when 3 out of
the last 4 queries were unsuccessful.

• ChangeBased cache. Cache is built/rebuilt when at least
10% of the neighbors changes.

• TypeSensitive ChangeBased Cache. Changes of the
neighboring nodes are saved into a local registry. For each
query, the change registry is evaluated. When at least 10%
of the matching-color nodes are affected by the change, the
cache is rebuilt, and the change history gets cleared.

4) Simulation Environment

The simulation framework was written in Java 6 SE, and the
experiments took place on a desktop PC with 2GHz dual core
processor and 2 GByte RAM.

B. Evaluation Criteria

The following metrics were applied for evaluation:
• Message count depicts the amount of communication
overhead generated by the algorithm variant. The value
includes self-organization and cache building / rebuilding
related messages only. Small message counts are preferred
over high message counts.

• Number of clustered nodes at the end of the simulation.
Intuitively, the larger this number is the better the self-

 60

organization performs. However, the demand for clusters is
constrained by the amount of workload, so the cluster size
cannot grow indefinitely.

• The unprocessed job curve drafts the processing dynamics
of the system by plotting the number of injected but
unprocessed jobs versus time. As the simulation includes a
limited number of jobs, with time, the curve reaches zero
(i.e. all jobs are processed). The area under the curve is
also a good estimate for the goodness of the algorithm,
smaller area suggests better performance (smaller waiting
times). The tail of the curve is often very long. This may
mean to things: either the local job generation rate is one
(meaning that the node will process all jobs itself because
of never getting overloaded); or that there are nodes in the
system unable to establish clusters so they are left to
process all incoming jobs on their own. That is why, when
comparing curves, we do not necessarily locate the point
when the curve reaches zero, instead, the point where the
curve reaches a small but non-zero number.

• The number of overloaded nodes depicts the dynamics of
the demand for clustering. This metrics can be used for two
purposes: (i) to understand the characteristics of the
demand that triggers clustering; and (ii) to understand how
the demand is silenced by the clustering and load balancing
algorithm.

C. Results

1) Communication Overhead

Figure 1 summarizes the measured total message count for
each examined caching strategy along the slow and fast
network dynamics profiles. In all cases, cache based directions
significantly reduce the communication overhead, sometimes
even by a magnitude, compared to the baseline Spyglass
algorithm ‘No Cache’.
From the examined strategies, blind On Demand caching
produces the highest amount of messages. It is not only high
compared to the conditionally caching strategies, but also in
means of the reference algorithm No Cache, suggesting that a
large portion of the nodes becomes match maker at least once
in its lifetime (hence a demand for cache establishment
occurs). In the variant when PreCaching is in place (OD with
PreCaching), messages serve cache update purposes only.
Random caching, either size sensitive or pure random, produce
around half as many messages as On Demand does. Size
sensitive update, as its name suggests, tends to trigger cache
updates more frequently in denser parts of the network,
resulting in somewhat more messages then the pure random
variant.
The success and change based strategies are surprisingly
economic in terms of messages, the Type Sensitive Change
Based strategy even beats OD with PreCaching in case of fast
network change.
The effect of the network change profile (fast or slow) varies
between strategies. One unexpected result is that for No Cache
the fast network change profile produces significantly (31%)
less messages than the slow network change. The explanation
is that fast network change seems to be a natural booster for

finding appropriate partner nodes, as the potential partner
nodes, through their natural movements, have a chance of
getting into the vicinity by themselves. That’s why, there’s less
need for looking at two-hop neighbors, which is the message-
consuming step.

 10 000

 20 000

 30 000

 40 000

 50 000

 60 000

 70 000

 80 000

N
o

 C
a

c
h

e

O
n

 D
e

m
a

n
d

O
D

 w
it

h

P
re

C
a

c
h

in
g

R
a

n
d

o
m

S
iz

e
S
e

n
si

ti
v
e

R
a

n
d

o
m

S
u

c
c
e

ss
B

a
se

d

C
h

a
n

g
e

B
a

se
d

T
y
p

e
S
e

n
si

ti
v
e

C
h

a
n

g
e

Slow Change Fast Change

Figure 1: Message count with various network dynamics and caching
strategies. The original Spyglass algorithm (No Cache) is easily beaten by all
cache based strategies.

The same boosting effect of the fast network change can be
observed in several other strategies, in various amounts. The
only exception is the size sensitive random cache, where fast
changes in the dense regions of the area cause extensive cache
updates, producing somewhat more messages than in case of
the slow network change profile.

2) Clustered Nodes

Figure 2 shows the number of clustered nodes in the last round
for the examined caching startegies along the two network
dynamics profiles.

 100

 200

 300

 400

 500

 600

 700

 800

N
o

 C
a

c
h

e

O
n

 D
e

m
a

n
d

O
D

 w
it

h

P
re

C
a

c
h

in
g

R
a

n
d

o
m

S
iz

e
S
e

n
si

ti
v
e

R
a

n
d

o
m

S
u

c
c
e

ss
B

a
se

d

C
h

a
n

g
e

B
a

se
d

T
y
p

e
S
e

n
si

ti
v
e

C
h

a
n

g
e

Slow Change Fast Change

Figure 2: Number of clustered nodes at different network dynamics and
caching approaches. While the difference is visible in case of slow changes,
in fast changing networks none of the algorithms create clearly large clusters.

The network dynamics seems to clearly and consistently effect
the number of clustered nodes. With fast network change, the
total number of networked nodes is significantly less in all
cases than with slow changes. Atfter detailed analysis of the
logs, we identified two reasons for that. (i) Fast network
changefacilitates natural clustering by moving potential
neighbors into the vicinity for some little time and then moving
it away; hence it produces smaller but more dynamic clusters

 61

(i.e. the neighbors, after getting a share in the work, move
away). With slow network change, neighbors don’t move away
so easily, get overleaded by the shared workload, hence, the
initiator needs to expand the cluster. (ii) The pessimistic
handling of overlay links also influences the result. With fast
network change, a large amount of overlay links get removed
in each step, shrinking the clusters.

3) Unprocessed Job Curve

When observing the unprocessed job curve [Figure 3] for the
smart caching strategies and network change profiles, it is
clear again that each of the algorithms perform better in the
fast changing case. This, again, confirms the natural boosting
property of the network change, which, by changing the
overlay neighbors more frequently, tends to guarantee that
neighbors are not overloaded, hence can be used for workload
sharing. Under heavier overall load, where a higher percentage
of nodes would be overloaded, the effect of this beneficial
property would weaken.

0

500

1000

1500

2000

2500

3000

1 51 101 151 201

SlowChange, SizeSensitive Random FastChange, SizeSensitive Random

SlowChange, Random FastChange, Random

SlowChange, SuccessBased FastChange, SuccessBased

SlowChange, ChangeBased FastChange, ChangeBased

SlowChange, TypeSensitive Change FastChange, TypeSensitive Change

Figure 3: Unprocessed job curve at various change dynamics and caching
approaches. Line style denotes the dynamics; line color shows the algorithm
type. All algorithm variants perform better in the fast changing network.

Change based directions (ChangeBased, TypeSensitive
Change) and the Success based strategy are among the top
performers along both network change profiles.
Random caching seems to touch both extremities: it is the least
effective in the slow scenario and among the bests in the fast
changing one.
For comparison, Figure 4 shows the unprocessed job curve of
the non-smart directions, i.e. No cache, and blind On Demand
without and with pre-caching. The fast changing scenario also
brings better results here. The shape of the pre-cached OD is
good, however, the shape of the other curves, as well as the
area under the curve, suggest that OD and No Cache provides
weaker performance than smart strategies could bring;
meaning longer waiting times and smaller throughput. This can
be explained by the too simple fallback strategy used in these
strategies: the cache is only updated when no match is found in
the existing data base. In practice, this may result in returning
useless matches to the initiator (matches that are already
neighbors for it, or are out of range by now), wasting the time.
The other reason is that updating the cache (or querying all

neighbors) takes time, delaying the answer. In case the query
cannot be served anyway, i.e. there’s no match in the vicinity,
these extra rounds get wasted again and again.

0

500

1000

1500

2000

2500

3000

1 51 101 151 201

SlowChange, No Cache SlowChange, On Demand

SlowChange, OD with PreCaching FastChange, No Cache

FastChange, On Demand FastChange, OD with PreCaching

Figure 4: Unprocessed job curve without cache update.

4) Number of Overloaded Nodes

Figure 5 displays the number of unprocessed jobs for the slow
changing network profile. Random cache produces the highest
peak at 85 overloaded nodes at a time, meaning that this
strategy may easily be the slowest to respond to the occurring
demand. No Cache, SizeSensitive Random, and ChangeBased
produce the lowest peaks (66-67 overloaded nodes),
suggesting that these strategies will not hinder the algorithm in
reacting with speed.

0

25

50

75

100

1

5
1

1
0

1

1
5

1

2
0

1

2
5

1

3
0

1

Rounds

No Cache On Demand OD with PreCaching

SizeSensitive Random Random SuccessBased

ChangeBased TypeSensitive Change
Figure 5: Number of overloaded nodes with the slow network change profile.

0

25

50

75

100

1

5
1

1
0

1

1
5

1

2
0

1

2
5

1

3
0

1

Rounds

No Cache On Demand OD with PreCaching

SizeSensitive Random Random SuccessBased

ChangeBased TypeSensitive Change
Figure 6: Number of overloaded nodes with the fast network change profile.

 62

The same curves for the fast network change profile can be
seen in Figure 6. Not only peaks are smaller but also the
number of overloaded nodes decreases more rapidly, due to
the more efficient workload sharing.

5) Result Summary

The performance of the examined caching strategies tends to
be not as conclusive as one could expect; each strategy has its
stronger and weaker points. Putting all together, we created a
ranking in each evaluation category. Rank 1 denotes the best
performance and Rank 8 means the weakest. Strategies with
similar performance may share the same rank position. Table 1
shows the ranks and also the total ‘rank’ earned with uniform
weighting.

Strategy
Job

Curve

Reaction

Time

Comm.

Over-

head

Cluste-

ring
SUM

No Cache 4 2 8 2 16

On Demand 8 5 7 1 21

OD with

PreCaching 1 4 2 1 8

Random 6 4 4 1 15

SizeSensitive

Random 2 6 4 1 13

SuccessBased 4 5 3 1 13

ChangeBased 2 3 1 1 7

TypeSensitive

Change 2 4 1 1 8

Table 1: Rank of algorithms per evaluation criteria. Results summarize the
outcomes of the two network change profiles with equal weight.

When considering all criteria with equal weights, the top
performers are the change based caching strategies,
ChangeBased and TypeSenistive ChangeBased caching. (The
other favorable algorithm, OnDemand with PreCache is just a
theoretical toy, as the existence of a pre-built topology cache is
not a realistic assumption in ad-hoc networks.)
However, the order of algorithms may change if the weights of
the evaluation criteria are not equal, if a certain network
change characteristics should be considered instead of the
mixture of the two, or if some assumption made in the
algorithms cannot be implemented in a specific problem case
(e.g. monitoring the existence of the links to the neighbors at
no cost). In each specific problem case, a tradeoff between
communication overhead and the actual performance should
be found.

VI. SUMMARY

In this paper we examined various directions for a topology
cache aided self-organization and load balancing algorithm.
The topology cache aims to reduce the communication
overhead of looking up matching nodes in the vicinity for load
balancing. We defined six complex cache building and
rebuilding strategies (in order to follow the changes in the
network) and two reference algorithms; and evaluated each of

them along a slow and a fast network changing profile through
simulation. Experiments pointed out that fast topology change
naturally stimulates self-organization, i.e. tends to bring
matching, and not overloaded nodes into the direct
neighborhood at no cost, resulting in possibly smaller clusters
but better overall load-balancing and job processing curves. In
case of a moderate network change profile, the difference
between caching strategies was more visibe. All examined
smart caching strategies beat the reference algorithms in terms
of overall performance: (i) the communication overhead was
significantly smaller, sometimes even by a magnitude, (ii) no
significant difference was observed in the size of the clusters
produced, , and (iii) the resulting load balancing dynamics,
after a short initial delay, tended to outperform the non-cached
version due to the O(1) cost of a cache lookup instead of the
larger cost of a real neighbor lookup. The winner of the
examined caching algorithms is a change based approach,
rebuilding the cache only if the amount of approximated
change in the vicinity exceeds a certain limit; where we
approximate the total change in the two-hop neighbor-hood by
the observable change amount among direct neighbors.

VII. ACKNOWLEDGEMENT

The support of the Hungarian Government through the
TÁMOP-4.2.1/B-09/1/KMR-2010-0002 project at the
Budapest University of Technology and Economics is
acknowledged.

REFERENCES

[1] D. J. Cook, J. C. Augusto, V. R. Jakkula. 2009. „Ambient Intelligence:
Technologies, Applications, and Opportunities.” in Journal of

Pervasive and Mobile Computing, 5(4): 277-298.
[2] J. C. Augusto. 2007. „Ambient Intelligence: the Confluence of

Ubiquitous / Pervasive Computing and Artificial Intelligence.” in
Intelligent Computing Everywhere, Springer Verlag, pp. 213-234.

[3] G. Di Caro, F. Ducatelle, L. M. Gambardella. 2005. „Swarm Intelligence
For Routing In Mobile Ad Hoc Networks.” in Proceedings of the 2005
IEEE Swarm Intelligence Symposium (SIS), pp. 76-83.

[4] A. Montresor, H. Meling, Ö. Babaoglu. 2002. „Messor: Load-Balancing
through a Swarm of Autonomous Agents.” in Proceedings of 1st
Workshop on Agents and Peer-to-Peer Computing (AP2PC 2002),
Springer Verlag, pp. 125-137.

[5] A. Montresor, H. Meling, Ö. Babaoglu. 2003. „Toward Self-Organizing,
Self-Repairing and Resilient Distributed Systems.” in Number 2584 in
Lecture Notes in Computer Science, Springer Verlag, pp. 119-124.

[6] IST CASCADAS Deliverable D3.2: „Report on rule-based modules for
unit differentiation using cross-inhibition and/or resource competition.”
IST CASCADAS Project, 2007.

[7] S. Jain, R. Mahajan, B. Niswonger. 2000. „Self-Organizing Overlays.”
Technical report, University of Washington, DC, USA.

[8] S. Apel, K. Böhm. 2005. „Self-Organization in Overlay Networks.” in
Proceedings of CAISE'05 Workshops (Workshop on Adaptive and Self-

Managing Enterprise Applications), Vol. 2, pp. 139-153.
[9] I. Clarke, O. Sandberg, B. Wiley, T. W. Hong. 2000. „Freenet: A

Distributed Anonymous Information Storage and Retrieval System.” in
Proceedings of Workshop on Design Issues in Autonymity and

Unobservability, Berkeley, CA, USA.
[10] P. Gburzynski, B. Kaminska, W. Olesinski. 2007. „A Tiny and Efficient

Wireless Ad-hoc Protocol for Low-cost Sensor Networks.” in
Proceedings of the conference on Design, Automation and Test in

Europe (DATE’07), pp. 1557-1562.
[11] R. Krishnan. 2004. „Efficient Self-Organization of Large Wireless

Sensor Networks”. Ph.D. Dissertation, Boston University, College of
Engineering.

 63

[12] F. Saffre, R. Tateson, J. Halloy, M. Shackleton, J.L. Deneubourg. 2008.
“Aggregation Dynamics in Overlay Networks and Their Implications for
Self-Organized Distributed Applications”. in The Computer Journal.

[13] E. Di Nitto, D. J. Dubois, R. Mirandola, F. Saffre, R. Tateson. 2008.
„Self-Aggregation Techniques for Load Balancing in Distributed
Systems.” in Proceedings of SASO 2008, pp 489-490.

[14] IST CASCADAS Deliverable D3.1: „Aggregation Algorithms, Overlay
Dynamics and Implications for Self-Organised Distributed Systems.”
IST CASCADAS Project, 2006.

[15] M. Legeny. 2010. “Distributed and hybrid algorithms in Self-
Organizing Networks” (In Hungarian). Master’s thesis, Department of
Telecommunications, Budapest University of Technology and
Economics (unpublished).

[16] M. Legeny, B. K. Benko. 2010. “Design of Novel Self-Organization
Algorithms through Simulation.” in Proceedings of EUROSIS

ISC’2010, pp. 10-15.
[17] P. Erdıs, A. Rényi. 1960. „The Evolution of Random Graphs". in

Magyar Tud. Akad. Mat. Kutató Int. Közl. 5: 17–61.

