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Abstract—In this paper we examine an approach where, in 

order to reduce the communication overhead in a fully 

distributed, dynamic self-organizing network, nodes maintain a 

cache about the topology of their vicinity, and keep this data 

structure up-to-date throughout minor and rapid changes in the 

network. We plotted six complex caching strategies, defining 

when to establish the cache and when to update its content, and 

evaluated them with two different network dynamics profiles 

along a clustering and load-balancing scenario through 

simulation. Smart caching strategies beat the original non-cached 

approach both in speed and communication overhead. The 

difference between strategies is more visible with the moderate 

network changes, as the rapid change acts as a natural 

performance booster by bringing new potential load-balancing 

partners into the vicinity at no cost. The winner of the examined 

strategies uses a change sensitive cache update where the amount 

of change in the two-hop neighborhood is approximated by the 

observed change among direct neighbors. 

 
Index Terms—Ambient Intelligence, Clustering methods, 

Protocols, Topology. 
 

I. INTRODUCTION 

In Ambient Intelligence and Pervasive Computing scenarios 
[1], [2], multitudes of networked elements provide the user 
with services in a way that makes use of the distributed yet 
networked setting. Elements of the network themselves and so 
their services may be very diverse, and may also be highly 
dynamic in time. The ability of automatic self-organization is 
becoming an important requirement in these scenarios, as 
networked elements need to cooperate, share resources, 
communicate, or discover each other effectively, without help 
of an external ‘network manager’. 
While human network managers possess information about the 
state of the whole network, in case of self-organization, nodes 
need to rely on locally available information - even if it is 
incomplete and non-objective - when making their autonomous 
decisions.  
Self-organization often uses simple algorithms that have 
emergent properties, i.e. the multitude of executions result in a 
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complex, “intelligent” high-level behavior which is of a 
different quality than the simple building blocks themselves. 
Emergent algorithms are often inspired by biological, chemical 
or physical phenomena like swarms, insect colonies, human 
brain or the immune system. These paradigms were used in 
numerous ways to solve problems in computer networks, for 
example load balancing [3], [4], [5], [6]. Self-organization in 
overlay networks [7], [8] is also widely used for deploying 
distributed applications (mostly used in P2P data sharing 
systems) without the need for a supervising entity such as in 
[9], [10] and [11].  
Clustering - in a self-organizing network - means that entities 
of the network search for other entities that meet a certain 
criterion (e.g. similarity in case of normal clustering or 
complementariness in inverse clustering) and establish 
connections with them in form of an overlay network. Load 
balancing is a use case of clustering when entities distribute 
their local load with members of the cluster. While the 
efficient creation of clusters is a prerequisite for good load 
balancing, it is not a sufficient condition: a load balancing 
algorithm must also answer the questions when and with which 
cluster member to share the load, and what information to use 
(collect, store and update) when making these decisions. 
Our work focuses on biologically inspired, fully distributed 
self-organization algorithms for large overlay networks, with 
an emphasis on clustering and load balancing.  
In this paper we describe an approach when the entities 
participating in the clustering and load balancing procedure 
maintain a cache about the topology of its vicinity in order to 
speed up self-organization and also to decrease the number of 
messages sent during the process. Section II describes basic 
self-organization algorithms that will be extended with 
topology cache. Section III tackles with considerations 
regarding the topology cache: establishment strategies and 
approaches to keep it up-to-date. Section IV elaborates on the 
load balancing problem used during the evaluation. We 
evaluated various caching strategies along different network 
dynamism characteristics; the results are summarized in 
Section V. Finally, in Section VI we conclude the work. 
The novelty of this paper is the integration of topology caching 
with emergent self-organization algorithms. 

II. CLUSTERING ALGORITHMS IN MOBILE NETWORKS 

While numerous clustering algorithms are known today, we 
chose a specific algorithm family for this paper, known as On-
Demand clustering. 
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A. Basic On-Demand Clustering 

On-Demand Clustering (ODC) [12], [13], [14] is an emergent 
self-organization algorithm, developed at BT Labs, with 
beneficial properties on the node degree. The algorithm can be 
summarized as follows.  
• The clustering process is initiated on demand, i.e. when a 

node is in need of expanding its cluster.  
• The node where the demand for clustering raises, called 

initiator, selects one of its neighbors to serve as match 
maker.  

• The match maker looks for a matching node, one that 
meets the initiator’s clustering criterion, among its own 
neighbors.  

• When a match is found, the initiator and the match 
establish a link, while, in order to keep the total number of 
links under control, the match maker removes its own link 
towards the match. This process is called rewiring. 

It has been shown that ODC results in an emergent self-
organization behavior, i.e. clusters are formed and expanded 
when local demand for that rises. However, ODC may not 
perform equally well in all cases. While the strict locality 
principle in the match search guarantees that the 
communication overhead remains under control; it sometimes 
prevents the fast formation of clusters, especially in case of 
sparser or type-wise highly diverse networks, where a suitable 
match if often not present amongst the match maker’s one-hub 
neighbors. The locality principle in these cases causes not 
large enough clusters or not fast enough clustering. 

B. Spyglass 

Spyglass [15] [16] is a match-centric extension of ODC, where 
the match maker is able look one hop farther than in the 
original algorithm. Spyglass differs from ODC in the last two 
bullet points, so, in the behavior of the match maker and in the 
details of rewiring. 
• The match maker looks for a matching node, one that 

meets the initiator’s clustering criterion, among its own 
neighbors. When no match is found, the match maker 
continues with checking its two-hop neighbors (the 
neighbors of its neighbors) for a match. 

• When a match is found, the initiator and the match 
establish a link, while, in order to keep the total number of 
links under control, the match maker removes its own link 
towards the match (in case of it being a direct neighbor) or 
towards the neighbor that links to the match (in case of a 
two-hub neighbor).  

The motivation behind Spyglass was to overcome the very 
strict locality principle of ODC without losing the beneficial 
properties of the original algorithm. However, looking at 
second-hop neighbors is an operation of exponential cost, so 
some kind of optimization – such as caching – is inevitable.  
We decided to maintain a cache about the vicinity’s topology, 
called Neighbor Cache (NC).  
In Spyglass, just like in ODC, the communication is message 
based. Messages are used for the clustering itself (for example 
match search request, link establishment) and also for the 
purpose of gathering information about neighbors for the 
Neighbor Cache. 

When a NC is available at the match maker, containing the 
neighbors of its neighbors, the match maker can use this data 
structure for finding a suitable match for the initiator without 
needing to send a single message to its neighbors.  

III. TOPOLOGY CACHING STRATEGIES 

In [16] we showed that caching the overlay topology is an 
efficient method for reducing the communication overhead, i.e. 
the number of administrative messages sent between nodes, 
when the topology of the network is quasi-static.  
In this paper we tackle with cache handling strategies for 
networks where the topology keeps changing from time to 
time, including highly dynamic topologies such as mobile or 
ad-hoc networks.  
Building or rebuilding the neighbor cache from scratch 
requires a vast amount of communication messages, so the 
cache maintenance strategy, defining when and what to 
build/update, may have a significantly influence on the number 
of messages sent. Having a full neighbor cache at all nodes 
may also be unnecessary, as, only nodes playing the match 
maker role utilize this data structure. 
On the other hand, the validity and freshness of the cached 
content is also of high importance, as the NC should support 
and not hinder the formation of clusters. To keep the cache up-
to-date is especially vital when the underlying topology 
changes, introducing new potential matches or removing 
existing ones. 
Ideally, a good tradeoff between the communication overhead 
and the freshness of the cache should be found. 
The cache management should, in our point of view, include 
the following aspects: (i) Cache Building Strategy: describing 
when to establish the local Neighbor Cache, (ii) Cache Update 
Strategy: defining when to rebuild or refresh the contents of 
the cache and/or check its validity, (iii) Fallback Policy: what 
to do when no match is found in the neighbor cache or the 
cache-based result is corrupt. 

A. General Directions 

We considered the following caching directions: 
• No caching. Reference algorithm, no cache is used. 
• Static pre-caching. The cache is built up for all nodes 

before the simulation starts. Reference algorithm, helps in 
separating caching overhead from the actual clustering 
traffic. 

• On demand cache establishment (and its variants). The 
cache is built ‘on demand’, that is, when the node becomes 
match maker. The main advantage of this method is that it 
is concentrating the efforts on nodes where the cache is 
actually required. Variants include:  
o Conditional on demand caching, where the initiator 

or the neighborhood needs to meet a certain criterion 
in order to establish the cache, and  

o Random on demand caching, where the choice 
whether or not to build the cache when the request 
arrives is made randomly. 

While at first site cache building and cache update seems to be 
distinct, moreover, fairly independent aspects, some analysis 
leads to the conclusion that the longer the system’s life time 
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the more important the refresh strategy becomes, and basically, 
with time, the refresh strategy overtakes the role of cache 

establishment. Hence, as the original cache establishment 
method will be suppressed by the cache update strategy on the 
long term anyway, we think it is sufficiently justified to use the 
same strategy for cache establishment as for cache update. 

B. Cache Rebuild Strategies 

We examined the following build and rebuild strategies (all of 
which were originally designed as update directions for the on-
demand cache establishment): 
• Random (re)build. When becoming match maker, the 

node makes a random choice whether or not to 
build/refresh the cache. When “no refresh” is decided, the 
existing cache - if any - is used for answering the initiator’s 
request. 

• Size-sensitive random (re)build. Variant of the previous 
one, the random choice depends on the size of the cache. 
The consideration behind this method is that in denser parts 
of the network the chance of experiencing a topology 
change is higher than in rare segments (supposing that the 
probability of a change is independent and is the same in 
all nodes). This approach models the density of the 
network segment with the size of the neighbor cache.  

• Success based (re)build. The match maker maintains a 
(sliding window) history about the success of the last n 
queries; and, when the success rate goes below a limit, the 
neighbor cache gets rebuilt. This strategy was designed to 
better accommodate to the “real” local needs of the 
neighboring initiators: as long as the cache works 
successfully, no communication should be wasted on 
updates.  

• Change based (re)build. The cache gets rebuilt when the 
match maker senses a high enough change in its 
environment (direct neighbors). Optimally, if a node could 
observe all changes at no cost, this information could lead 
to mathematically optimal update strategies. In case of 
change based refresh, instead of truly observing all changes 
of the two-hop neighborhood, we approximate that with 
observing the direct neighbors only (which can be done 
without cost, by watching the channels themselves).  

• Type-sensitive change based (re)build. A variant of 
change based refresh, when, as the demand arrives, not 
only the amount of the observed change is considered for 
the decision, but also its class (color): only such change 
classes matter that match with the request. This way, it is 
possible to exclude the effect of practically irrelevant 
changes from the decision. 

C. Fallback Strategies 

As for fallback strategies, two possibilities were considered. 
• Fallback when no cache. The algorithm falls back to the 

original excessive (message based) lookup only when there 
is no cache available at the node. Whenever a cache is 
present - may it be up-to-date or very old - the cache based 
answer will be used in answering the initiator’s query. 

• Fallback when lookup unsuccessful. Any time when a 
serving a query is unsuccessful from the cache (no match is 

found), the algorithm falls back to the original excessive 
lookup. Please note that this strategy neutralizes the effects 
of a possibly poor cache refresh, while on the other hand, it 
also wastes a large amount of communication messages 
when the lookup is unsuccessful due to topologic causes 
(e.g. there is really no match in the neighborhood). Even 
worse, the excessive overhead may get accumulated in the 
effected network part, occupying the communication 
channels repeatedly and hindering the real traffic. That is 
why this fallback strategy is used for comparison purposes 
only in our analysis. 

IV. CLUSTERING BASED LOAD BALANCING 

Load balancing task is a common application area of 
clustering. We use a model where a load balancing problem 
generates the demand for the clustering.  
The model is the following.  
• The overlay network consists of colored nodes and links 

between them.  
• Each node is able to process only those jobs that match its 

color.  
• Links are not colored.  
• Jobs enter the overlay network via colored workload 

generators, each statically attached to a matching-color 
node.  

• Workload generators generate jobs and put them on the 
queue of the attached node. The expected value of the 
generation rate is constant. 

• Nodes consume jobs from their local queue.  
• When a node feels to be overloaded, it shares the local 

workload with its matching neighbors by transferring jobs 
from the local queue to them over a link. The sharing 
decision is also bound to specific conditions on the remote 
queue length (the acceptor cannot be overloaded) and the 
capacity of the link.  

• When a node cannot find enough appropriate neighbor to 
share the load with, a demand for clustering occurs.  

Hence, clustering is aimed to reorganize the overlay topology 
and to create a new link to a suitable node on demand. 
 
Note that the load balancing task introduces certain changes in 
the requirements towards the clustering algorithm. When 
talking about a single clustering algorithm, the resulting cluster 
size is the most important goodness metrics. However, when 
clustering serves load balancing purposes, the need for the 
cluster size is limited. We do not need to generate the possible 
largest clusters, instead, just large enough clusters for the local 
excess workload (the creation of clusters larger than that 
would not bring further advantages but would cost 
communication messages). On the other hand, the clustering 
speed becomes more vital for load balancing: the initiator 
needs the match urgently. Given that the job generation rate is 
constant, every unsuccessful search for a match just worsens 
the initiator’s situation. 
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V. EVALUATION 

In this chapter we present our simulation results regarding the 
cache maintenance methods, with a focus on the 
communication overhead and the clustering / load balancing 
performance. After describing the test setting and the 
evaluation criteria, we elaborate on the details of the 
simulation results of the various algorithms and network 
change characteristics. 

A. Test Setting 

1) Simulation Setting 

Measurements were conducted on a showcase network 
consisting of 10,000 nodes and 25,125 links initially, with 
random graph topology [17], and workload generators 
attached to 5% of the nodes. Nodes belong to 10 different 
classes (colors), and load balancing swings into action once 
the local queue length exceeds the static limit of 5 unprocessed 
jobs. The choice of network size and density was motivated by 
our previous work on static topologies [15], where this 
network size was found to be convenient for demonstrating the 
scalability of the emergent algorithms as well as for pointing 
out the differences between directions. 

The simulation was limited to 500 rounds. Each workload 
generator had a static limit of generating 500 jobs at most. The 
generation rate changes between 1 and 10 jobs per round, as is 
constant for the life time of the generator. 

We simulated the same scenario (excess workload triggers 
self-organization) for all examined caching strategies along 
two network dynamics profiles. 

2) Network Dynamics 

The dynamics of the network was modeled by three factors: (i) 
Node Disappearance: nodes disappear from time to time. (ii) 
Node Appearance: new nodes keep appearing in each round. 
(iii) Node Movement: nodes change their location a bit in each 
round, resulting in new physical neighborhood relationships.  
We used a physical proximity model for generating the initial 
overlay topology. Nodes were distributed randomly over a 
geographic area of 1000×1000 m. Nodes within a visibility 
distance (10m) ‘see’ each other, i.e. are connected by a link. 
Links generated by the self-organization process (overlay 
links) may exceed this visibility limit as long as the original 
initiator and match maker originating the link remain visible 
for each other. Node mobility was modeled with the random 
movement mobility pattern: a step into a randomly selected 
direction with the default speed. After mobility, when two 
nodes that used to see each other are now out of range, we 
took a worst-case view by removing all overlay links that 
originated from the two node’s former neighborhood. This is a 
pessimistic view, as the overlay links in practice would not 
need to go down as long as alternative routes exist between 
them. However, we believe that a worst-case assumption is 
better to be used during evaluation than a too optimistic 
assumption. 
Node appearance was modeled in form of creating new nodes 
at random locations. Node disappearance is modeled in form 

of removing randomly selected nodes from the current 
population (i.e. the properties of the node, such as age, 
connectedness or location, did not play a role when making the 
selection). 
We defined two essentially different network change profiles. 
• Slow changing static sized network. In each 50 steps 

long window 10% of the nodes disappear, 10% new nodes 
appear, and 50% of the nodes move with a speed of 
1 m/movement. 

• Fast changing static sized network. In each 10 steps long 
window 10% of the nodes disappear, 10% new nodes 
appear, and 50% of the nodes move with speed of 
3 m/movement. 

In both profiles, the size of the network remains quasi static 
(the ratio of disappearance equals to the ratio of new node 
generation), hence the network itself will neither expand nor 
shrink.  

3) Examined Strategies 

The following cache strategies were examined. 
• No Cache. No cache is used. 
• On Demand Cache. Cache is established when the node 

becomes match maker. Cache is rebuilt when the request 
cannot be served from the current cache. 

• On Demand Cache with PreCaching. All nodes are 
equipped with a cache at startup (at no cost). The cache is 
updated when the node becomes match maker and cannot 
serve the request from the current cache. 

• Random Cache. When the node becomes match maker, a 
random decision is taken whether to build/update the 
cache. No fallback is used when the query is unsuccessful. 

• Size Sensitive Random cache. The same as Random, but 
the probability of update is proportional to the number of 
direct neighbors. 

• SuccessBased cache. Cache is built/rebuilt when 3 out of 
the last 4 queries were unsuccessful. 

• ChangeBased cache. Cache is built/rebuilt when at least 
10% of the neighbors changes. 

• TypeSensitive ChangeBased Cache. Changes of the 
neighboring nodes are saved into a local registry. For each 
query, the change registry is evaluated. When at least 10% 
of the matching-color nodes are affected by the change, the 
cache is rebuilt, and the change history gets cleared. 

4) Simulation Environment 

The simulation framework was written in Java 6 SE, and the 
experiments took place on a desktop PC with 2GHz dual core 
processor and 2 GByte RAM. 

B. Evaluation Criteria 

The following metrics were applied for evaluation: 
• Message count depicts the amount of communication 
overhead generated by the algorithm variant. The value 
includes self-organization and cache building / rebuilding 
related messages only. Small message counts are preferred 
over high message counts. 

• Number of clustered nodes at the end of the simulation. 
Intuitively, the larger this number is the better the self-
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organization performs. However, the demand for clusters is 
constrained by the amount of workload, so the cluster size 
cannot grow indefinitely.  

• The unprocessed job curve drafts the processing dynamics 
of the system by plotting the number of injected but 
unprocessed jobs versus time. As the simulation includes a 
limited number of jobs, with time, the curve reaches zero 
(i.e. all jobs are processed). The area under the curve is 
also a good estimate for the goodness of the algorithm, 
smaller area suggests better performance (smaller waiting 
times). The tail of the curve is often very long. This may 
mean to things: either the local job generation rate is one 
(meaning that the node will process all jobs itself because 
of never getting overloaded); or that there are nodes in the 
system unable to establish clusters so they are left to 
process all incoming jobs on their own. That is why, when 
comparing curves, we do not necessarily locate the point 
when the curve reaches zero, instead, the point where the 
curve reaches a small but non-zero number. 

• The number of overloaded nodes depicts the dynamics of 
the demand for clustering. This metrics can be used for two 
purposes: (i) to understand the characteristics of the 
demand that triggers clustering; and (ii) to understand how 
the demand is silenced by the clustering and load balancing 
algorithm. 

C. Results 

1) Communication Overhead 

Figure 1 summarizes the measured total message count for 
each examined caching strategy along the slow and fast 
network dynamics profiles. In all cases, cache based directions 
significantly reduce the communication overhead, sometimes 
even by a magnitude, compared to the baseline Spyglass 
algorithm ‘No Cache’. 
From the examined strategies, blind On Demand caching 
produces the highest amount of messages. It is not only high 
compared to the conditionally caching strategies, but also in 
means of the reference algorithm No Cache, suggesting that a 
large portion of the nodes becomes match maker at least once 
in its lifetime (hence a demand for cache establishment 
occurs). In the variant when PreCaching is in place (OD with 
PreCaching), messages serve cache update purposes only.  
Random caching, either size sensitive or pure random, produce 
around half as many messages as On Demand does. Size 
sensitive update, as its name suggests, tends to trigger cache 
updates more frequently in denser parts of the network, 
resulting in somewhat more messages then the pure random 
variant.  
The success and change based strategies are surprisingly 
economic in terms of messages, the Type Sensitive Change 
Based strategy even beats OD with PreCaching in case of fast 
network change. 
The effect of the network change profile (fast or slow) varies 
between strategies. One unexpected result is that for No Cache 
the fast network change profile produces significantly (31%) 
less messages than the slow network change. The explanation 
is that fast network change seems to be a natural booster for 

finding appropriate partner nodes, as the potential partner 
nodes, through their natural movements, have a chance of 
getting into the vicinity by themselves. That’s why, there’s less 
need for looking at two-hop neighbors, which is the message-
consuming step.  
 

 10 000

 20 000

 30 000

 40 000

 50 000

 60 000

 70 000

 80 000

N
o

 C
a

c
h

e

O
n

 D
e

m
a

n
d

O
D

 w
it

h

P
re

C
a

c
h

in
g

R
a

n
d

o
m

S
iz

e
S
e

n
si

ti
v
e

R
a

n
d

o
m

S
u

c
c
e

ss
B

a
se

d

C
h

a
n

g
e

B
a

se
d

T
y
p

e
S
e

n
si

ti
v
e

C
h

a
n

g
e

Slow Change Fast Change

 
Figure 1: Message count with various network dynamics and caching 
strategies. The original Spyglass algorithm (No Cache) is easily beaten by all 
cache based strategies. 

 
The same boosting effect of the fast network change can be 
observed in several other strategies, in various amounts. The 
only exception is the size sensitive random cache, where fast 
changes in the dense regions of the area cause extensive cache 
updates, producing somewhat more messages than in case of 
the slow network change profile. 

2) Clustered Nodes 

Figure 2 shows the number of clustered nodes in the last round 
for the examined caching startegies along the two network 
dynamics profiles.  
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Figure 2: Number of clustered nodes at different network dynamics and 
caching approaches. While the difference is visible in case of slow changes, 
in fast changing networks none of the algorithms create clearly large clusters. 

 
The network dynamics seems to clearly and consistently effect 
the number of clustered nodes. With fast network change, the 
total number of networked nodes is significantly less in all 
cases than with slow changes. Atfter detailed analysis of the 
logs, we identified two reasons for that. (i) Fast network 
changefacilitates natural clustering by moving potential 
neighbors into the vicinity for some little time and then moving 
it away; hence it produces smaller but more dynamic clusters 
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(i.e. the neighbors, after getting a share in the work, move 
away). With slow network change, neighbors don’t move away 
so easily, get overleaded by the shared workload, hence, the 
initiator needs to expand the cluster. (ii) The pessimistic 
handling of overlay links also influences the result. With fast 
network change, a large amount of overlay links get removed 
in each step, shrinking the clusters.  

3) Unprocessed Job Curve 

When observing the unprocessed job curve [Figure 3] for the 
smart caching strategies and network change profiles, it is 
clear again that each of the algorithms perform better in the 
fast changing case. This, again, confirms the natural boosting 
property of the network change, which, by changing the 
overlay neighbors more frequently, tends to guarantee that 
neighbors are not overloaded, hence can be used for workload 
sharing. Under heavier overall load, where a higher percentage 
of nodes would be overloaded, the effect of this beneficial 
property would weaken. 
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Figure 3: Unprocessed job curve at various change dynamics and caching 
approaches. Line style denotes the dynamics; line color shows the algorithm 
type. All algorithm variants perform better in the fast changing network. 

 
Change based directions (ChangeBased, TypeSensitive 
Change) and the Success based strategy are among the top 
performers along both network change profiles.  
Random caching seems to touch both extremities: it is the least 
effective in the slow scenario and among the bests in the fast 
changing one.  
For comparison, Figure 4 shows the unprocessed job curve of 
the non-smart directions, i.e. No cache, and blind On Demand 
without and with pre-caching. The fast changing scenario also 
brings better results here. The shape of the pre-cached OD is 
good, however, the shape of the other curves, as well as the 
area under the curve, suggest that OD and No Cache provides 
weaker performance than smart strategies could bring; 
meaning longer waiting times and smaller throughput. This can 
be explained by the too simple fallback strategy used in these 
strategies: the cache is only updated when no match is found in 
the existing data base. In practice, this may result in returning 
useless matches to the initiator (matches that are already 
neighbors for it, or are out of range by now), wasting the time. 
The other reason is that updating the cache (or querying all 

neighbors) takes time, delaying the answer. In case the query 
cannot be served anyway, i.e. there’s no match in the vicinity, 
these extra rounds get wasted again and again. 
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Figure 4: Unprocessed job curve without cache update. 

 

4) Number of Overloaded Nodes 

Figure 5 displays the number of unprocessed jobs for the slow 
changing network profile. Random cache produces the highest 
peak at 85 overloaded nodes at a time, meaning that this 
strategy may easily be the slowest to respond to the occurring 
demand. No Cache, SizeSensitive Random, and ChangeBased 
produce the lowest peaks (66-67 overloaded nodes), 
suggesting that these strategies will not hinder the algorithm in 
reacting with speed. 
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Figure 5: Number of overloaded nodes with the slow network change profile. 
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Figure 6: Number of overloaded nodes with the fast network change profile. 
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The same curves for the fast network change profile can be 
seen in Figure 6. Not only peaks are smaller but also the 
number of overloaded nodes decreases more rapidly, due to 
the more efficient workload sharing. 
 

5) Result Summary 

The performance of the examined caching strategies tends to 
be not as conclusive as one could expect; each strategy has its 
stronger and weaker points. Putting all together, we created a 
ranking in each evaluation category. Rank 1 denotes the best 
performance and Rank 8 means the weakest. Strategies with 
similar performance may share the same rank position. Table 1 
shows the ranks and also the total ‘rank’ earned with uniform 
weighting. 
 

Strategy 
Job  

Curve 

Reaction  

Time 

Comm.  

Over- 

head 

Cluste-

ring 
SUM 

No Cache 4 2 8 2 16 

On Demand 8 5 7 1 21 

OD with 

PreCaching 1 4 2 1 8 

Random 6 4 4 1 15 

SizeSensitive 

Random 2 6 4 1 13 

SuccessBased 4 5 3 1 13 

ChangeBased 2 3 1 1 7 

TypeSensitive 

Change 2 4 1 1 8 

 
Table 1: Rank of algorithms per evaluation criteria. Results summarize the 
outcomes of the two network change profiles with equal weight. 

 
When considering all criteria with equal weights, the top 
performers are the change based caching strategies, 
ChangeBased and TypeSenistive ChangeBased caching. (The 
other favorable algorithm, OnDemand with PreCache is just a 
theoretical toy, as the existence of a pre-built topology cache is 
not a realistic assumption in ad-hoc networks.) 
However, the order of algorithms may change if the weights of 
the evaluation criteria are not equal, if a certain network 
change characteristics should be considered instead of the 
mixture of the two, or if some assumption made in the 
algorithms cannot be implemented in a specific problem case 
(e.g. monitoring the existence of the links to the neighbors at 
no cost). In each specific problem case, a tradeoff between 
communication overhead and the actual performance should 
be found. 

VI. SUMMARY 

In this paper we examined various directions for a topology 
cache aided self-organization and load balancing algorithm. 
The topology cache aims to reduce the communication 
overhead of looking up matching nodes in the vicinity for load 
balancing. We defined six complex cache building and 
rebuilding strategies (in order to follow the changes in the 
network) and two reference algorithms; and evaluated each of 

them along a slow and a fast network changing profile through 
simulation. Experiments pointed out that fast topology change 
naturally stimulates self-organization, i.e. tends to bring 
matching, and not overloaded nodes into the direct 
neighborhood at no cost, resulting in possibly smaller clusters 
but better overall load-balancing and job processing curves. In 
case of a moderate network change profile, the difference 
between caching strategies was more visibe. All examined 
smart caching strategies beat the reference algorithms in terms 
of overall performance: (i) the communication overhead was 
significantly smaller, sometimes even by a magnitude, (ii) no 
significant difference was observed in the size of the clusters 
produced, , and (iii) the resulting load balancing dynamics, 
after a short initial delay, tended to outperform the non-cached 
version due to the O(1) cost of a cache lookup instead of the 
larger cost of a real neighbor lookup. The winner of the 
examined caching algorithms is a change based approach, 
rebuilding the cache only if the amount of approximated 
change in the vicinity exceeds a certain limit; where we 
approximate the total change in the two-hop neighbor-hood by 
the observable change amount among direct neighbors.  
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