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Abstract—This paper investigates the performance of a Low-

Density Parity Check codes (LDPC)-coded system transmitted 

over A WGN channels using octal partial response Continuous 

Phase Modulation (CPM). The system provides an attractive 

option for spectral efficient communications systems. The CPM 

modulator can be decomposed into a ring continuous-phase 

encoder (CPE) followed by a memoryless modulator (MM), 

where the CPE is as the same algebra as convolutional code. With 

a pragmatic approach, The LDPC codes are designed through 

the use of the proposed analysis technique based on extrinsic 

information transfer (EXIT) charts. We propose a belief 

propagation (BP)-based iterative decoding algorithm at the 

receiver. The hybrid design combined with iterative decoding 

yield very good performances compare with the conventional 

communication schemes. The results show the considerable 

superiority of the iterative algorithm. 

Index Terms-component, LDPC codes, CPM, iterative 

decoding, extrinsic information transfer (EXIT) charts. 

I.  INTRODUCTION 

LOW-density parity-check (LDPC) codes have attracted 
considerable attention in the coding community because they 
can achieve near-capacity performance with iterative message-
passing decoding and sufficiently long block sizes. For 
example, in [1], Chung et al. presented a block length 107 (ten 
million bits) rate-1/2 LDPC code that achieves reliable 
performance—a 10-6 bit error rate (BER)—on an additive 
white Gaussian noise (AWGN) channel with a signal-to-noise 

ratio (SNR) 0/ NEb  within 0.04 dB of the Shannon limit. 

Continuous phase modulation (CPM) is a class of phase 
modulated signals with constant envelope and spectral 
occupancy that can be tailored to any available bandwidth. Due 
to its good spectral properties and ability to allow nonlinear 
amplifiers to be operated in saturation, continuous phase 
modulation (CPM) is widely used on radio channels. CPM by 
itself is a form of coded modulation due to the memory created 
by the continuous phase of the signal and possibly by the 
additional memory introduced by partial response signaling (a 
scheme used here). Rimoldi in [2] showed that a CPM can be 
decomposed into a continuous phase encoder (CPE) and a 
memoryless modulator (MM). The CPE operates over a ring of 
integers, which are not necessarily binary, producing codeword 
sequences that are mapped onto waveforms by the MM, 
creating a continuous phase signal. Once the memory of CPM 

is made explicit, it is possible to design a coded CPM system 
[3, 6, 7] by combining the LDPC code and the CPE into a 
single joint LDPC-convolutional code (Table I). Systems 
designed in this manner typically have larger Euclidean 
distances and thus perform better than systems designed using 
the traditional approach.  

The rest of the paper is organized as follows. Section II 
describes the model of LDPCC-CPM system. Section III we 
introduce the EXIT chart-based analysis of the iterative 
algorithm. Section IV introduces the proposal of CPM. 
Simulations are discussed in section V. Finally, we conclude 
the paper in section VI. 

II. SYSTEM DESCRIPTION  

As shown in [2], any CPM scheme can be divided into a 
continuous phase encoder (CPE) and a memoryless modulator 
(MM). Using the memorial and recursive character of CPE, 
combined with LDPC code and interleaver outside, the model 
of LDPCC-CPM system is founded.  
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Figure 1.  System model: receiver side 

The transmitter scheme, shown in Fig. 1, consists of a 
simple concatenation of an outer LDPC encoder and an inner 
CPM modulator, which is directly connected to the channel. 
Without loss of generality, we consider the discrete-time 
lowpass equivalent model of the communication system. A 
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binary sequence{ }ix at the input of the LDPC encoder is coded 

into a binary sequence { }
jy (representing a codeword). The 

binary symbols{ }
jy are then coded and mapped to high-order 

modulated symbols{ }kc .  

TABLE I.   

PREVIOUS WORK  ON CORELATIVE SCHEME 

Code ID Rate Reference 

(2048, 3, 6) LDPC-CC 1/2 [23] 

(100000, 3, 6) LDPC-CC 1/2 [24] 

(256, 3, 8) LDPC-CC 5/6 [22] 

Extended BCH CPM 1/2 [21] 

LDPC-CPM(L=2) 1/2 [18] 

 

The receiver is depicted in Fig. 2. At the input of the 
receiver, the sequence of channel observations is denoted 

as { }kr . For simplicity, we are considering one sample per 

coded symbol. If two or more samples per symbols are 
necessary, such as to allow for a time varying channel, the 
proposed derivation can be extended by considering a suitable 
vector notation.  

The receiver is partitioned into two blocks, denoted as 

block A and block B . Block A comprises the following 
subblocks. 

• A SISO block matched to the CPM and the channel, 
and referred to as CPM-SISO block. This block 
computes the a posteriori reliabilities of the binary 

symbols{ }
jy at the input of the receiver on the basis of 

the channel observations and the relevant a priori 
reliabilities (coming from the block labeled “LDPC 
VND” and described below). 

• An LDPC variable node detector (VND), associated 
with the variable nodes in the code bipartite graph. 
This block computes the reliability of each binary 

symbol jy based on the reliabilities from the CPM-

SISO block and the information received from 

blockB and based on the code constraints. 

Block B includes the LDPC check node detector (CND), 
associated with the check nodes in the code bipartite graph. 
The LDPC CND computes the reliability of each binary 

symbol jy based on the a priori reliabilities received from the 

LDPC VND and based on the LDPC code constraints. The 

reliabilities at the output of block A are computed as follows. 

1) The VND processes the messages coming from block B  
by performing, at each variable node, a sum of all the 

incoming messages excluding the one coming from the 

CPM-SISO block. The obtained messages are passed to 

the CPM-SISO block as a priori input. 

2) The CPM -SISO block computes, based on the 

observations from the channel and the a priori 

information, reliability values according to its internal 

algorithm. 

3) Finally, the VND computes the messages to be sent to 

block B  according to the standard LDPC decoding 

algorithm, but using, as a priori input, the messages from 

the CPM -SISO decoder.  
It is important to note that, in all the above computations, only 
the so-called extrinsic information is exchanged between the 
component blocks [8], [9]. The overall decoding algorithm at 
the receiver can be described as follows. 

• As initialization step, the a priori reliabilities of the 

symbols{ }
jy at the input of block A (from block B ) 

correspond to complete uncertainty (a value equal to 0 
in the LL domain). 

• Decoding starts from block A , which computes output 
reliabilities and sends them to block B . At the first 
step, since all the messages coming from the CND are 

0, the output of block A  simply consists of the output 
of the CPM-SISO. 

• The LDPC CND (i.e., block B ), thus, computes the 
extrinsic information to be passed to block A . 

• The algorithm iterates from the second step until a 
valid LDPC codeword is obtained or a maximum 

number of iN iteration have been performed. 

• In the case a valid LDPC codeword is not obtained, an 
additional standard LDPC decoding algorithm is 
applied based on the last extrinsic information at the 
input of LDPC VND block. This corresponds to 
iterating information only between LDPC VND and 
LDPC CND. The maximum number of standard LDPC 

decoding iterations is LDPCN  . 

• At the end of the process, the complete (not extrinsic) 
reliabilities are computed by the LDPC VND and 
delivered to the destination. 

III. EXIT CHARTS AND ITERATIVE DECODING 

A. Degree Distributions 

The degree distributions of an LDPC code are polynomials 

denoted as )(xλ and )(xρ , whose coefficients 

{ }iλ and { }
jρ correspond to the fraction of branches in the 

graph connected to degree- variable nodes and degree- check 

nodes, respectively, [5]. The polynomial )(xρ is defined as the 

check node degree distribution and )(xλ is defined as the 

variable node degree distribution. The coefficients 

{ }
jρ and{ }iλ must satisfy the following constraints [5]: 
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Moreover, the following linear constraint must be satisfied 
for a degree distribution in order to be compatible with a given 

code rateR [5]: 
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B. EXIT Chart-Based Analysis of the Receiver Performance 

For each block shown in Fig. 2, it is possible to draw the 
corresponding EXIT curve [10], [11]. In Fig. 2, the MI at the 

output of each block A and B is denoted as AI and BI , 

respectively; within block , the MI at the input and output of 

the CPM-SISO subblock are labeled
VI and SI , respectively. 

The decoding process can then be represented as a recursive 
update of the MI in the EXIT charts. If the MI converges to 1, 
it is possible to predict that the BER will converge to zero. 

At this point, we are interested in the computation of the 

EXIT charts of blocks A andB . Block is simply characterized 
by the EXIT curve of the LDPC CND, while the EXIT curve of 

block A is obtained by combining the EXIT curve of the LDPC 
VND with that of the CPM-SISO block. In [12], some 
formulas are given for the computation of LDPC VND and 
LDPC CND EXIT curves on the basis of a Gaussian 
assumption for the exchanged messages, which provides great 
simplification and good accuracy. Since, in general, the 
analytical computation of the CPM-SISO EXIT curve is a 
difficult task, approximate computation can be based on Monte 
Carlo simulations [12]. 

In the following, approximate formulas are given for the 

EXIT curves AI  (of block A  ) and BI (of blockB ) [12]: 
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The MI SI at the output of the CPM-SISO block is a 

function of the MI VI of the messages passed by the VND to 

the CPM-SISO block and corresponds to the EXIT function of 

the CPM-SISO. The MI VI of the messages passed by the 

LDPC VND to the CPM-SISO block can be approximately 
computed as follows [12]: 

∑ −=
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C. Optimizing the EXIT Charts 

In [5], it is shown that by “eye fitting” the two EXIT 

curves )(II A  and )(
1
IIB

−
 by varying the degree distributions 

))(),(( xx ρλ , a significant system performance improvement 

can be obtained. Since the EXIT curves of VND and CND, 
relative to the most powerful known LDPC codes for 
memoryless channels, are very similar at “pinch-off”, i.e., 
when EXIT curves touch, and considering the good results 
obtained in [12], at a first glance fitting the EXIT curves seems 
a good optimization strategy. However, if only low degree 
nodes are allowed, this similarity of curves becomes less 
noticeable and usually “low degree only” distributions are 
desirable in order to keep the LDPC code parity-check matrix 
as sparse as possible [4], [5]. Moreover, it is important to note 
that, given a particular signal-to-ratio (SNR), convergence of 
the decoding process can be obtained if the tunnel between the 
two curves is open. Hence, our actual goal, while performing 
optimization, is to keep the tunnel open. Our optimization 
algorithm is based on a simple random walk in the degree 
distribution parametric space. Before describing how this 
algorithm works, we first provide the reader with some useful 
considerations and definitions. 

Consider, first, two couples of EXIT curves for blocks A  

and B , denoted as (.))(.)(
1

,1,1

−
BA II and (.))(.)(

1

,2,2

−
BA II , 

respectively. It can be easily verified that if 

)1,0()()(
1

,2,1 ∈∀≥ −
IIIII AA                               

)1,0()()(
1

,2

1

,1 ∈∀≥ −−
IIIII BB                         (7) 

i.e., AI ,1 is higher than AI ,2  and
1

,1

−
BI  is lower than

1

,2

−
BI , 

then the convergence of the decoding process for the system 

relative to the EXIT curves (.))(.)(
1

,1,1

−
BA II  will not be 

slower than the convergence of the system relative to the EXIT 

curves (.))(.)(
1

,2,2

−
BA II .  

It should be observed that the two EXIT curves touch at 

point )1,1( —a sufficient condition for this is the absence of 

degree-1 variable nodes in the code, as it can be easily seen by 

imposing 01 =λ  in (3) and letting 0→BI . The iterative 

decoding algorithm for a system characterized by the EXIT 

curves (.))(.),(
1−

BA II cannot converge if there exists a value 

*I , 10 * << I , such that )()( *1* IIII BA

−< , i.e., the tunnel 

is closed. We then need to define a functional representative of 
the tunnel closure: the more the tunnel is closed, the lower this 
functional must be. A possible choice is the following: 
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where we have explicitly indicated the dependence of the 
functional on the degree distributions. Since, as previously 
observed, the EXIT curves touch at (1,1), this functional cannot 
be positive. Moreover, this functional depends also on the 
particular channel as well as on the CPM-SISO block. As 
previously observed, it is reasonable to assume that increasing 

the SNR raises the EXIT curve of block A  , while decreasing 
the SNR lowers it. In other words, if the tunnel between the 
two EXIT curves is at pinch-off, a small SNR increment should 
be sufficient to open it. 

The design parametric space is given by the node degree 

distributions { }
jρ and{ }iλ  . According to (1) and (2), three 

parameters are linearly dependent on the others. Hence, one 

has to choose a parameter from the set{ }iλ  , a parameter from 

the set{ }
jρ  , and an additional parameter from either{ }iλ  or 

{ }
jρ . The chosen parameters have then to be expressed as 

functions of the remaining free parameters. There is no 

constraint on the numbers of elements of the sets { }iλ  and 

{ }
jρ , provided that these sets are not empty, contain at least 

four elements and are finite. 

We now describe the proposed optimization algorithm. We 
start with given valid degree distributions associated to a given 
code rate, according to (2), and determined by a tuple of free 

parameters. If the tunnel is not closed, i.e., 0),( =ρλf  , we 

decrease the SNR until the tunnel closes and 0),( <ρλf  . 

New tuples of free parameters are then obtained, by repeatedly 
adding to the previous tuple a Gaussian increment until all 
inequalities in (1) are satisfied. The mean of the Gaussian 
increment is zero and the standard deviation is used to “tune” 
the optimization algorithm. From the new tuple, we 

evaluate )(xλ  and )(xρ  and, consequently, the 

value ),( ρλf  : if this value is larger than the previous one, 

we substitute the previous tuple with the new one. If the tunnel 
opens, the SNR is decreased again, and previous steps are 
repeated. The algorithm stops when a specific requirement is 
met, such as, for example, the obtained code ensemble 
corresponds to an EXIT chart with an open (not closed) tunnel 
for a desired SNR, or a maximum number of steps (in the 
random walk) is reached. The steps of the proposed 

optimization algorithm are summarized in Table Ⅱ  As a 
possible improvement for the optimization algorithm, one can 
diminish the step value, i.e., the standard deviation of the 
Gaussian increment vector, after a given number of 
unsuccessful trials. Unlike the EXIT curve fitting optimization 
algorithm in [12] and [13], the proposed technique offers the 
advantage of being effective also for small sets of possible 
node degrees. 

 

 

TABLE II.   

ALGORITHM: BASIC STEPS 

Start Initialize )(xλ and )(xρ and compute ),( ρλf . 

1 While tunnel is open reduce SNR by small 

steps and compute the final value of ),( ρλf . 

2 Find a new ),( '' ρλ compatible with code rate 

at random distance from ),( ρλ . 

3 Compute new ),( '' ρλf ; if not larger than 

previous ),( ρλf goto step 2, 

else ),(),( '' ρλρλ ← . 

4 If stop condition is not reached goto 1 else 

output ),( ρλ and final SNR. 

 

The proposed algorithm basically performs an optimization 
of the convergence threshold, defined as the lowest SNR such 
that the tunnel is open. Within the approximation of the EXIT 
chart-based analysis, the decoding process converges above 
this SNR threshold. The simplicity of the proposed 
optimization algorithm enables a joint optimization of 

both )(xλ  and )(xρ  in the presence of the CPM-SISO block.  

IV. SIMULATION RESULTS AND COMPARISON 

In order to test the validity of the iterative detection 
method, we employed Monte Carlo simulations to evaluate the 
performance of the proposed system over an A WGN channel. 
Then the effect of LDPC code length and iterative number on 
the performance of the system is studied. In simulations, all the 
LDPC codes have lower triangular parity check matrix, and the 
iterative encoding algorithm is adopted and the number of 

iterations is 8. Table Ⅲ and Table Ⅳ shows more details of the 
CPM and LDPCC. In CPM modulator, we employed g(t) with 
pulse length L=3. This scheme will be denote as 3RC. M is 
taken to be 8 in this study since this easily fits the encoder 
structure in addition to the high rate it brings along. The 
modulation index h is arbitrarily fixed at 1/2.  

TABLE III.   

PARAMETERS OF CPM 

Modulation Index H=1/2 

Correlation Length L=3 

Phrase Pulse RC 

TABLE IV.   

PARAMETERS OF LDPC CODES 

Check matrix Code rate Girth Degree distribution 

(192,384) 

(384,768) 

(540,1080) 

(768,1536) 

1/2 8 275.025.0)( xxx +=λ  
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Figure 2.  BER performance of M-ary (M=2,4,8) CPM 

Fig. 3 shows BER for M-ary CPM with 3REC pulse 
respectively. As we see from Fig. 3 BER performance is 
improved with the increasing of M. In order to deliver the 
information reliably, we select M=8, L=3, h=1/2. Theoretic 
analysis and simulation results in A WGN show that the 
8M3RC scheme is a good choice to achieve high-speed 
transmission. 
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Figure 3.  EXIT chart-based analysis of a system with serial concatenation of 
an LDPC code and CPM. (a) EXIT chart of rate 1/2 regular LDPC code 

concatenated with CPM (Eb / N0 = 2:5 dB). (b) EXIT chart of an optimized 

rate 1/2 LDPC code concatenated with CPM (Eb / N0 = 0.8 dB) 

In Fig. 4(a), EXIT charts are shown for a regular rate-1/2 

LDPC code, characterized by 
2)( xx =λ and 

5)( xx =ρ . We 

preliminarily observe that the use of this code, mapped to a 
CPM modulation format, represents a good tradeoff between 
complexity and performance for transmission over an AWGN 
channel. The EXIT curves are computed at 

dBNEb 5.2/ 0 = : the dotted curve is the EXIT curve of 

blockB  (LDPC CND). Note that the SNR does not influence 
the EXIT curve relative to the LDPC CND (the dotted one in 
Fig. 4). It is easy to see that the system is at pinch-off: 

convergence at this and lower values of 0/NEb is not 

possible. The solid curve represents the EXIT curve of the 
LDPC VND: this corresponds to the CPM system, i.e., LDPC 

BICM. It can be immediately seen that at dBNEb 5.2/ 0 =  

the tunnel, relative to a transmission scheme is open. The EXIT 
chart-based analysis then predicts that, for a bit SNR slightly 

lower than dB5.2 , the system does not converge . 

Fig. 4(b) shows the EXIT curves for this optimized code 

ensemble for dBNEb 8.0/ 0 = : the curves correspond to  

block B . It is immediate to recognize that the tunnel is at 
pinch-off. The solid curve in Fig. 4(b) is the EXIT curve of the 
LDPC VND: the tunnel is “heavily” closed, predicting that the 
system with CPM should perform significantly better than the 
single LDPC code without CPM. Note that the convergence 
SNR threshold predicted by the results in Fig. 4(b) is 
around.0.9 dB 
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Figure 4.  BER performance of LDPCC-CPM with various code length 

Fig. 5 shows the BER performance of LDPCC-8M3RC 
scheme with different code length. It is obvious that the BER 
performance is improved substantially by increasing the length 
of LDPC code for fixed code rate. As we see from Fig. 4, a 

BER of 1.45×10-5 is attainable at an 
0/ NEb
 of 2dB using 

code length 1536 bits. Furthermore, the code length is not too 
long to implement with temperate complexity. 
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Figure 5.  BER performance of LDPCC-CPM with various iterations 

Fig. 6 shows the BER performance of LDPCC-8M3RC for 
various iterations with information block length 192 bits and 
code rate 1/2. As we see from Fig. 6, BER descends with the 
increasing number of iteration and tends to be stable. Iterations 
have little influence on performance improvement in the region 
of 0.5-1.0dB, while the BER performance is improved rapidly 

with the increase of the number of iteration when 0/ NEb  is 

higher than 1.0 dB. The gain of iteration is very small after 6 
times iterations. In order to reduce iterative decoding delay and 
complexity of hardware, the number of iteration is set to 8. 
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Figure 6.  Performance of a of LDPC-CPM, LDPC-8PSK and BCH-CPM 

To assess the performance of the proposed LDPC-CPM 
scheme over previous LDPC based systems and CPM based 
system. The proposed system is compared with other schemes, 
where a regular LDPC systematic code of rate R = 1/2 and 
block length K = 1536 is used for the systematic code. As 
shown in Fig. 7, for BER = 10

−6
 the proposed LDPC-8CPM-

3RC scheme is 0.8dB better than extended BCH-coded 8CPM-
3RC system, extended BCH-codes have been shown in [14] to 
be very effective in CPM schemes. Furthermore LDPC-CPM 
scheme exhibit lower “error floor”. 

We have presented an unequal error-protection scheme 
based on LDPC coded CPM. With focus on EXIT of LDPC , 
we have derived an interactive algorithm for symbol detection 
over AWGN channels. Also, we have presented a practical 
coding scheme that can be good performance compare with 
other schemes. From the above-mentioned simulations, we 
easily see that the iterative detection method could effectively 
improve the BER performance in narrow band and low SNR 
environment. We can determine the system parameters, i.e., 
LDPC code length 1536 bits, code rate is 1/2, CPM signal is 
8M3RC with index 1/2, and the iterative number is 8. 

V. CONCLUSION 

CPM is an excellent digital modulation scheme which has 
constant-envelope, and is bandwidth and energy efficient. In 
order to obtain further improvement in energy efficiency, CPM 
can be combined with a LDPC code. Iterative detection based 
on turbo principle is an effective approach to improve the 
performance of LDPCC-CPM system. The main advantage of 
the proposed scheme with respect to the existing superposition-
coded linear modulations consists of the constant-envelope 
signal, so that the system does not rely on the presence of 
expensive amplifiers. It is shown that our proposed systems 
provide significant amount of coding gains over BCH coded 
CPM system. Furthermore, since 8M3RC scheme is selected as 
modulator, our system has also bandwidth efficiency. Thus, our 
system is very suitable for lower power and band limited 
applications such as satellite and mobile radio communications. 
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