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Abstract— We present an educational and research platform 

for analysis and design of cellular automata (CA). The platform 

is intended as an aid to newcomers and interested scholars to this 

field to demystify the complexity associated with understanding 

the structure, behavior, dynamics and evolution of such systems. 

It is also an inspirational tool and engine for education that can 

uncover the immense power and the wide scope of applications 

that CA can encompass. The platform is designed to be extremely 

user friendly and flexible. It is believed to be unique in that it 

allows experimentation in a configurable mode for the CA rule 

space and lattice span design. Finite and bi-infinite lattice 

structures are allowed besides the classical periodic (cyclic) 

boundary conditions. Boundary conditions are comprehensively 

covered whereby the peripheral cells can be varied in a 

neighborhood adjacency mode that allows for a variety of time 

evolution and sampling.  The problem of finite lattice is treated 

by the application of different rules at the boundaries. The entire 

rule space is utilized for the elementary cellular automata. The 

classification of the rule space can be studied in detail. Uniform 

and non-uniform (hybrid) rules can be implemented by simple 

pull down menus or switchable radio buttons. When the study is 

directed towards simulation or cryptology, the complexity and 

random behavior of the cellular automata is tested using 

“Diehard”, the most stringent battery of tests. The results are 

automatically reported and a fail/pass criterion is established. 

 
Index Terms— Cellular Automata, Diehard, Periodic 

Boundary Conditions, Rule Space. 

I. INTRODUCTION 

HIS paper discusses the utilization of cellular automata in 

generating quality pseudo random numbers for use in 

cryptography, A cellular automaton is a decentralized 

computing model that provides an excellent platform for 

performing complex computation with the help of only local 

information. Cellular Automata (CA) is an emerging physical 

and mathematical structure that is extremely simple and 

consists of identical basic memory building blocks that are 

discrete in time and space. The whole structure evolves 

according to a local yet simple transition rule that is capable 

of evolving into an extremely complex and interesting 

structure. It was at first conceived around 1950 by the 

computer architecture inventor “von Neumann” [1] who used 

it to establish the possibility of creating replicating digital 

structures. In the early 1980s, Wolfram [2,16] realized the 

immense potential of the concept and carried out intensive 
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research whereby he managed to rejuvenate the concept and 

soon inspired many others in various fields to research the 

matter extensively. Researchers, scientists and practitioners 

from diverse fields have exploited the CA model of local 

information, decentralized control and universal computation 

for modeling disparate applications [3,8,11,15,18]. The CA 

encompasses wide scope of applications. Representative 

examples can easily span wide fields such as modeling, 

cryptology, gaming, art, music, biology as well as 

computation, to name a few. An exploding field of 

applications of CAs is in information security which is the 

core motivation for the platform design. Cellular Automata 

has been suggested for Pseudo Random Sequence (PRS) 

generation [2,13,14,16] as a new, but characteristically 

different and more powerful alternative to the classical 

Feedback Shift Registers (FSR). Linear FSRs (LFSR), albeit 

simple in structure and design, were proven to have 

comparatively weak statistical features when utilized in the 

PRS generation [4-7]. The weakness in the LFSRs can be 

attributed to the linearity of the exclusive-or function used in 

the feedback network. The task of generating pseudorandom 

sequences that behave like random sequences is practically 

and theoretically impossible. The best approach is to generate 

a PRS so that it behaves like a random sequence for the 

application in hand [7,23]. This entails that the output of such 

a generator be tested to prove that it is indeed satisfactorily 

random. This is another problem that is not yet completely 

resolved [6, 7,23]. Again, theoretically, it cannot be solved. 

This leaves one currently widely accepted route is to subject 

the generated PRS to a well established and broadly 

recognized battery of statistical tests. The effort in this paper 

has culminated in adopting and incorporating the almost 

standard state of the art, the Diehard battery of tests [24].  The 

results of subjecting the outputs of LFSRs to the Diehard suite 

have shown that these generators cannot pass all the tests. On 

the other hand, one-dimensional (1-D) as well as  two-

dimensional (2-D) CAs have been suggested and are now 

beginning to be used to generate PRSs with good statistical 

features in Mont Carlo simulations, communications, 

cryptography and network security, to name a few [2, 8-

11,13,14,16,17]. However, the physical limitations imposed 

on the lattice span of such CAs rendered periodic boundary 

conditions, originally proposed in [2,16] as the pertinent 

solution. The initial configuration will therefore be circular 

and the automaton will evolve cylindrically to the terminal 

time step. Such boundary conditions designs, notwithstanding 

simple, suffer from VLSI implementation constraints as long 
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bus lines, which are VLSI area intensive, are needed for 

hardware realization. Furthermore, the lattice span must be 

long enough to achieve required long periodic cycles and pass 

statistical randomness tests, i.e. two inherently conflicting 

requirements but are both needed. A 1-D CA where one rule 

is implemented throughout the spatiotemporal evolution of the 

CA has shown unique and useful characteristics and has been 

suggested in [2,16] for use in random sequence generation. A 

notable impediment, however, is the input to the boundaries of 

the CA where it is confined to a limited span. Hence, a long 

span will render the CA practically unrealizable, a shorter 

span, on the other hand, results in a shorter cycle length. The 

periodic configuration approach [2,16] partially resolves this 

issue where inputs are needed to feed the two extremities of 

the CA. An alternative technique is to feed the peripheral cells 

with external, uncorrelated inputs. These inputs can either be 

fixed, such as logical “0” or “1” or can be generated separately 

and independently. All these methods feeding fixed boundary 

values running under chaotic rules on uniform 1-D CAs have 

produced much shorter periods than the LFSR and drastically 

failed statistical battery of tests. The research platform 

described in this paper proposes alternative techniques that 

have passed the statistical tests and produced attractive 

parallelism and correlation properties. These will be discussed 

later. The rest of the paper is organized as follows: in the 

Preliminaries section the basic theory of cellular automata is 

presented, the following section will be devoted to the 

description of the CA platform followed by the summary and 

conclusions. 

 

II. THEORETICAL BACKGROUND 

The cells of a 1-D CA are arranged on a linear finite lattice of 

identical cells of length      . Each cell   
  is indexed 

spatially by the variable          and temporally by the 

time variable         and will be equipped with the 

ability to communicate with a number of its neighbors 

including itself and will collectively be referred to as size -

cells neighborhood such that           where    is the 

left radius which is at distance    cells to the left of the center 

cell, where 1 refers to the center cell, and   is the right radius 

which is at distance   cells to the right of the center cell. 

Generally a one dimensional cellular automaton can be 

considered as a sextuple mathematical structure,  
             

      , wherein: 

   is the finite set of states alphabet, from which the 

configurations of    
  cells take their values,   

     . 

      is the span length of the cellular automaton. 

   is the global function that computes transformations 

between sets of configurations,        . 

    is the local rule where     

 is the rule number, and 

    
    . 

    
      is the size of the neighborhood defined by 

         . 

       
               is the seed of the cellular 

automaton. 

It follows that the cellular automaton dynamics consists of 

passing one configuration    to the next      in discrete time 

steps    . It should be pointed out that distant neighbor 

communication falls under the Cellular Neural Networks 

(CNN) research area [12] which is not the subject matter of 

this paper. Each cell will change its state according to a local 

transition rule    where     
          represents the rule 

number in the rule space   
         

 and will take its state 

value from an alphabet              . All cells are 

updated synchronously and the cells are restricted to local 

neighborhood interaction with no predetermined global means 

of communication. For ease of illustration we let the CA 

evolve according to one uniform neighborhood transition 

function and fixed radius   which is a local function (rule)  
    

       where the CA evolves after a certain number 

of time steps T. In this case we have a total of       distinct 

rules. It follows that a 1-D CA is a linear lattice or register 

of       memory cells. Each cell is represented by   
 , where  

            and             that describes the 

content of memory location   at evolution time step  . It can 

be seen that the rule space for the simplest automaton of radius  

    under       will provide   
 
     distinct rules. On 

the other hand making     will increase the rule space to  

  
 
                   distinct rules! An exponential 

increase in the rule space! Therefore, finding a suitable rule 

for PRS application will be a daunting process in itself. In this 

paper we will confine ourselves to a finite binary field     for 

which p   such that each cell will be able to take one of two 

states “0” or “1” from      . This implies the applicability of 

binary Boolean algebra to the design of the rules over      . 
Therefore each cell will communicate with the two 

neighboring cells, one on the left and one on the right. This 

will render the size of the neighborhood           
      . This CA will henceforth be referred to as 

Elementary Cellular Automaton (ECA), a name suggested by 

Wolfram [2,16].  Hence, the total number of 3-tuple 

configurations will be         and can be assigned the 

symbols                         as shown in figure 1. 

 

 
Figure 1 1-D ECA Rule configurations or minterms. 

 

It is obvious that the triplets              are identical to 

and serve the same purpose as the minterms of a 3-variable 

function in digital logic, so is the truth table. Hence the truth 

table for all possible and distinct functions will have        
 columns as depicted in Figure 2. The numbering scheme used 

for the rules as shown in the figure is attributed to Wolfram 

[2,16] and uses the values assigned to the minterms      

        where    is the least significant and    is the most 
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significant digits. This rule number will be denoted by the 

symbol   and mathematically represented by      
  

     as 

shown in figure 2 for the representative rules 0, 1, 30, and 255. 

 

Figure 2, 1-D ECA rules truth table (rule space) 

 

By means of logic minimization techniques such as Karnaugh-

Mapping, the logical expression for the particular rule can be 

derived and realized. For example, the following figure 3 

depicts    expression derived from the Karnaugh -Map 

shown and represents the next state of the center cell of the 

minterm             . The current cell   
  is indexed by 

    and represents the center cell of the binary 

representation of the index          . 
  
        

     
      

     where        .  

 
 

Figure 3, K-map of     

 

Similarly, the logic expressions for the other three rules shown 

in the truth table of figure 2 are:      
     ,      

    
    
    

      
 and        

     . It is clear that running the 

ECA under     will result in the all 0-state after just one time 

step evolution,      will result in the all 1-state after one time 

step evolution regardless of the seed contents and the 

boundary conditions of the cellular automaton. As explained 

previously that the rule for the ECA is a mapping        
       which means that for a fixed span the end cells of the 

cellular automaton will have to be provided by an extra cell 

for each. The periodic configuration of Wolfram [2,16] wraps 

around the cellular automaton such that the peripheral cell on 

the extreme left would consider the peripheral cell on the 

extreme right as an adjacent cell while the peripheral cell on 

the extreme right would consider the peripheral cell on the 

extreme left as its adjacent cell. The configuration is 

illustrated in figure 4.  

 

 
Figure 4; ECA periodic boundary configuration. 

 

Thus, for a fixed span length       the logical expressions 

for the next state for the extreme left and right cells will be 

represented respectively by:   

    
          

      
      

     
       

      
   

And   
          

    
      

     
     

      
   while for  

        the expression for the next state of the cell 

would be represented by: 
  
            

    
      

       
     

      
  . The 

hardware implementation of     for          is 

depicted in figure 5. 

 

 
Figure 5, Detailed Structure of a typical Cellular Automaton 

Cell for rule 30. 

 

It should be clear that only a subclass of the ECS rule space is 

actually useful for the generation of pseudo random numbers 

where the current paper is focused. Many authors have 

attempted to classify the ECA rule space [2,8,16].  The most 

common classification divides the rule space into four classes 

that are not necessarily distinct. The distinction is that the 

classification is phenomenological in nature and based on 

observations of the spatiotemporal patterns. Class I refers to 

the evolution that leads to homogeneous fixed points, class II 

where the evolution leads to periodic configurations, class III 
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leads to chaotic or aperiodic patterns and class IV produces 

persistent and complex localized structures. The only class 

that is suitable for the purpose of generating pseudo random 

numbers is class three. In fact it can be shown that only a sub-

class of class III is suitable for this task. In order for any rule 

to be suitable for pseudo random number generation the output 

sequence has to satisfy one of the main conditions of 

randomness, i.e. the asymptotic distribution of ones and zeros 

have to be equal or the asymptotic entropy ξ of the output 

sequence is equal to 0.5 with good number of significant 

digits. Such condition refers to the so-called balanced rules 

and requires that the number of asserted minterms in any rule 

must equal the number of unasserted minterms. Therefore the 

total number of such rules is   
 

 
 

 
      

 

 
   

 .This result has 

also been described by the Langton’s  parameter, [6,7]. It has 

been found that only sixteen rules out of this number are 

actually chaotic and can tentatively be considered suitable for 

PRS generation. These rules are: 

(30,45,60,75,86,89,90,101,102,105,135,149,150,153,165,195). 

More extensive studies, for example the work of Andrew 

Wuensche and Mike Lesser, [8], have produced an atlas of 

Basin of attraction fields of one-dimensional cellular automata 

and showed that the ECA rule space can be clustered. The 

clusters are formed by the application of rule equivalence. The 

rule equivalence consists basically of three operations, 

complementation, negation and reflection, as illustrated in 

figures 6. The size of each cluster can be 8, 4 or 2 rules 

depending on the minterms truth table. Therefore studies of 

the dynamical behavior of the whole ECA rule space is not 

really necessary. Each cluster has a rule leader and the studies 

can be confined to this rule leader.  

 

Figure 6, Rule equivalence basic operations 

 

The clusters that contain the chaotic rules listed above are: 

(30,86,135,149), (45,75,89,101), (60,102,153,195), (90,165) 

and (105,150), as depicted in figure 8. The leaders of the five 

clusters are 30, 45, 60, 90, and 105, respectively. Except for 

the complementation of rule 105 that results in rule 150, the 

complementation of the other four cluster rule leaders do not 

produce chaotic rules that are useful for PRS generation. For 

example for rule 30, the process of negation is achieved by 

complementation followed by re-ordering of the minters, thus: 

   
        
           , while reflection is achieved by mirror 

reflection of the rule as well as the mirror reflection of the 

minterms followed by reordering of the minterms, thus: 

   
          
           , and    

          
           

        
           , which 

is the same as    
        
           

          
            . The rules 

generated by complementation do not usually produce chaotic 

rules. For example, rule 30 undergoing complementation 

produces rule 225 which is not in class III and therefore it is 

not chaotic and is not usually useful for PRS when used in a 

uniform periodic configuration. The same applies to the other 

three rules, rule 120 produced from rule 135, rule 169 

produced from rule 86 and rule 106 produced from rule 149.  

These rules are colored gray in figure 8. Figure 7 depicts the 

rule equivalence actions for a generic rule  
  . If this rule is in class III then the three rules produced  
   ,    and     will be in the same class while those rules 

produced by complementation,     ,    ,     and      do 

not fall in class III. The exception to this is the 

complementation of rule 105 which produces rule 150,  

    
               
                   and they are both in class III but 

both of them are linear chaotic rules. Due to the structure of 

the minterms placement the three rule equivalence operations, 

rule 105 wraps around one equivalent rule, i.e. rule 150. On 

the other hand, rule 90 has only one equivalent rule which is 

rule 165, and this is achieved by Negation,    
        
           . 

The minterm structure of rule 60 produces three rules by 

Negation, Reflection as well as the combined Negation-

Reflection operation. Complementation action wraps around 

the three equivalent rules. All these three rules 

            have linear logical expressions and 

consequently, their suitability for PRS is limited. Figure 8 

illustrates the formation of the 16 chaotic rules while figure 9 

depicts in details these actions for generic and cluster rule 30.    

 
Figure 7, Cube representation of a generic rule cluster. 
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Figure 8, Cube representation of balanced chaotic rule 

clusters. 

 

 
Generic Rule NEGATION 

 

 
Rule 30 NEGATION 

 

 
Rule 30 REFLECTION 

 

Figure 9, illustration of rule Complementation, Negation and 

Reflection for cluster rule 30. 

 

All these rules evolve into chaotic time-space dynamics but 

the linear rules are so called because of the use of the linear 

logical exclusive-or primitive in their logic expressions. Hence 

the utilization of such rules in cryptography is expected to be 

limited. On the other hand, the two non-linear groups (rules 30 

and 45), have non-linear primitives in their logical expressions 

and therefore can be expected to be more suitable for 

cryptographic applications: 

  
            

    
      

       
     

      
   and  

  
            

    
      

       
     

      
        .  Rule 30 has 

already been used to generate the first and most powerful 

random number generator by Wolfram, [2,16] and was utilized 

in the well known Mathematica software engine. The 

drawback is its complexity and low output yield. Other 

research attempted using genetic algorithms to find optimum 

combination of rules to produce strong PRS in a two 

dimensional cellular automata setting, [13,14]. Obviously, this 

approach restricts the flexibility of rule choice and 

distribution. The emphasis in this paper is to test the one 

dimensional ECA in various heuristic configurations that can 

efficiently yield outputs to be considered viable for 

cryptographic applications. 

 

III. OUTPUT TEST DATA TESTING  

Each run or every binary sequence can be tested either 

individually or independently or as part of a sequence of 

operations. The part that tests the text data generated by the 

selected rule and CA structure undergoes certain data 

transformation in the background that is necessary for testing. 

The problem of pseudo random bit stream of data testing is 

resolved by adopting the Diehard test suite which is widely 

accepted in the art and represents the stringent battery of 

statistical tests suite available, as of this writing, [24]. There 

are 19 individual and independent statistical tests within the 
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Diehard test suite that can be individually selected for testing.  

Each test requires a minimum of 80Mbits of test data. They 

are listed in Table1. 

 

Table 1, List of original Diehard test suite. 

# Test Name #p-values 

1 BIRTHDAY SPACINGS 9+1 

2 tough BIRTHDAY SPACINGS 1 

3 BINARY RANK for 31x31 matrices 1 

4 BINARY RANK for 32x32 matrices  1 

5 BINARY RANK for 6x8 matrices 25+1 

6 BITSTREAM 20 

7 Overlapping-Pairs-Sparse-Occupancy 23 

8 Overlapping-Quadruples-Sparse-Occupancy 28 

9 DNA 31 

10 COUNT-THE-1's on a stream of bytes 1 

11 COUNT-THE-1's for specific bytes 25 

12 PARKING LOT 10+1 

13 MINIMUM DISTANCE 10+1 

14 3-D SPHERES 20+1 

15 SQUEEZE 1 

16 OVERLAPPING SUMS 10+1 

17 UP-DOWN RUNS 3 

18 CRAPS 2 

19 CRAPS with different dice 2 

 

The Diehard test suite produce what the statisticians refer to as 

p-values. Some of these 19 tests produce just one p-value 

while others produce more than one p-value as shown in the 

above table. The tests produce 223 original p-values. Some 

tests add Kolmogorov-Smirnov Goodness-of-Fit tests (marked 

in red with the + symbol) and the new total sums to 229 p-

values. It also adds the overall Kolmogorov-Smirnov p-value 

that results in a grand total of 230 different p-values. This last 

p-value can be considered as a pass/fail criteria for testing. 

Each p-value is considered to have failed at the 0.05 level 

when its value falls in the range         or        . 

More recently three more tests (GCD, Gorilla and Overlapping 

5-Permutation) were added to the suite. They are claimed to be 

hard to pass tests and require at least 2.7Gbits of test data. It 

follows that when the output data is greater than 80Mbits and 

less than 2.7Gbits, the Diehard test suite skips the new tests 

and carry out the testing on the original 19 tests, otherwise the 

total 21 tests will be attempted and produce a new total of 269 

p-values. The Diehard test cannot run on data of less than 

80Mbits. When the Diehard test suite program is activated by 

the ECA Research Platform it undergoes several operations. 

The first of which is to test the size of the data output. If the 

size of the data is less than 80Mbit it will exit otherwise it 

carries out data transformation where the text data is 

transformed into suitably formatted Binary data. The 

minimum size of the binary file should be equal to or exceed 

10Mbytes in order for the test suite to be activated.  

  

IV. THE ADVANCED CA RESEARCH PLATFORM 

(ACARP) 

Figure 10 shows the form of the ACARP. The form was 

written in visual Basic for convenience while the applications 

invoked within the form are written in C++ and visual C for 

computational speed. The platform has evolved over long time 

of development.  The increase in the number of configurations 

and functionalities of the CA made it pertinent to redesign the 

platform and distribute individual programs in a form of tabs. 

Ten tabs appear in the current version. It is envisaged that 

more tabs will be added as the research in this platform 

ensues. One dimensional binary cellular automaton (or the so-

called Elementary Cellular Automata (ECA)) is the main 

vehicle for this platform.  The contents of the form change as 

the tab changes. However, there are some groups of operations 

that will be present with all tabs. For example eight of these 

tabs, i.e. all of them with the exceptions of the two tabs, the 

Misc and the Cycle, each produce an output text file. Also, 

these tabs contain the programs that actually run the CA with 

specific configurations. On the other hand, the Misc tab and 

the Cycle tab carry out certain operations on the text files 

produced by the other eight tabs. The details will be explained 

later on in this section. The tabs can be divided into two 

categories. The first category encompasses the different 

configurations of the CA to be analyzed, numbered 1 to 8 and 

the second category lists the additional functionalities 

numbered 9 to 10 as described in Table 2. The tabs can be 

divided into two categories. The first group encompasses the 

different configurations of the CA to be analyzed, numbered 1 

to 8 and the second lists the additional functionalities 

numbered 9 to 10 in Table 2. The visual form is populated 

with radio buttons, clickable buttons and open text windows. 

Selection of certain operations can be done by clicking 

appropriate radio buttons. Active buttons, when clicked, 

invoke certain programs or permit the accessing of certain 

files. A file can be accessed through an Open button that 

invokes the browsing action to the specific location of the file. 

The file will then be displayed in the appropriate window. 

Active windows can be filled either manually and/or through 

up/down arrows. It the opinion of the author that the best 

approach to explain the functionalities of the ECA research 

platform is to start with the CA Tab. 

 

 
 

Figure 10, the Advanced CA Research Platform (ACARP). 



 

7 

 

Table 2: Advanced CA Research Platform Tabs 

Tab # Tab Description 

1 CA 

2 CA Unbounded 

3 CA Ruled Ends 

4 CA Alternate Bit and Row 

5 LFSR and CA 

6 CA Variable Radius 

7 CA Twister 

8 LFSR Fed CA 

9 Miscellaneous 

10 Cycle 
 

The CA tab is the core of the platform. Under this tab the ECA 

is run in the classical periodic boundary conditions mode with 

additional configurations including perturbations to the 

boundaries from various independent sources. The functions 

in the main body of the platform change with the choice of 

each tab in such a way that the platform is provided with the 

necessary functionalities to allow the choice accomplishes its 

objectives. Although the platform may look different with 

each tab selection, some parts of the form are essentially the 

same and therefore repeat when switching between tabs and 

consequently warrants some explanation. With the exception 

of the four configurations Tabs, the CA Unbounded, the CA 

Twister, the Misc and the Cycle, all the other six Tabs yield 

cylindrical Cellular Automata of span length     and 

evolution time     , from a seed    that can be viewed as a 

vector of        variables occupying the cells of the ECA 

lattice at time step     such that       
    for   

         . Figure 11 shows how the cylindrical ECA 

collects its data with time evolution while figure 12 depicts the 

manner the data is collected as the ECA evolves in time and 

yields the output text file of string of one-bit data. The data 

concatenation that takes place prior to testing by the Diehard 

engine is carried out as depicted in figure 12(a). This way of 

concatenation ensures minimum correlation dependence 

between the data of the cellular automatons at consequent time 

steps. The concatenation of data according to the image of 

figure 12 (b) gives poor tests results because of the 

dependence between the end cells and the consequent negative 

correlation. This data, represented by the symbol   is in fact 

the text data to be presented to the Diehard test suite for 

testing,       
           . The same approach has been 

used during the unbounded CA data output generation (Tab 

#2) for the same reasoning. 

 
Figure 11, Cylindrical ECA data. 

 

 
(a) 

 

 
(b) 

 

Figure 12, Two methods of concatenating the data bit stream. 

 

All tabs share the Close button  which is used to 

terminate any program running and closes the platform. With 

the exception of the Cycles tab, all the other 9 tabs share the 

File Size section and the following buttons: Calculate, Output 

File Name, Open, Run, Run Al, Character to bin, Density, 

and Diehard Result. 
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The Seed Type For CA group is shared by the following Tabs 

1, 2, 3, 4, 7, and 8. 

 

 
 

The Ends Type group is shared by Tabs: 1, 4, and 8. 

 

   
The Output Type group is shared by Tabs 1, 3, 4, and 8.  

 

 
 

Due to the wide varieties and functionalities, the author is of 

the opinion that the best route to explain the platform, in the 

nutshell, is to go through each Tab in turn with examples. 

 

A. The CA Tab  

Here we will first demonstrate the use of the bounded ECA 

running under chaotic Rule 30 in the classical periodic 

boundary conditions. It will generate data size suitable for 

testing by the Diehard standard tests suite. The data is 

intended for cryptographic applications; therefore it would be 

desirable to have the data pass all Diehard tests. It should be 

pointed out here that the whole data output is being used in 

contrast to the approach of Wolfram [2,16] which utilizes the 

output of just one cell. Figure 13 shows the selections made in 

the CA Tab. A seed length of 611-bit was selected for rule 30 

and calculated a total of time iterations of 134206 for a data 

size of 82Mbits. Random seed was selected which is derived 

from C++. The periodic boundary conditions are selected and 

this is referred to as “Circular” in the End Type section. The 

whole data is used by selecting the “Whole CA” button in the 

Output Type section. In order to obtain the final Diehard 

results the “Run All” button was selected. This button 

encompasses the running in turn of the other buttons except 

the Open button.   

 

 
 

Figure 13, CA Tab selection details. 

 

The Diehard results, shown in the snap of the results below, 

show that all the 229 p-values have passed as well as the 

Overall Kolmogorov-Smirnov test p-value. The density of the 

whole data set is 0.500011indicating very good distribution.  

 

 
 

A supporting display program is also used to display the 

space-time diagram of part of the output data as shown in 

figure 14 for the span length 611K  and iteration 500T  . 
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The typical self similar triangular shapes (fractals) usually 

associated with periodic rule 30 are apparent in the image.  

 

 
 

Figure 14, Space-Time image of ECA under periodic rule 30. 

 

On the other hand, running the CA Tab under the same rule 30 

for a smaller span length 131K  requiring different iteration

625954T   but failed quite a number of the Diehard tests. It 

passed 201 p-values and failed the Overall Kolmogorov-

Smirnov test p-value. Repeating the same operation on rule 45 

produced even less number of passes, 200 p-values. The time-

space images for the two rules are shown in figure 14 for span 

length 131K   and iteration 200T  . Note again that the 

self similar fractals associated with the two rules are apparent. 

 

    
 

Figure 15, Space-Time images of the periodic rules 30 (left) 

and 45 (right) running in periodic configurations. 

 

For each ECA lattice span length K , there are three ways the 

output can be selected, the Whole CA, as was displayed in the 

two figures 14 and 15. The second is the CA with Ends which 

will include the boundaries in the data output. The third choice 

is the Center Bit which means using only the center bit in the 

span and discarding the rest. This choice is in effect copies the 

method of Wolfram [2], and is currently adopted in the 

mathematical engine Mathematica. This method represents a 

very strong pseudo random number generator although it lacks 

both speed and efficiency. With each of the above output 

choices the user can select any of the four End Types. The End 

types refer to the boundary conditions. The Circular type is 

another name of the usual periodic boundary condition. The 

C++ Random End uses the embedded C++ random number 

generator to provide the two boundaries. The End From File 

can use any other external source for the boundaries. When the 

respective radio button is selected the file that contains the 

boundary data is determined by browsing and populates the 

Ends Type window which is automatically activated. The 

LFSR from file uses any size of register with predetermined 

taps selected from a list of primitive polynomials. This type in 

fact shares the functionalities of another tab, LFSR Multiple 

Taps that will be described later. For each of the above 

choices, two sizes of data can be selected, 80MB or 2.7GB. 

Therefore it can be seen that the choices available for each 

span length   of the ECA is in fact equal to 2
(2+2+3+4)

! For a 

one dimensional ECA of lattice span length  , the initial seed 

space is composed of the upper bound of            

words. Hence, Due to the exhaustive logical complexity of the 

ECA, the computational complexity of the periodic boundary 

conditions scheme running uniformly under a single local rule 

for total time evolution   can be estimated as utmost 
         . When the ECA is injected with two independent 

external boundaries, the new injected variables would enhance 

the computational complexity of the bounded ECA by   
 
. If 

the external boundaries are derived from two LFSRs, the 

computational complexity of the system would be enhanced 

by utmost               where      is the size of the 

memory cells of the LFSR and      is the Euler’s totient 

function that determines the number of primitive polynomials 

available. To eliminate the possible introduction of cycle 

repetition in the external boundary inputs, the cycle length can 

be made equal or greater than the total time evolution of the 

ECA. This implies that the LFSR span length can be computed 

from          . 
 

Rule Equivalence Examples  

The following display by way of examples how the ECA 

research platform can be used to examine the dynamical 

behavior resemblance of one equivalent group, namely group 

rule 30. It has been found that best way to compare these rules 

is through the choice of a center bit seed. In this way the initial 

seed is made an odd number and assert only the center bit, the 

rest of the seed consist of zeros. A small size of the span, 

    , and evolution time       is selected and the 

ECA is run under the 4 rules: rule 30, rule 86, rule 135 and 

rule 149 that constitute the chaotic rules of group rule 30. The 

following space-time images shown in figure 16 illustrate the 

similarities in the dynamical behavior of these equivalence 

rules in turn. It is evident from the space-diagrams that rule 86 

is a mirror reflection of rule 30 while rule 135 is its negation 

and rule 149 is the negation of rule 86 and is also the 

combined reflection and negation of rule 30. It is also evident 

that the randomness in the patterns is the same for all the four 

rules and the usual fractals of rule 30 are also repeating in the 

other three rules.    
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Figure 16, Rule equivalence example or cluster rule 30. 

 

A. CA Unbounded Tab 

The CA Unbounded configuration is a departure from the 

classical finite periodic ECA configuration. The concept is 

based on an attempt to eliminate the effect of propagation 

inwards at the so-called speed of light of correlated patterns 

and dependencies caused by the wrapping around action of the 

periodic configuration. Note that the next state of a particular 

cell at     is dependent on the local rule or function of the 

present state at time   of the three cells at the previous time 

evolution step   
          

    
      

  . It can be seen that the 

next state of the extreme cell at one end   
    depends on the 

three adjacent cells at the previous time-step,   
 ,   

  and     
 . 

It is evident that the cell at the other extreme has influence on 

the next state of the cell at the other extreme. Therefore this 

dependency will cause correlation effect that will propagate at 

the speed of light and the correlation effect will reach the other 

extreme end after   time steps. However, the movement of the 

correlation effect from both sides will meet at           
Time-steps. The structure of the Unbounded CA is illustrated 

in figure 17 and the correlation effect and propagation is 

illustrated in figure 18 for three time steps where the green and 

blue cells represent the boundary cells and the yellow cells 

carry the correlation effect of the wrapping around action of 

the periodic configuration.  

 

Figure 17, structure of the unbounded ECA. 

 

 
Figure 18, the correlation effect is shown in yellow. 

 

The following gives an example for the above discussion. The 

space-time image shown in figure 19 is for the ECA periodic 

configuration running under rule 30 for       and     . 

The cells marked yellow represent the correlation effect 

carried out due to the periodic boundary action. Removing 

these cells will yield the ECA shown in figure 20 and can be 

considered free of correlation dependencies. The output of 

figure 20 is the space-time image obtained from the 

Unbounded ECA configuration running under rule 30 and 

using the same random seed. It is worthwhile noting that the 

dependencies referred to above are not the self similar shapes 

(fractals) usually associated with some CA rules. These self 

similar shapes are generated with the particular rule used by 

the CA and the shapes may vary as the rule is changed which 

is obvious by observing the difference in the self similar 

shapes produced for example by Rule 30 and Rule 45 as well 

as their equivalences. 

 

 
 

Figure 19, Periodic ECA under rule 30, K=101 and T=51 from 

a random seed. 

 

 

 
 

Figure 20, space-time image of the Unbounded ECA with the 

same rule and seed of figure 19. 

 

Starting from a random seed this unbounded configuration has 

passed all Diehard tests suite for almost all the balanced 

chaotic rules. Rule mixing in this configuration, whether 
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temporally or spatially or the mixture of both, has also easily 

passed the Diehard tests suite. The only possible but minor 

drawback to this configuration is the large size of the seed. 

However, with the current advance in VLSI area density such 

drawback becomes asymptotically negligible. This 

configuration has the added advantage that the serious VLSI 

drawback of the periodic configuration wire wrap around 

routing is overcome. Note that the form for this Tab is 

somehow different from the CA Tab. The Calculate button is 

missing because the time evolution steps, T is related to the 

ECA lattice span K by the expression          . A new 

section Rule Type is introduced and contains Single Rule and 

Alternating Row Rules buttons, as shown in figure 21(a). 

When the Alternating Row Rules button is activated another 

text window for rule number 2 is added to the form and 

situated below the first rule as shown in figure 21 (b) .  

 

 
(a)          (b) 

 

Figure 21, Unbounded ECA Tab additions. 

 

   

A. CA Ruled Ends Tab 

This Tab implements a novel introduction to the CA bounded 

configurations by changing the rules at the extremities of the 

CA with a two-cell rule so that we do away with the standard 

and costly method of periodic boundary conditions. While the 

End Type section is reduced to part of the Output Type sub-

section that includes only the Whole CA and the Center Bit, 

there is an addition of two pull down windows for the Left 

Rule and the Right Rule, as shown in figure 22. Since we 

have   
 
two variable rules at each end and that 2*3 of these 

are actually single variable rules, namely the ground, the    , 

two buffers and two invertors, we end up with 10 two- cell (or 

variable) rules for each end. Note that those six rules actually 

represent the fixed boundaries usually used in some CA 

applications. Therefore the two variable rules function for the 

left hand side peripheral cell is derived from the function 

    
      

   and similarly the two variable rules function for 

the right hand side peripheral cell will be derived from the 

function     
    

  .  Table 3 lists the rules for both sides using 

the numbering terminology discussed in a previous section. It 

can be seen that we are finally left with    
 
       

configurations to try in order to uncover viability of any or 

some to produce quality pseudo random sequences. 

  

   
 

Figure 22, CA Ruled Ends Tab sub-sections 

 

Table 3 
 Rules 

LHS 17 34 68 102 119 136 153 187 221 238 

RHS 3 12 48 60 63 192 195 207 243 252 

B. CA Alternate Bit and Row Tab 

This is another novel approach to improve the statistical 

features and enhance the complexity of the data output of the 

ECA. The platform now has a new group added, Single or 

Multiple Rule per File, and replaces the Rule window in the 

previous Tabs, as shown in figure 23. This is in addition to the 

functions described earlier for the bounded CA Tab.  

 

 
Figure 23, CA Alternate Bit and Row Tab addition. 

 

Therefore, there exists the choice of two rules out of the 

symmetric and chaotic rule sub-space.  Two rules are selected 

and alternate either temporally, whereby it is referred to as 

Alternating Row Rule or selected by the activation of the 

relative radio button. Or alternate spatially in which case it is 

referred to as Alternating bit same position Rule or likewise it 

is selected by its relative radio button. The Alternating Row 

Rule means that if row index   is applying Rule 1 then the two 

rows index     and     will apply Rule 2, etc. On the other 

hand the Alternating bit same position Rule means that for 

any row, a cell indexed by column j will apply Rule 1 while 

the two cells adjacent to it, i.e. indexed by     and     will 

apply Rule 2. This rule alternation will apply to every row 

throughout the time evolution of the CA. Note that the 

increment/decrement Rule window in the CA Tab is removed 

and substituted by the two increment/decrement windows 

Rule 1 and Rule 2 as shown in the above figure. For example 

we choose the two main chaotic rules Rule 30 and Rule 45 and 

run the CA for the two modes, Alternating Row and 

Alternating Bit for the following  seed lengths: 61, 73, 611and 

671. Figure 24 (a) shows the spatiotemporal image for the 

Alternating Bit while (b) shows spatiotemporal image for the 

Alternating Row and both images are for seed length 61-bit 

and 61 time steps. It can be seen that the self similar shapes 

(fractals) are different from the native fractals of either rules 

30 or 45. The two combinations also demonstrate different 

fractals from each other. Table 5 shows the Diehard results for 

both modes as well as the periodic configuration, for 

comparison purposes, for the seed lengths 61, 73, 611, and 

671. The Kolmogorov-Smirnov Goodness- of- Fit p-values are 

given in table 5. It is obvious that the Alternating Row mode 

behaved superior to the Alternating Bit mode. In fact the 

Alternating Row scored even better than the example in the 

bounded CA Tab for seedlength 671. Of course this comes 

with the bonus added complexity advantage.  
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Table 4, for rules 30 and 45, out of 229 p-values 

Seed Length 

Number of tests passed 

Alternating 

Row 

Alternating 

Bit 

Periodic 

Rule 30 

61 134 137 123 

73 228 223 228 

611 229 212 229 

671 223 193 215 
 

 

Table 5, for rules 30 and 45 

Seed Length 

Overall KS p-value 

Alternating 

Row 

Alternating 

Bit 

Periodic 

Rule 30 

61 0 0 0 

73 0 0 0 

611 0.177297 0 0.990502 

671 0.013958 0 0 
 

 

    
                             (a)                                 (b) 

Figure 24, Space-Time images of Alternating Bit and 

Alternating Row, respectively. 

 

C. LFSR Fed CA 

This Tab performs an operation that is unique and 

different from the normal use of the CA. It makes use of the 

non-linear rules of the CA in order to modify the output of a 

LFSR in a manner analogous to the action of a T-function 

used in cryptography.  Hence, the form must provide 

necessary information for the LFSR (i.e. span length and the 

taps from a primitive polynomial) and the CA Rule. Figure 

25 shows the addition of the LFSR Input File Name 

window where the information about the LFSR initial seed 

and the taps from an appropriate primitive polynomial 

reside, the associated Open button and the LFSR Type 

section that in houses two radio buttons, the Moving LFSR 

and the Over lapping. The Seed Length window refers to the 

span of the LFSR. This Tab provides two modes of 

operation, one is to decimate the serial generation of the bit 

stream of the LFSR so that no overlapping of data takes 

place, and the second one that permits overlapping of the bit 

stream and therefore does not decimate the data. The two 

operations are illustrated in figure 26 where a clock rate 

division by three takes place at the output unit for the 

Moving LFSR case. 

 
 

Figure 25, LFSR Fed CA form addition. 

 

 
Figure 26, Block Diagram of the LFSR Fed CA design. 

 

D. LFSR Multiple Taps Tab 

This Tab is intended primarily to prepare text files to be 

used for CA seeds as an alternative to the C++ random 

numbers, as mentioned earlier. It is also used as a LFSR 

based pseudo random sequence generator for comparison 

with the CA. The platform form contains the windows 

shown in figure 27 in addition to the usual File Size section, 

Calculate and the other six Run buttons. It also contains the 

same three windows as used with the other Tabs (the Output 

File Name, Seed Length and the Iterations) in addition to a 

new window the Input File Name for Seed and Mask where 

information about the size of the LFSR span and the taps are 

extracted from a text file that is pointed at in this window. 

 

 
 

Figure 27, LFSR main input text windows. 

 

E. Misc. Tab 

This is intended to provide a collection (or ménage) of 

facilities to manipulate and condition further the output bit 

data stream. For example, the inverse of the data matrix can be 

obtained and passed to the Diehard for testing. It has been 

established that such transformation has almost always passed 

more tests than the original data. The reason is also 
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understandable in that the transpose operation in fact 

conditions the data in such a way that dependencies of 

adjacent cells are diminished or separated and consequently 

less correlation is encountered. Column splitting is another 

more detailed conditioning of the data output. Rearranging the 

data such that cell adjacency dependencies are reduced is 

bound to improve on the testing with the Diehard. Various 

similar operations on the rows are also provided. The 

variations in the placement of the columns and the rows 

provide convenient means to decimate the data both spatially 

as well as temporarily. The use of this Tab helped in 

determining that the results collected from such operations 

have shown that temporal decimation is less powerful than 

spatial sampling. Details of the available operations in this 

Tab are shown in the two figures 28 and 29. 

 

 
 

Figure 28, Options in the Misc. Tab. 

 

 

 
 

Figure 29, Assemble Options in the Misc. Tab. 

 

F. CA Variable Radius  

 

As for the Unbounded CA and the CA Ruled Ends described 

above this new configuration is yet another attempt to remove 

the dependency on the periodic boundary condition. Instead of 

wrapping around the cell at the extreme end to the other cell at 

the other extreme end in the periodic configuration explained 

previously, the boundary cell is imported from within the CA 

lattice. This is illustrated in figure 30. The next state of the left 

hand extreme end cell will be generated thus:  

  
           

    
      

   

and similarly the next state of the right hand extreme end cell 

will be generated thus: 

  
        

    
       

   . 

Mixed results were obtained from running some variations of 

the radius. Some values of the left and right radii did produce 

test results that indeed matched the results from the standard 

periodic configuration. This configuration requires extensive 

amount of variations to obtain an optimum or near optimum 

values for the two radii. The size of both radii was found to 

vary depending on the rule used. The platform has the addition 

of two windows Left Radius and Right Radius and the Ends 

Type is reduced to the Output Type sub-section having three 

buttons, Whole CA, CA with Ends and Center Bit, as shown 

in the inserts of figure 31.   

 

 
Figure 30, Variable Radius Configuration. 

 

  
 

Figure 31, Variable Radius Tab addition. 

 

 

J.  CA Twister 

  

This configuration is fundamentally different from those 

detailed in the above three examples. Here a parent CA that 

can be generated by any of the above discussed configurations 

is used to provide the seeds for identical Offspring CAs. The 

number of the offspring CAs is equal to the seedlength of the 

parent CA, i.e.   as depicted in figure 32. The seedlength of 

the offspring CAs is equal to the time evolution of the parent 

CA, i.e.   . The time evolution number of steps for the 

offspring CAs, i.e.    can be determined from the size of the 

final data output of the whole CA configuration. The size of 

the data output bit string is equal to      .  We have arranged 

the output bit string by concatenating the rows of the offspring 

CAs in the same manner as was discussed in the example of 

the CA Tab for the periodic finite CA. This configuration has 

the obvious main two advantages of expandability and 

improved complexity and has produced superior test results 

compared to the standard periodic CA and is the subject 

matter of another future publication. The form for this Tab is 

different from the form for the CA Tab in that the Calculate 

button is not included.  In addition the Ends Type section is 

reduced to the Input File Name window, the Open window 

and the Circular radio button. 
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Figure 32, CA Twister structure. 

 

G. Cycle Tab 

The main objective of this Tab is to determine the cycle 

length, if it exists, and the transient trajectory to the cycle. 

Usually the cycle and the trajectory can be determined for 

relatively small sizes of the seedlength. For larger sizes where 

the bit stream data output is determined a priori, the cycle 

cannot be captured otherwise the data will not stand a chance 

of passing the Diehard tests suite. This Tab is useful during 

analysis of a CA configuration. The platform in this Tab has 

only one window, the Input File Name and two buttons, the 

Open and the Run, the duties of which are identical to the 

other Tabs that have been explained previously.  It is only 

applicable to the data output in the form of a matrix with the 

number of columns representing the seedlength K and the 

number of rows representing the evolution time T . Therefore, 

it can be seen that it is applicable neither to the Unbounded 

CA nor to the LFSR Fed CA configurations.     

 

V. CONCLUSION 

We have presented the details of a software-based platform 

targeted towards advanced research in cellular automata. The 

motivation for this platform was the lack of a research engine 

and tool in the open literature using cellular automata as an 

emerging technology for the generation of high quality and 

cryptographically viable pseudo random sequence generation. 

We have demonstrated the use of the platform to carry out a 

number of novel cellular automata configurations. Apart from 

the standard periodic boundary conditions configuration the 

rest seven configurations are new introduction to the binary 

one dimensional cellular automaton of neighborhood size 3.  

The drawbacks of the periodic boundary conditions, such as 

problems in VLSI hardware implementation and weak 

statistical features due to the wrapping around effect of cell 

adjacency dependencies are removed with the new proposed 

configurations. By injecting externally and independently 

generated inputs adjacent to the CA lattice end cells, problems 

due to the wrapping around of the lattice are overcome and 

gargantuan increase in the complexity is achieved. The 

Twisted CA configuration introduces a new concept of a 

continuously expandable CA structure. The complexity 

increases as new layers of offsprings are added. Data derived 

from the Unbounded CA configurations have produced 

excellent results with Diehard tests suite. The scope of 

variability is illustrated with the variable radius and the end 

rules configurations. When the application is targeting pseudo 

random generation, results have shown that the periodic 

boundary scheme can be effectively substituted with the 

variable radius configuration. The advantage of this 

achievement is double fold, more amenable to VLSI hardware 

implementation and increase in data complexity. Decimations 

in space or/and time showed the potential for superior data 

output as well as improved complexity. In addition to the 

various configurations proposed and tested, the platform offers 

a lot more facilities to search for yet other means of achieving 

better results with the Diehard test suite and added complexity 

to the data output. 
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