

1

Abstract— We present an educational and research platform

for analysis and design of cellular automata (CA). The platform

is intended as an aid to newcomers and interested scholars to this

field to demystify the complexity associated with understanding

the structure, behavior, dynamics and evolution of such systems.

It is also an inspirational tool and engine for education that can

uncover the immense power and the wide scope of applications

that CA can encompass. The platform is designed to be extremely

user friendly and flexible. It is believed to be unique in that it

allows experimentation in a configurable mode for the CA rule

space and lattice span design. Finite and bi-infinite lattice

structures are allowed besides the classical periodic (cyclic)

boundary conditions. Boundary conditions are comprehensively

covered whereby the peripheral cells can be varied in a

neighborhood adjacency mode that allows for a variety of time

evolution and sampling. The problem of finite lattice is treated

by the application of different rules at the boundaries. The entire

rule space is utilized for the elementary cellular automata. The

classification of the rule space can be studied in detail. Uniform

and non-uniform (hybrid) rules can be implemented by simple

pull down menus or switchable radio buttons. When the study is

directed towards simulation or cryptology, the complexity and

random behavior of the cellular automata is tested using

“Diehard”, the most stringent battery of tests. The results are

automatically reported and a fail/pass criterion is established.

Index Terms— Cellular Automata, Diehard, Periodic

Boundary Conditions, Rule Space.

I. INTRODUCTION

HIS paper discusses the utilization of cellular automata in

generating quality pseudo random numbers for use in

cryptography, A cellular automaton is a decentralized

computing model that provides an excellent platform for

performing complex computation with the help of only local

information. Cellular Automata (CA) is an emerging physical

and mathematical structure that is extremely simple and

consists of identical basic memory building blocks that are

discrete in time and space. The whole structure evolves

according to a local yet simple transition rule that is capable

of evolving into an extremely complex and interesting

structure. It was at first conceived around 1950 by the

computer architecture inventor “von Neumann” [1] who used

it to establish the possibility of creating replicating digital

structures. In the early 1980s, Wolfram [2,16] realized the

immense potential of the concept and carried out intensive

K. Salman is with Middle Tennessee State University, Murfreesboro, TN

37132 USA (Phone: 615-898-2083, Fax: 615-898-5697).

research whereby he managed to rejuvenate the concept and

soon inspired many others in various fields to research the

matter extensively. Researchers, scientists and practitioners

from diverse fields have exploited the CA model of local

information, decentralized control and universal computation

for modeling disparate applications [3,8,11,15,18]. The CA

encompasses wide scope of applications. Representative

examples can easily span wide fields such as modeling,

cryptology, gaming, art, music, biology as well as

computation, to name a few. An exploding field of

applications of CAs is in information security which is the

core motivation for the platform design. Cellular Automata

has been suggested for Pseudo Random Sequence (PRS)

generation [2,13,14,16] as a new, but characteristically

different and more powerful alternative to the classical

Feedback Shift Registers (FSR). Linear FSRs (LFSR), albeit

simple in structure and design, were proven to have

comparatively weak statistical features when utilized in the

PRS generation [4-7]. The weakness in the LFSRs can be

attributed to the linearity of the exclusive-or function used in

the feedback network. The task of generating pseudorandom

sequences that behave like random sequences is practically

and theoretically impossible. The best approach is to generate

a PRS so that it behaves like a random sequence for the

application in hand [7,23]. This entails that the output of such

a generator be tested to prove that it is indeed satisfactorily

random. This is another problem that is not yet completely

resolved [6, 7,23]. Again, theoretically, it cannot be solved.

This leaves one currently widely accepted route is to subject

the generated PRS to a well established and broadly

recognized battery of statistical tests. The effort in this paper

has culminated in adopting and incorporating the almost

standard state of the art, the Diehard battery of tests [24]. The

results of subjecting the outputs of LFSRs to the Diehard suite

have shown that these generators cannot pass all the tests. On

the other hand, one-dimensional (1-D) as well as two-

dimensional (2-D) CAs have been suggested and are now

beginning to be used to generate PRSs with good statistical

features in Mont Carlo simulations, communications,

cryptography and network security, to name a few [2, 8-

11,13,14,16,17]. However, the physical limitations imposed

on the lattice span of such CAs rendered periodic boundary

conditions, originally proposed in [2,16] as the pertinent

solution. The initial configuration will therefore be circular

and the automaton will evolve cylindrically to the terminal

time step. Such boundary conditions designs, notwithstanding

simple, suffer from VLSI implementation constraints as long

Elementary Cellular Automata (ECA)

Research platform

K. Salman

T

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Software Engineering (JSSE), June Edition, 2013
Volume 3, Issue 6

http://www.cyberjournals.com/JSSE.html

2

bus lines, which are VLSI area intensive, are needed for

hardware realization. Furthermore, the lattice span must be

long enough to achieve required long periodic cycles and pass

statistical randomness tests, i.e. two inherently conflicting

requirements but are both needed. A 1-D CA where one rule

is implemented throughout the spatiotemporal evolution of the

CA has shown unique and useful characteristics and has been

suggested in [2,16] for use in random sequence generation. A

notable impediment, however, is the input to the boundaries of

the CA where it is confined to a limited span. Hence, a long

span will render the CA practically unrealizable, a shorter

span, on the other hand, results in a shorter cycle length. The

periodic configuration approach [2,16] partially resolves this

issue where inputs are needed to feed the two extremities of

the CA. An alternative technique is to feed the peripheral cells

with external, uncorrelated inputs. These inputs can either be

fixed, such as logical “0” or “1” or can be generated separately

and independently. All these methods feeding fixed boundary

values running under chaotic rules on uniform 1-D CAs have

produced much shorter periods than the LFSR and drastically

failed statistical battery of tests. The research platform

described in this paper proposes alternative techniques that

have passed the statistical tests and produced attractive

parallelism and correlation properties. These will be discussed

later. The rest of the paper is organized as follows: in the

Preliminaries section the basic theory of cellular automata is

presented, the following section will be devoted to the

description of the CA platform followed by the summary and

conclusions.

II. THEORETICAL BACKGROUND

The cells of a 1-D CA are arranged on a linear finite lattice of

identical cells of length . Each cell
 is indexed

spatially by the variable and temporally by the

time variable and will be equipped with the

ability to communicate with a number of its neighbors

including itself and will collectively be referred to as size -

cells neighborhood such that where is the

left radius which is at distance cells to the left of the center

cell, where 1 refers to the center cell, and is the right radius

which is at distance cells to the right of the center cell.

Generally a one dimensional cellular automaton can be

considered as a sextuple mathematical structure,

 , wherein:

 is the finite set of states alphabet, from which the

configurations of
 cells take their values,

 .

 is the span length of the cellular automaton.

 is the global function that computes transformations

between sets of configurations, .

 is the local rule where

 is the rule number, and

 .

 is the size of the neighborhood defined by

 .

 is the seed of the cellular

automaton.

It follows that the cellular automaton dynamics consists of

passing one configuration to the next in discrete time

steps . It should be pointed out that distant neighbor

communication falls under the Cellular Neural Networks

(CNN) research area [12] which is not the subject matter of

this paper. Each cell will change its state according to a local

transition rule where
 represents the rule

number in the rule space

 and will take its state

value from an alphabet . All cells are

updated synchronously and the cells are restricted to local

neighborhood interaction with no predetermined global means

of communication. For ease of illustration we let the CA

evolve according to one uniform neighborhood transition

function and fixed radius which is a local function (rule)

 where the CA evolves after a certain number

of time steps T. In this case we have a total of distinct

rules. It follows that a 1-D CA is a linear lattice or register

of memory cells. Each cell is represented by
 , where

 and that describes the

content of memory location at evolution time step . It can

be seen that the rule space for the simplest automaton of radius

 under will provide

 distinct rules. On

the other hand making will increase the rule space to

 distinct rules! An exponential

increase in the rule space! Therefore, finding a suitable rule

for PRS application will be a daunting process in itself. In this

paper we will confine ourselves to a finite binary field for

which p such that each cell will be able to take one of two

states “0” or “1” from . This implies the applicability of

binary Boolean algebra to the design of the rules over .
Therefore each cell will communicate with the two

neighboring cells, one on the left and one on the right. This

will render the size of the neighborhood
 . This CA will henceforth be referred to as

Elementary Cellular Automaton (ECA), a name suggested by

Wolfram [2,16]. Hence, the total number of 3-tuple

configurations will be and can be assigned the

symbols as shown in figure 1.

Figure 1 1-D ECA Rule configurations or minterms.

It is obvious that the triplets are identical to

and serve the same purpose as the minterms of a 3-variable

function in digital logic, so is the truth table. Hence the truth

table for all possible and distinct functions will have
 columns as depicted in Figure 2. The numbering scheme used

for the rules as shown in the figure is attributed to Wolfram

[2,16] and uses the values assigned to the minterms

 where is the least significant and is the most

3

significant digits. This rule number will be denoted by the

symbol and mathematically represented by

 as

shown in figure 2 for the representative rules 0, 1, 30, and 255.

Figure 2, 1-D ECA rules truth table (rule space)

By means of logic minimization techniques such as Karnaugh-

Mapping, the logical expression for the particular rule can be

derived and realized. For example, the following figure 3

depicts expression derived from the Karnaugh -Map

shown and represents the next state of the center cell of the

minterm . The current cell
 is indexed by

 and represents the center cell of the binary

representation of the index .

 where .

Figure 3, K-map of

Similarly, the logic expressions for the other three rules shown

in the truth table of figure 2 are:
 ,

 and

 . It is clear that running the

ECA under will result in the all 0-state after just one time

step evolution, will result in the all 1-state after one time

step evolution regardless of the seed contents and the

boundary conditions of the cellular automaton. As explained

previously that the rule for the ECA is a mapping
 which means that for a fixed span the end cells of the

cellular automaton will have to be provided by an extra cell

for each. The periodic configuration of Wolfram [2,16] wraps

around the cellular automaton such that the peripheral cell on

the extreme left would consider the peripheral cell on the

extreme right as an adjacent cell while the peripheral cell on

the extreme right would consider the peripheral cell on the

extreme left as its adjacent cell. The configuration is

illustrated in figure 4.

Figure 4; ECA periodic boundary configuration.

Thus, for a fixed span length the logical expressions

for the next state for the extreme left and right cells will be

represented respectively by:

And

 while for

 the expression for the next state of the cell

would be represented by:

 . The

hardware implementation of for is

depicted in figure 5.

Figure 5, Detailed Structure of a typical Cellular Automaton

Cell for rule 30.

It should be clear that only a subclass of the ECS rule space is

actually useful for the generation of pseudo random numbers

where the current paper is focused. Many authors have

attempted to classify the ECA rule space [2,8,16]. The most

common classification divides the rule space into four classes

that are not necessarily distinct. The distinction is that the

classification is phenomenological in nature and based on

observations of the spatiotemporal patterns. Class I refers to

the evolution that leads to homogeneous fixed points, class II

where the evolution leads to periodic configurations, class III

4

leads to chaotic or aperiodic patterns and class IV produces

persistent and complex localized structures. The only class

that is suitable for the purpose of generating pseudo random

numbers is class three. In fact it can be shown that only a sub-

class of class III is suitable for this task. In order for any rule

to be suitable for pseudo random number generation the output

sequence has to satisfy one of the main conditions of

randomness, i.e. the asymptotic distribution of ones and zeros

have to be equal or the asymptotic entropy ξ of the output

sequence is equal to 0.5 with good number of significant

digits. Such condition refers to the so-called balanced rules

and requires that the number of asserted minterms in any rule

must equal the number of unasserted minterms. Therefore the

total number of such rules is

 .This result has

also been described by the Langton’s parameter, [6,7]. It has

been found that only sixteen rules out of this number are

actually chaotic and can tentatively be considered suitable for

PRS generation. These rules are:

(30,45,60,75,86,89,90,101,102,105,135,149,150,153,165,195).

More extensive studies, for example the work of Andrew

Wuensche and Mike Lesser, [8], have produced an atlas of

Basin of attraction fields of one-dimensional cellular automata

and showed that the ECA rule space can be clustered. The

clusters are formed by the application of rule equivalence. The

rule equivalence consists basically of three operations,

complementation, negation and reflection, as illustrated in

figures 6. The size of each cluster can be 8, 4 or 2 rules

depending on the minterms truth table. Therefore studies of

the dynamical behavior of the whole ECA rule space is not

really necessary. Each cluster has a rule leader and the studies

can be confined to this rule leader.

Figure 6, Rule equivalence basic operations

The clusters that contain the chaotic rules listed above are:

(30,86,135,149), (45,75,89,101), (60,102,153,195), (90,165)

and (105,150), as depicted in figure 8. The leaders of the five

clusters are 30, 45, 60, 90, and 105, respectively. Except for

the complementation of rule 105 that results in rule 150, the

complementation of the other four cluster rule leaders do not

produce chaotic rules that are useful for PRS generation. For

example for rule 30, the process of negation is achieved by

complementation followed by re-ordering of the minters, thus:

 , while reflection is achieved by mirror

reflection of the rule as well as the mirror reflection of the

minterms followed by reordering of the minterms, thus:

 , and

 , which

is the same as

 . The rules

generated by complementation do not usually produce chaotic

rules. For example, rule 30 undergoing complementation

produces rule 225 which is not in class III and therefore it is

not chaotic and is not usually useful for PRS when used in a

uniform periodic configuration. The same applies to the other

three rules, rule 120 produced from rule 135, rule 169

produced from rule 86 and rule 106 produced from rule 149.

These rules are colored gray in figure 8. Figure 7 depicts the

rule equivalence actions for a generic rule
 . If this rule is in class III then the three rules produced
 , and will be in the same class while those rules

produced by complementation, , , and do

not fall in class III. The exception to this is the

complementation of rule 105 which produces rule 150,

 and they are both in class III but

both of them are linear chaotic rules. Due to the structure of

the minterms placement the three rule equivalence operations,

rule 105 wraps around one equivalent rule, i.e. rule 150. On

the other hand, rule 90 has only one equivalent rule which is

rule 165, and this is achieved by Negation,

 .

The minterm structure of rule 60 produces three rules by

Negation, Reflection as well as the combined Negation-

Reflection operation. Complementation action wraps around

the three equivalent rules. All these three rules

 have linear logical expressions and

consequently, their suitability for PRS is limited. Figure 8

illustrates the formation of the 16 chaotic rules while figure 9

depicts in details these actions for generic and cluster rule 30.

Figure 7, Cube representation of a generic rule cluster.

5

Figure 8, Cube representation of balanced chaotic rule

clusters.

Generic Rule NEGATION

Rule 30 NEGATION

Rule 30 REFLECTION

Figure 9, illustration of rule Complementation, Negation and

Reflection for cluster rule 30.

All these rules evolve into chaotic time-space dynamics but

the linear rules are so called because of the use of the linear

logical exclusive-or primitive in their logic expressions. Hence

the utilization of such rules in cryptography is expected to be

limited. On the other hand, the two non-linear groups (rules 30

and 45), have non-linear primitives in their logical expressions

and therefore can be expected to be more suitable for

cryptographic applications:

 and

 . Rule 30 has

already been used to generate the first and most powerful

random number generator by Wolfram, [2,16] and was utilized

in the well known Mathematica software engine. The

drawback is its complexity and low output yield. Other

research attempted using genetic algorithms to find optimum

combination of rules to produce strong PRS in a two

dimensional cellular automata setting, [13,14]. Obviously, this

approach restricts the flexibility of rule choice and

distribution. The emphasis in this paper is to test the one

dimensional ECA in various heuristic configurations that can

efficiently yield outputs to be considered viable for

cryptographic applications.

III. OUTPUT TEST DATA TESTING

Each run or every binary sequence can be tested either

individually or independently or as part of a sequence of

operations. The part that tests the text data generated by the

selected rule and CA structure undergoes certain data

transformation in the background that is necessary for testing.

The problem of pseudo random bit stream of data testing is

resolved by adopting the Diehard test suite which is widely

accepted in the art and represents the stringent battery of

statistical tests suite available, as of this writing, [24]. There

are 19 individual and independent statistical tests within the

6

Diehard test suite that can be individually selected for testing.

Each test requires a minimum of 80Mbits of test data. They

are listed in Table1.

Table 1, List of original Diehard test suite.

Test Name #p-values

1 BIRTHDAY SPACINGS 9+1

2 tough BIRTHDAY SPACINGS 1

3 BINARY RANK for 31x31 matrices 1

4 BINARY RANK for 32x32 matrices 1

5 BINARY RANK for 6x8 matrices 25+1

6 BITSTREAM 20

7 Overlapping-Pairs-Sparse-Occupancy 23

8 Overlapping-Quadruples-Sparse-Occupancy 28

9 DNA 31

10 COUNT-THE-1's on a stream of bytes 1

11 COUNT-THE-1's for specific bytes 25

12 PARKING LOT 10+1

13 MINIMUM DISTANCE 10+1

14 3-D SPHERES 20+1

15 SQUEEZE 1

16 OVERLAPPING SUMS 10+1

17 UP-DOWN RUNS 3

18 CRAPS 2

19 CRAPS with different dice 2

The Diehard test suite produce what the statisticians refer to as

p-values. Some of these 19 tests produce just one p-value

while others produce more than one p-value as shown in the

above table. The tests produce 223 original p-values. Some

tests add Kolmogorov-Smirnov Goodness-of-Fit tests (marked

in red with the + symbol) and the new total sums to 229 p-

values. It also adds the overall Kolmogorov-Smirnov p-value

that results in a grand total of 230 different p-values. This last

p-value can be considered as a pass/fail criteria for testing.

Each p-value is considered to have failed at the 0.05 level

when its value falls in the range or .

More recently three more tests (GCD, Gorilla and Overlapping

5-Permutation) were added to the suite. They are claimed to be

hard to pass tests and require at least 2.7Gbits of test data. It

follows that when the output data is greater than 80Mbits and

less than 2.7Gbits, the Diehard test suite skips the new tests

and carry out the testing on the original 19 tests, otherwise the

total 21 tests will be attempted and produce a new total of 269

p-values. The Diehard test cannot run on data of less than

80Mbits. When the Diehard test suite program is activated by

the ECA Research Platform it undergoes several operations.

The first of which is to test the size of the data output. If the

size of the data is less than 80Mbit it will exit otherwise it

carries out data transformation where the text data is

transformed into suitably formatted Binary data. The

minimum size of the binary file should be equal to or exceed

10Mbytes in order for the test suite to be activated.

IV. THE ADVANCED CA RESEARCH PLATFORM

(ACARP)

Figure 10 shows the form of the ACARP. The form was

written in visual Basic for convenience while the applications

invoked within the form are written in C++ and visual C for

computational speed. The platform has evolved over long time

of development. The increase in the number of configurations

and functionalities of the CA made it pertinent to redesign the

platform and distribute individual programs in a form of tabs.

Ten tabs appear in the current version. It is envisaged that

more tabs will be added as the research in this platform

ensues. One dimensional binary cellular automaton (or the so-

called Elementary Cellular Automata (ECA)) is the main

vehicle for this platform. The contents of the form change as

the tab changes. However, there are some groups of operations

that will be present with all tabs. For example eight of these

tabs, i.e. all of them with the exceptions of the two tabs, the

Misc and the Cycle, each produce an output text file. Also,

these tabs contain the programs that actually run the CA with

specific configurations. On the other hand, the Misc tab and

the Cycle tab carry out certain operations on the text files

produced by the other eight tabs. The details will be explained

later on in this section. The tabs can be divided into two

categories. The first category encompasses the different

configurations of the CA to be analyzed, numbered 1 to 8 and

the second category lists the additional functionalities

numbered 9 to 10 as described in Table 2. The tabs can be

divided into two categories. The first group encompasses the

different configurations of the CA to be analyzed, numbered 1

to 8 and the second lists the additional functionalities

numbered 9 to 10 in Table 2. The visual form is populated

with radio buttons, clickable buttons and open text windows.

Selection of certain operations can be done by clicking

appropriate radio buttons. Active buttons, when clicked,

invoke certain programs or permit the accessing of certain

files. A file can be accessed through an Open button that

invokes the browsing action to the specific location of the file.

The file will then be displayed in the appropriate window.

Active windows can be filled either manually and/or through

up/down arrows. It the opinion of the author that the best

approach to explain the functionalities of the ECA research

platform is to start with the CA Tab.

Figure 10, the Advanced CA Research Platform (ACARP).

7

Table 2: Advanced CA Research Platform Tabs

Tab # Tab Description

1 CA

2 CA Unbounded

3 CA Ruled Ends

4 CA Alternate Bit and Row

5 LFSR and CA

6 CA Variable Radius

7 CA Twister

8 LFSR Fed CA

9 Miscellaneous

10 Cycle

The CA tab is the core of the platform. Under this tab the ECA

is run in the classical periodic boundary conditions mode with

additional configurations including perturbations to the

boundaries from various independent sources. The functions

in the main body of the platform change with the choice of

each tab in such a way that the platform is provided with the

necessary functionalities to allow the choice accomplishes its

objectives. Although the platform may look different with

each tab selection, some parts of the form are essentially the

same and therefore repeat when switching between tabs and

consequently warrants some explanation. With the exception

of the four configurations Tabs, the CA Unbounded, the CA

Twister, the Misc and the Cycle, all the other six Tabs yield

cylindrical Cellular Automata of span length and

evolution time , from a seed that can be viewed as a

vector of variables occupying the cells of the ECA

lattice at time step such that
 for

 . Figure 11 shows how the cylindrical ECA

collects its data with time evolution while figure 12 depicts the

manner the data is collected as the ECA evolves in time and

yields the output text file of string of one-bit data. The data

concatenation that takes place prior to testing by the Diehard

engine is carried out as depicted in figure 12(a). This way of

concatenation ensures minimum correlation dependence

between the data of the cellular automatons at consequent time

steps. The concatenation of data according to the image of

figure 12 (b) gives poor tests results because of the

dependence between the end cells and the consequent negative

correlation. This data, represented by the symbol is in fact

the text data to be presented to the Diehard test suite for

testing,
 . The same approach has been

used during the unbounded CA data output generation (Tab

#2) for the same reasoning.

Figure 11, Cylindrical ECA data.

(a)

(b)

Figure 12, Two methods of concatenating the data bit stream.

All tabs share the Close button which is used to

terminate any program running and closes the platform. With

the exception of the Cycles tab, all the other 9 tabs share the

File Size section and the following buttons: Calculate, Output

File Name, Open, Run, Run Al, Character to bin, Density,

and Diehard Result.

8

The Seed Type For CA group is shared by the following Tabs

1, 2, 3, 4, 7, and 8.

The Ends Type group is shared by Tabs: 1, 4, and 8.

The Output Type group is shared by Tabs 1, 3, 4, and 8.

Due to the wide varieties and functionalities, the author is of

the opinion that the best route to explain the platform, in the

nutshell, is to go through each Tab in turn with examples.

A. The CA Tab

Here we will first demonstrate the use of the bounded ECA

running under chaotic Rule 30 in the classical periodic

boundary conditions. It will generate data size suitable for

testing by the Diehard standard tests suite. The data is

intended for cryptographic applications; therefore it would be

desirable to have the data pass all Diehard tests. It should be

pointed out here that the whole data output is being used in

contrast to the approach of Wolfram [2,16] which utilizes the

output of just one cell. Figure 13 shows the selections made in

the CA Tab. A seed length of 611-bit was selected for rule 30

and calculated a total of time iterations of 134206 for a data

size of 82Mbits. Random seed was selected which is derived

from C++. The periodic boundary conditions are selected and

this is referred to as “Circular” in the End Type section. The

whole data is used by selecting the “Whole CA” button in the

Output Type section. In order to obtain the final Diehard

results the “Run All” button was selected. This button

encompasses the running in turn of the other buttons except

the Open button.

Figure 13, CA Tab selection details.

The Diehard results, shown in the snap of the results below,

show that all the 229 p-values have passed as well as the

Overall Kolmogorov-Smirnov test p-value. The density of the

whole data set is 0.500011indicating very good distribution.

A supporting display program is also used to display the

space-time diagram of part of the output data as shown in

figure 14 for the span length 611K and iteration 500T .

9

The typical self similar triangular shapes (fractals) usually

associated with periodic rule 30 are apparent in the image.

Figure 14, Space-Time image of ECA under periodic rule 30.

On the other hand, running the CA Tab under the same rule 30

for a smaller span length 131K requiring different iteration

625954T but failed quite a number of the Diehard tests. It

passed 201 p-values and failed the Overall Kolmogorov-

Smirnov test p-value. Repeating the same operation on rule 45

produced even less number of passes, 200 p-values. The time-

space images for the two rules are shown in figure 14 for span

length 131K and iteration 200T . Note again that the

self similar fractals associated with the two rules are apparent.

Figure 15, Space-Time images of the periodic rules 30 (left)

and 45 (right) running in periodic configurations.

For each ECA lattice span length K , there are three ways the

output can be selected, the Whole CA, as was displayed in the

two figures 14 and 15. The second is the CA with Ends which

will include the boundaries in the data output. The third choice

is the Center Bit which means using only the center bit in the

span and discarding the rest. This choice is in effect copies the

method of Wolfram [2], and is currently adopted in the

mathematical engine Mathematica. This method represents a

very strong pseudo random number generator although it lacks

both speed and efficiency. With each of the above output

choices the user can select any of the four End Types. The End

types refer to the boundary conditions. The Circular type is

another name of the usual periodic boundary condition. The

C++ Random End uses the embedded C++ random number

generator to provide the two boundaries. The End From File

can use any other external source for the boundaries. When the

respective radio button is selected the file that contains the

boundary data is determined by browsing and populates the

Ends Type window which is automatically activated. The

LFSR from file uses any size of register with predetermined

taps selected from a list of primitive polynomials. This type in

fact shares the functionalities of another tab, LFSR Multiple

Taps that will be described later. For each of the above

choices, two sizes of data can be selected, 80MB or 2.7GB.

Therefore it can be seen that the choices available for each

span length of the ECA is in fact equal to 2
(2+2+3+4)

! For a

one dimensional ECA of lattice span length , the initial seed

space is composed of the upper bound of

words. Hence, Due to the exhaustive logical complexity of the

ECA, the computational complexity of the periodic boundary

conditions scheme running uniformly under a single local rule

for total time evolution can be estimated as utmost
 . When the ECA is injected with two independent

external boundaries, the new injected variables would enhance

the computational complexity of the bounded ECA by

. If

the external boundaries are derived from two LFSRs, the

computational complexity of the system would be enhanced

by utmost where is the size of the

memory cells of the LFSR and is the Euler’s totient

function that determines the number of primitive polynomials

available. To eliminate the possible introduction of cycle

repetition in the external boundary inputs, the cycle length can

be made equal or greater than the total time evolution of the

ECA. This implies that the LFSR span length can be computed

from .

Rule Equivalence Examples

The following display by way of examples how the ECA

research platform can be used to examine the dynamical

behavior resemblance of one equivalent group, namely group

rule 30. It has been found that best way to compare these rules

is through the choice of a center bit seed. In this way the initial

seed is made an odd number and assert only the center bit, the

rest of the seed consist of zeros. A small size of the span,

 , and evolution time is selected and the

ECA is run under the 4 rules: rule 30, rule 86, rule 135 and

rule 149 that constitute the chaotic rules of group rule 30. The

following space-time images shown in figure 16 illustrate the

similarities in the dynamical behavior of these equivalence

rules in turn. It is evident from the space-diagrams that rule 86

is a mirror reflection of rule 30 while rule 135 is its negation

and rule 149 is the negation of rule 86 and is also the

combined reflection and negation of rule 30. It is also evident

that the randomness in the patterns is the same for all the four

rules and the usual fractals of rule 30 are also repeating in the

other three rules.

10

Figure 16, Rule equivalence example or cluster rule 30.

A. CA Unbounded Tab

The CA Unbounded configuration is a departure from the

classical finite periodic ECA configuration. The concept is

based on an attempt to eliminate the effect of propagation

inwards at the so-called speed of light of correlated patterns

and dependencies caused by the wrapping around action of the

periodic configuration. Note that the next state of a particular

cell at is dependent on the local rule or function of the

present state at time of the three cells at the previous time

evolution step

 . It can be seen that the

next state of the extreme cell at one end
 depends on the

three adjacent cells at the previous time-step,
 ,

 and
 .

It is evident that the cell at the other extreme has influence on

the next state of the cell at the other extreme. Therefore this

dependency will cause correlation effect that will propagate at

the speed of light and the correlation effect will reach the other

extreme end after time steps. However, the movement of the

correlation effect from both sides will meet at
Time-steps. The structure of the Unbounded CA is illustrated

in figure 17 and the correlation effect and propagation is

illustrated in figure 18 for three time steps where the green and

blue cells represent the boundary cells and the yellow cells

carry the correlation effect of the wrapping around action of

the periodic configuration.

Figure 17, structure of the unbounded ECA.

Figure 18, the correlation effect is shown in yellow.

The following gives an example for the above discussion. The

space-time image shown in figure 19 is for the ECA periodic

configuration running under rule 30 for and .

The cells marked yellow represent the correlation effect

carried out due to the periodic boundary action. Removing

these cells will yield the ECA shown in figure 20 and can be

considered free of correlation dependencies. The output of

figure 20 is the space-time image obtained from the

Unbounded ECA configuration running under rule 30 and

using the same random seed. It is worthwhile noting that the

dependencies referred to above are not the self similar shapes

(fractals) usually associated with some CA rules. These self

similar shapes are generated with the particular rule used by

the CA and the shapes may vary as the rule is changed which

is obvious by observing the difference in the self similar

shapes produced for example by Rule 30 and Rule 45 as well

as their equivalences.

Figure 19, Periodic ECA under rule 30, K=101 and T=51 from

a random seed.

Figure 20, space-time image of the Unbounded ECA with the

same rule and seed of figure 19.

Starting from a random seed this unbounded configuration has

passed all Diehard tests suite for almost all the balanced

chaotic rules. Rule mixing in this configuration, whether

11

temporally or spatially or the mixture of both, has also easily

passed the Diehard tests suite. The only possible but minor

drawback to this configuration is the large size of the seed.

However, with the current advance in VLSI area density such

drawback becomes asymptotically negligible. This

configuration has the added advantage that the serious VLSI

drawback of the periodic configuration wire wrap around

routing is overcome. Note that the form for this Tab is

somehow different from the CA Tab. The Calculate button is

missing because the time evolution steps, T is related to the

ECA lattice span K by the expression . A new

section Rule Type is introduced and contains Single Rule and

Alternating Row Rules buttons, as shown in figure 21(a).

When the Alternating Row Rules button is activated another

text window for rule number 2 is added to the form and

situated below the first rule as shown in figure 21 (b) .

(a) (b)

Figure 21, Unbounded ECA Tab additions.

A. CA Ruled Ends Tab

This Tab implements a novel introduction to the CA bounded

configurations by changing the rules at the extremities of the

CA with a two-cell rule so that we do away with the standard

and costly method of periodic boundary conditions. While the

End Type section is reduced to part of the Output Type sub-

section that includes only the Whole CA and the Center Bit,

there is an addition of two pull down windows for the Left

Rule and the Right Rule, as shown in figure 22. Since we

have

two variable rules at each end and that 2*3 of these

are actually single variable rules, namely the ground, the ,

two buffers and two invertors, we end up with 10 two- cell (or

variable) rules for each end. Note that those six rules actually

represent the fixed boundaries usually used in some CA

applications. Therefore the two variable rules function for the

left hand side peripheral cell is derived from the function

 and similarly the two variable rules function for

the right hand side peripheral cell will be derived from the

function

 . Table 3 lists the rules for both sides using

the numbering terminology discussed in a previous section. It

can be seen that we are finally left with

configurations to try in order to uncover viability of any or

some to produce quality pseudo random sequences.

Figure 22, CA Ruled Ends Tab sub-sections

Table 3
 Rules

LHS 17 34 68 102 119 136 153 187 221 238

RHS 3 12 48 60 63 192 195 207 243 252

B. CA Alternate Bit and Row Tab

This is another novel approach to improve the statistical

features and enhance the complexity of the data output of the

ECA. The platform now has a new group added, Single or

Multiple Rule per File, and replaces the Rule window in the

previous Tabs, as shown in figure 23. This is in addition to the

functions described earlier for the bounded CA Tab.

Figure 23, CA Alternate Bit and Row Tab addition.

Therefore, there exists the choice of two rules out of the

symmetric and chaotic rule sub-space. Two rules are selected

and alternate either temporally, whereby it is referred to as

Alternating Row Rule or selected by the activation of the

relative radio button. Or alternate spatially in which case it is

referred to as Alternating bit same position Rule or likewise it

is selected by its relative radio button. The Alternating Row

Rule means that if row index is applying Rule 1 then the two

rows index and will apply Rule 2, etc. On the other

hand the Alternating bit same position Rule means that for

any row, a cell indexed by column j will apply Rule 1 while

the two cells adjacent to it, i.e. indexed by and will

apply Rule 2. This rule alternation will apply to every row

throughout the time evolution of the CA. Note that the

increment/decrement Rule window in the CA Tab is removed

and substituted by the two increment/decrement windows

Rule 1 and Rule 2 as shown in the above figure. For example

we choose the two main chaotic rules Rule 30 and Rule 45 and

run the CA for the two modes, Alternating Row and

Alternating Bit for the following seed lengths: 61, 73, 611and

671. Figure 24 (a) shows the spatiotemporal image for the

Alternating Bit while (b) shows spatiotemporal image for the

Alternating Row and both images are for seed length 61-bit

and 61 time steps. It can be seen that the self similar shapes

(fractals) are different from the native fractals of either rules

30 or 45. The two combinations also demonstrate different

fractals from each other. Table 5 shows the Diehard results for

both modes as well as the periodic configuration, for

comparison purposes, for the seed lengths 61, 73, 611, and

671. The Kolmogorov-Smirnov Goodness- of- Fit p-values are

given in table 5. It is obvious that the Alternating Row mode

behaved superior to the Alternating Bit mode. In fact the

Alternating Row scored even better than the example in the

bounded CA Tab for seedlength 671. Of course this comes

with the bonus added complexity advantage.

12

Table 4, for rules 30 and 45, out of 229 p-values

Seed Length

Number of tests passed

Alternating

Row

Alternating

Bit

Periodic

Rule 30

61 134 137 123

73 228 223 228

611 229 212 229

671 223 193 215

Table 5, for rules 30 and 45

Seed Length

Overall KS p-value

Alternating

Row

Alternating

Bit

Periodic

Rule 30

61 0 0 0

73 0 0 0

611 0.177297 0 0.990502

671 0.013958 0 0

 (a) (b)

Figure 24, Space-Time images of Alternating Bit and

Alternating Row, respectively.

C. LFSR Fed CA

This Tab performs an operation that is unique and

different from the normal use of the CA. It makes use of the

non-linear rules of the CA in order to modify the output of a

LFSR in a manner analogous to the action of a T-function

used in cryptography. Hence, the form must provide

necessary information for the LFSR (i.e. span length and the

taps from a primitive polynomial) and the CA Rule. Figure

25 shows the addition of the LFSR Input File Name

window where the information about the LFSR initial seed

and the taps from an appropriate primitive polynomial

reside, the associated Open button and the LFSR Type

section that in houses two radio buttons, the Moving LFSR

and the Over lapping. The Seed Length window refers to the

span of the LFSR. This Tab provides two modes of

operation, one is to decimate the serial generation of the bit

stream of the LFSR so that no overlapping of data takes

place, and the second one that permits overlapping of the bit

stream and therefore does not decimate the data. The two

operations are illustrated in figure 26 where a clock rate

division by three takes place at the output unit for the

Moving LFSR case.

Figure 25, LFSR Fed CA form addition.

Figure 26, Block Diagram of the LFSR Fed CA design.

D. LFSR Multiple Taps Tab

This Tab is intended primarily to prepare text files to be

used for CA seeds as an alternative to the C++ random

numbers, as mentioned earlier. It is also used as a LFSR

based pseudo random sequence generator for comparison

with the CA. The platform form contains the windows

shown in figure 27 in addition to the usual File Size section,

Calculate and the other six Run buttons. It also contains the

same three windows as used with the other Tabs (the Output

File Name, Seed Length and the Iterations) in addition to a

new window the Input File Name for Seed and Mask where

information about the size of the LFSR span and the taps are

extracted from a text file that is pointed at in this window.

Figure 27, LFSR main input text windows.

E. Misc. Tab

This is intended to provide a collection (or ménage) of

facilities to manipulate and condition further the output bit

data stream. For example, the inverse of the data matrix can be

obtained and passed to the Diehard for testing. It has been

established that such transformation has almost always passed

more tests than the original data. The reason is also

13

understandable in that the transpose operation in fact

conditions the data in such a way that dependencies of

adjacent cells are diminished or separated and consequently

less correlation is encountered. Column splitting is another

more detailed conditioning of the data output. Rearranging the

data such that cell adjacency dependencies are reduced is

bound to improve on the testing with the Diehard. Various

similar operations on the rows are also provided. The

variations in the placement of the columns and the rows

provide convenient means to decimate the data both spatially

as well as temporarily. The use of this Tab helped in

determining that the results collected from such operations

have shown that temporal decimation is less powerful than

spatial sampling. Details of the available operations in this

Tab are shown in the two figures 28 and 29.

Figure 28, Options in the Misc. Tab.

Figure 29, Assemble Options in the Misc. Tab.

F. CA Variable Radius

As for the Unbounded CA and the CA Ruled Ends described

above this new configuration is yet another attempt to remove

the dependency on the periodic boundary condition. Instead of

wrapping around the cell at the extreme end to the other cell at

the other extreme end in the periodic configuration explained

previously, the boundary cell is imported from within the CA

lattice. This is illustrated in figure 30. The next state of the left

hand extreme end cell will be generated thus:

and similarly the next state of the right hand extreme end cell

will be generated thus:

 .

Mixed results were obtained from running some variations of

the radius. Some values of the left and right radii did produce

test results that indeed matched the results from the standard

periodic configuration. This configuration requires extensive

amount of variations to obtain an optimum or near optimum

values for the two radii. The size of both radii was found to

vary depending on the rule used. The platform has the addition

of two windows Left Radius and Right Radius and the Ends

Type is reduced to the Output Type sub-section having three

buttons, Whole CA, CA with Ends and Center Bit, as shown

in the inserts of figure 31.

Figure 30, Variable Radius Configuration.

Figure 31, Variable Radius Tab addition.

J. CA Twister

This configuration is fundamentally different from those

detailed in the above three examples. Here a parent CA that

can be generated by any of the above discussed configurations

is used to provide the seeds for identical Offspring CAs. The

number of the offspring CAs is equal to the seedlength of the

parent CA, i.e. as depicted in figure 32. The seedlength of

the offspring CAs is equal to the time evolution of the parent

CA, i.e. . The time evolution number of steps for the

offspring CAs, i.e. can be determined from the size of the

final data output of the whole CA configuration. The size of

the data output bit string is equal to . We have arranged

the output bit string by concatenating the rows of the offspring

CAs in the same manner as was discussed in the example of

the CA Tab for the periodic finite CA. This configuration has

the obvious main two advantages of expandability and

improved complexity and has produced superior test results

compared to the standard periodic CA and is the subject

matter of another future publication. The form for this Tab is

different from the form for the CA Tab in that the Calculate

button is not included. In addition the Ends Type section is

reduced to the Input File Name window, the Open window

and the Circular radio button.

14

Figure 32, CA Twister structure.

G. Cycle Tab

The main objective of this Tab is to determine the cycle

length, if it exists, and the transient trajectory to the cycle.

Usually the cycle and the trajectory can be determined for

relatively small sizes of the seedlength. For larger sizes where

the bit stream data output is determined a priori, the cycle

cannot be captured otherwise the data will not stand a chance

of passing the Diehard tests suite. This Tab is useful during

analysis of a CA configuration. The platform in this Tab has

only one window, the Input File Name and two buttons, the

Open and the Run, the duties of which are identical to the

other Tabs that have been explained previously. It is only

applicable to the data output in the form of a matrix with the

number of columns representing the seedlength K and the

number of rows representing the evolution time T . Therefore,

it can be seen that it is applicable neither to the Unbounded

CA nor to the LFSR Fed CA configurations.

V. CONCLUSION

We have presented the details of a software-based platform

targeted towards advanced research in cellular automata. The

motivation for this platform was the lack of a research engine

and tool in the open literature using cellular automata as an

emerging technology for the generation of high quality and

cryptographically viable pseudo random sequence generation.

We have demonstrated the use of the platform to carry out a

number of novel cellular automata configurations. Apart from

the standard periodic boundary conditions configuration the

rest seven configurations are new introduction to the binary

one dimensional cellular automaton of neighborhood size 3.

The drawbacks of the periodic boundary conditions, such as

problems in VLSI hardware implementation and weak

statistical features due to the wrapping around effect of cell

adjacency dependencies are removed with the new proposed

configurations. By injecting externally and independently

generated inputs adjacent to the CA lattice end cells, problems

due to the wrapping around of the lattice are overcome and

gargantuan increase in the complexity is achieved. The

Twisted CA configuration introduces a new concept of a

continuously expandable CA structure. The complexity

increases as new layers of offsprings are added. Data derived

from the Unbounded CA configurations have produced

excellent results with Diehard tests suite. The scope of

variability is illustrated with the variable radius and the end

rules configurations. When the application is targeting pseudo

random generation, results have shown that the periodic

boundary scheme can be effectively substituted with the

variable radius configuration. The advantage of this

achievement is double fold, more amenable to VLSI hardware

implementation and increase in data complexity. Decimations

in space or/and time showed the potential for superior data

output as well as improved complexity. In addition to the

various configurations proposed and tested, the platform offers

a lot more facilities to search for yet other means of achieving

better results with the Diehard test suite and added complexity

to the data output.

REFERENCES

[1] J. Von Neumann, “The Theory of Self-Reproducing Automata”,

University of Illinois Press, Urbana, Ill, 1966.
[2] STEPHEN WOLFRAM, "Random Sequence Generation by

Cellular Automata", Advances in Applied Mathematics 7,123-169

(1986).
[3] Erica Jen, “Global properties of Cellular Automata”, Journal of

Statistical Physics, Volume 4, Issue 1-2, April 1986, pp 219-242.

[4] S. K. Park and K. W. Miller, “Random number generators: Good

ones are hard to find”, Communications of the ACM, 31 (1988),

pp. 1192-1201.

[5] Leon O. Chua, “Cellular Neural Networks: Applications”, IEEE

Transactions on Circuits and Systems, Vol. 35, No. 10, October

1988.

[6] Chris G. Langton, “Computation at the edge of chaos: Phase

transitions and emergent computation”, Physica D, 42:12-37, 1990.

[7] Wentian Li, Norman H. Packard, Chris Langton, "Transition

Phenomena in Cellular Automata Rule Space", Physica D, 45, 77-

94 (1990)

[8] Andrew Wuensche and Mike Lesser, "An Atlas of Basin of

Attraction Fields of One-Dimensional Cellular Automata", (1992),

Addison-Wesley, ISBN: 0-201-55740-1.

[9] K. Das and P. P. Chaudhuri, “Vector space theoretic analysis of
additive cellular automata and its application for pseudo exhaustive

test pattern generation,” IEEE Trans. Comput., vol. 42, pp. 340–
352, Mar. 1993.

[10] I. Vattulainen and T. Ala-Nissila, “Mission Impossible: Find a
Random Pseudorandom Number Generator”, Computers in

Physics, September 1995, Volume 9, Issue 5, pp. 500-510.

[11] Murray Gell-Mann, "Let's Call It Plectics", Complexity, Vol. 1, no.

5 (1995/96).

[12] Donald Knuth, “The Art of Computer Programming,
Seminumerical Algorithms”, Volume 2, 3rd edition, Addison

Wesley, Reading, Massachusetts, 1998.

[13] Marco Tomassini, Moshe Sipper, Mosé Zolla, Mathieu
Perrenouda, "Generating high-quality random numbers in parallel

by cellular automata", Future Generation Computer Systems 16
(1999), 291–305.

[14] Tomassini, Marco, “On the Generation of High-Quality Random
Numbers by Two-Dimensional Cellular Automata”, IEEE

transactions on computers, Volume 49, Number 10, October 2000,

pp 1146-1151.

http://www.santafe.edu/~mgm/Site/Publications_files/MGM%20118.pdf

15

[15] A. Llachinski, “Cellular Automata: A Discrete Universe”, World
Scientific Publishing, Singapore, September 2001.

[16] S. Wolfram, “A New Kind of Science”, Champaign, IL: Wolfram

Media, 2002, ISBN: 1579550088.

[17] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg

Snider (2002), "FPGA Implementation of Neighborhood-of-Four

Cellular Automata Random Number Generators", Proc. FPGA

2002.

[18] Pierre L’Ecuyer, and Richard Simard, “TestU01: A C Library for

Empirical Testing of Random Number Generators" ACM

Transactions on Mathematical Software, Vol. 33, No. 4, Article 22,

August 2007.

[19] Wang Qianfeng, Songnian Yu, Wang Ding, & Ming Leng (2008),

"Generating High-Quality Random Numbers By Cellular

Automata With PSO", Fourth International Conference on Natural

Computation, IEEE Computer Society, pp. 430-433. DOI

10.1109/ICNC.2008.560.

[20] Alonso-Sanz Ramón, & Larry Bull (2009), "Elementary Cellular
Automata with Minimal Memory and Random Number

Generation", Complex Systems, 18, pp. 195-213.

[21] H. K. Hoe David, Jonathan M. Comer, Juan C. Cerda, Chris D.

Martinez, & Mukul V. Shirvaikar (2012),"Cellular Automata-

Based Parallel Random Number Generators Using FPGAs",

International Journal of Reconfigurable Computing, Volume 2012,

Article ID 219028, 13 pages, doi:10.1155/2012/219028.

[22] J.M. Comer, Cerda, J.C., Martinez, C.D., & Hoe, D.H.K. (2012),

"Random number generators using Cellular Automata

implemented on FPGAs", 44th Southeastern Symposium on

System Theory (SSST), 44, pp. 67-72.

[23] Charles Wright, “So You Need a Random Number Generator”,

Available at the following URL:

http://islab.oregonstate.edu/koc/ece399/f04/final/Wright.pd

[24] George Marsaglia, “DIEHARD Statistical Tests”:

http://www.stat.fsu.edu/pub/diehard/

http://islab.oregonstate.edu/koc/ece399/f04/final/Wright.pd
http://www.stat.fsu.edu/pub/diehard/

