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Abstract — The paper presents a technique for anomaly 

detection in user behavior in a smart-home environment. 

Presented technique can be used for a service that learns daily 

patterns of the user and proactively detects unusual situations. 

We have identified several drawbacks of previously presented 

models such as: just one type of anomaly - inactivity, intricate 

activity classification into hierarchy, detection only on a daily 

basis. Our novelty approach desists these weaknesses, provides 

additional information if the activity is unusually short/long, at 

unusual location. It is based on a semi-supervised clustering 

model that utilizes the neural network Self-Organizing Maps. 

The input to the system represents data primarily from presence 

sensors, however also other sensors with binary output may be 

used. The experimental study is realized on both synthetic data 

and areal database collected in our own smart-home installation 

for the period of two months. 

 
Index Terms — anomaly detection, behavioral patterns, 

clustering, Self-Organizing Maps, smart-home 

 

I. INTRODUCTION 

LDERLY people are often living alone, demanding 

increased attention of relatives or friends. Even one fall 

can lead to a dangerous situation as the loss of consciousness 

and mobility. If not controlled frequently, a person may lay on 

a ground for many hours or even days without any help. 

A prompt action may save the life. Smart-home systems, 

which are currently getting very popular, may act as detectors 

of such anomalous situations and therefore be supportive for 

relatives and carers. The benefit is on both sides, the elderlies 

would feel safer and the relatives would not be under such 

pressure to control the beneficiaries very frequently. 

The functionality such as measuring values of sensors and 

actuating devices is already commercially available. These 

systems are marked with a term domotics and provide 

improved convenience, comfort, energy efficiency and 

security. At present, the focus is oriented more on processing 

of data gathered from ambient sensors. The aim is to make 

these systems more "intelligent", to allow them to learn the 

habits and patterns of the habitant adapt to them and operate in 

a proactive way. 

 
M. Novak and F. Jakab are with the Department of Computers and 

Informatics, Technical University of Košice, Letná 9, Košice, Slovakia,  
e-mail: marek.novak@tuke.sk, frantisek.jakab@tuke.sk 

L. Lain is with Tecnodiscap, University of Zaragoza, Campus Río Ebro 

C/Mariano Esquilor S/N Edificio I+D+I, Zaragoza, Spain,  
e-mail: llain@unizar.es 

While working on a project MonAMI [1] we have built 

a service that was able to detect anomalous firings from 

presence sensors. Standard behavior of the user was not 

trained from observation (measurements from sensors), 

however was configured manually by an administrator based 

on a survey with the user. The users were asked to specify 

time when they wake up, go to sleep and leave the home. The 

service was aimed to send an alarm message when a measured 

value does not fit into a predefined interval. When filling the 

questionnaires, the beneficiaries were doubtful and the 

collected data did not serve us for the service configuration as 

we expected [2]. This is a significant drawback that prevents 

the successful usage of such a service. 

In this paper we present a novelty method for a system 

which is capable to learn the behavioral patterns of the user by 

observing and to detect anomalies among recognized patterns. 

Detected anomalies may be used as an informative input for 

a carer, relative or a friend who can react promptly. The 

presented system utilizes neural network Self-Organizing 

Maps (SOM). 

Section II presents related works in the area of anomaly 

detection in behavioral patterns. Section III describes types of 

anomalies our system is able to recognize, input values of the 

system and clustering approach. Section IV presents updated 

algorithm of the SOM for the purpose of our anomaly 

detection service. Section V. illustrates the model itself and 

required parameters. In section VI is shortly described 

a technical solution of our smart-home installation based on 

OSGi framework. Section VII discusses experimental study 

realized both on synthetic data and real database collected in 

the period of two months. 

II. RELATED STUDY 

Although there have been realized several works devoted to 

anomaly detection in human daily patterns in recent years, 

they are still far from real adoption and they suffer of many 

drawbacks. These works differ in sensing hardware and 

machine learning techniques used to detect the anomalies. 

Below are listed selected works that are very close to that of 

ours and which inspired us to propose a novelty method 

solving their deficiencies. 

V. Guralnik and K.Z. Haigh [3] were among the first ones 

who have proven the possibility to find patterns in human 

behavior in a smart-home environment. They have proposed 

a machine learning approach to model human sequential 

patterns based on sequential pattern mining [4]. The fact, that 
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it is possible to identify human daily patterns, is an important 

assumption we built on. 

J. Weisenberg et al. [5] created an inactivity threshold 

function. The main idea is to mark an event as anomalous 

when a monitored individual is inactive for an unusually long 

period of time based on historical data for a given time of the 

day. The threshold is a composition of maximum inactivity 

data point for a given time interval and two buffers to allow 

slight shifts in schedule. If detected inactivity exceeds the 

corresponding alert threshold, an alert is issued. A 

disadvantage of this approach is a rather long period of 

anomaly detection at night, so when the user loses 

consciousness at 2:00am, the system will recognize it only 

after 7 hours. 

Another closely related work is of S. Mahmoud et al. [6], 

who compared binary similarity and dissimilarity measures for 

different days. They applied similarity measures as Jaccard-

Needham, Dice, Roger Tanmoto and Kulzinsky on data 

gathered from occupancy sensors including door and motion 

sensors. As a main drawback of this approach we consider the 

inability to get more descriptive feedback about the anomaly. 

The result of their method is just binary, whether a particular 

day is significantly different (dissimilar) to any previous day, 

or not. It is not possible to acquire information which activity 

at which time was anomalous. 

Similarly B. Kaluža and M. Gams [7] investigated the 

possibility to track changes in daily living dynamics. Firstly, 

they identified user's posture from 5 body-worn wireless tags 

with accelerometers. From the spatial coordinates, velocity 

and absolute distances between tags they classified one of the 

three postures: lying, sitting and standing. Secondly, they 

recorded for each particular activity a proportion of time the 

user performed it and monitored the changes in living habits. 

As a deficiency we consider the usage of obtrusive sensing (5 

body tags) and anomaly detection only on a daily basis. 

W. Kang et al. [8] considered activities as a hierarchical 

structure, where main actions (preparing breakfast, preparing 

dinner) are composed of sub-actions (sensor firings). They 

applied hierarchical Hidden Markov Model (HHMM) to find 

exceptional behavior patterns. A hierarchical topology of 

HHMM is mapped to the hierarchy of actions. Anomaly 

detection is based on time interval coverage of main actions to 

sub-actions. They assume sub-actions should last shorter than 

a covering main action. An important deficiency of this work 

is manual classification of sub-actions (sensor firings) into 

main actions. 

Other works such as the one of O. Brdiczka, et al. [9] use 

various 3D video tracking, audio tracking systems or many 

specialized wearable devices to record and recognize specific 

postures and actions of the user. We consider such approaches 

obtrusive to users who refuse to use them because of the 

privacy loss. Similar response from users we get also from 

MonAMI project, where the users refused to use obtrusive 

sensors such as accelerometers attached to body and cameras. 

Therefore we have decided to focus on sensors in ambient 

environment, in particular presence sensors and reed switches. 

Unlike the work of J. Weisenberg et al. [5] we focus also on 

other types of anomalies. In fact, our model can detect 

unusually long activity (inactivity), unusually short activity 

and unexpected activity at an unusual place and time. Thus we 

can cover also anomalies like falling down in the bathroom at 

night. Since we work with the knowledge of location, start 

time and duration of an activity, we can better describe when 

and where the anomaly occurred, in comparison to works of 

S. Mahmoud et al. [6] and B. Kaluža et al. [7], who just have 

the information that a particular day differs from previous 

days. 

Our premises for the model are: 

 to detect several types of anomalies, not just 

inactivity 

 to use only unobtrusive sensors 

 to avoid hierarchical level classification (main 

activities into sub-activities and sub-sub-activities) 

 to provide early alert notification, not just on a daily 

basis 

Simply put, our vision is to propose a model able to provide 

information where, when and what kind of anomaly happened 

to the beneficiary, as early as possible. 

III. RELATED STUDY 

We aim to design an unobtrusive outlier detection service 

based on motion (presence) data classification. Although we 

consider mainly the input from presence sensors, also reed 

switches and smart plugs may be added (a smart plug 

measures and monitors electricity usage of a plugged electric 

device). All these sensors provide binary output, if the device 

is in state ON or OFF. 

The service trains for a specific time interval (e.g. one 

month) standard (expected) behavior of the user, given the 

observations. After this period it starts to evaluate observed 

activities and recognize whether they are anomalous or 

normal. Training is done by clustering observed data points 

into clusters of expected behavior. When the model is trained, 

the activities not fitting into any normal cluster are evaluated 

as anomalous. For this purpose we use an upgraded neural 

network Self-Organizing Maps (SOM). 

We presume a person lives alone and pets are not 

considered, though this could be solved with a special RFID 

tag on a pet's collar and disregarding any sensor firings 

generated by a pet (if a pet is relatively small). 

A. Types of Anomalies 

The service can detect following anomalies: 

 unusual activity (activity in unusual time) - An 

example situation of an unusual activity is when the 

user is sitting in the kitchen or the living room at 

night for some hours, but is expected to be sleeping. 

Wakeful nights are often a sign of some problem. 

 unusually long activity - Unusually long duration of 

an activity may occur when the user falls or loses 

consciousness. Duration of such an anomaly will be 

unusually long. The model is not aimed to 

immediately safe the life (the fall will not be 
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immediately recognized), but rather provide an 

informative output if something unusual happens. 

 unusually short activity - Unusually short duration 

of an activity may occur for instance at night, when 

the user wakes up much more early than usual, e.g. 

he is usually sleeping till 7:30am but one day wakes 

up at 2:40am. This may indicate health problems 

when the user is not sleeping peacefully. 

B. Input Values 

In our model we work with activities, which are the 

abstraction of real activities done by the user in a household 

environment. An activity could be: cooking, sleeping, 

watching TV, bathing and so on. The abstraction is based on 

our simplification of the real world, that an activity is 

composed of three values: location, start time and duration. 

 

Let be an i-th activity ai a tuple (1): 

 

              (1) 

 

where: 

 li is location of a sensor 

 si is start time of an activity 

 di is duration of an activity 

 

Location li is usually a room, where the sensor is physically 

located, but not inevitably constrained to it. If an elderly 

would be living in a dwelling with rather big rooms, the 

surface may be separated in more locations. 

Duration di in location li as a time interval between a time 

instant tstart when the state of the sensor is first changed from 

OFF to ON in location li, and time instant tend, when the state 

of the sensor is first changed from OFF to ON in location lj, 

where li ≠ lj. 

C. Clustering 

Given a set of all activities A we define a set Al ⊂ A, which 

contains only activities from location l (2). 

 

             (2) 

 

For each Al we create standard behavior clusters Cl. 

Activities not belonging into Cl are considered anomalous.  

Clustering algorithms from a set of K-means are not 

applicable in our model, due to the fact they require a number 

of clusters k in advance. For each location l there would be 

a different number of clusters and we never know them in 

advance. There could be only one cluster for a bedroom - 

sleeping at night, however three clusters for a kitchen - 

preparing breakfast, preparing lunch and preparing dinner.  

Hierarchical clustering models like Nearest-neighbor chain 

or CURE data clustering are also not applicable because we 

are not building a hierarchy of activities in a particular 

location. Our objective is only to construct areas in a two 

dimensional space given by vector (s, d) of normal or expected 

behavior and the remaining part of this two dimensional space 

mark as anomalous. 

For our model we have chosen the neural network Self 

Organizing Maps. SOM is usually used to visualize 

multidimensional data into 2 dimensional space [10] by 

grouping similar data together and thus reducing dimension of 

the input data set. The output is usually a two dimensional 

map with groups of different colors. Its advantage is that it 

does not require a number of clusters as an input parameter to 

the algorithm, preserve topological properties of the input 

space and moreover, the boundaries among clusters are not 

strict but rather gradient. The number of iterations influences 

how gradient is the boundary among clusters. The advantage 

is that it is configurable and we can tune them to our 

requirements. 

IV. UPGRADED SOM 

Although an important aspect of the SOM is that it can 

classify data without supervision, we utilize it for semi-

supervised learning. Semi-supervised in our context means, 

that SOM will not be trained on labeled training data 

consisting of vector pairs - an input vector and a target vector 

(both normal and anomaly data), but all training data  would 

be considered normal. While testing the model, data far from 

normal regions would be considered anomalous. 

As a result, we would like to get a learned SOM similar to 

that illustrated in Fig.1. On the left side there are gathered data 

for location "Bedroom". On the right side is the trained SOM. 

Clusters of turquoise color going through orange to red 

represent normal behavior. In this example simulated data are 

directly mapped to SOM (indicated by arrows) and their 

pattern is preserved. Since this is not a standard SOM 

behavior, we have updated it slightly by changing 

initialization phase and weight vectors. 

A. Standard Algorithm 

Let xk be the input vector of a dimension n (3) (upper index 

denotes an element in vector). Each neuron has its weight 

vector wij at position (i, j) where 1 < i < I, 1 < j < J and I, J is 

the size of neurons lattice. Size of the weight vector is 

corresponding to the size of input vector of a dimension n (4). 

Let t be an iteration index, λ be an iteration limit, α be 

a constant parameter for learning rate, u be the index of the 

best matching unit (BMU) described in the more detail below, 

σo be the starting radius around BMU given by I or J and  w(t) 

the weight vector in iteration t. 

Description of an algorithm is taken from [10][11]. 
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1) Each node's weight is initialized to a random value from 

uniform distribution, usually in an interval (0,1) and 

iteration index t is initialized to 1. 
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2) A vector xk is chosen at random from the set of training 

data and presented to the lattice. 

3) For each node there is calculated an Euclidean distance 

dij of the input vector xk to weight vector of that node wij. 

Node with the minimum distance is called Best Matching 

Unit (BMU) and its position in the neurons lattice is 

defined as u. The weight of BMU is denoted as wu. 
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4) The radius around BMU given by a formula (6) is 

calculated for the iteration t. This area of the 

neighborhood around BMU shrinks in each iteration. 

A value σ0 in this formula denotes a default size of the 

lattice in the iteration t = 0. If the lattice is a square, the 

      . If the lattice is not a square  ≠  , the  

                . 

 

            ( 
 

 
) (6) 

  

5) The learning rate value l(t) given by a formula (7) is 

calculated for the iteration t. Similarly to the area radius, 

the learning rate decreases with each iteration. α is 

a parameter of the model. 

 

           ( 
 

 
) (7) 

 

6) Every node within the BMU's neighborhood σ(t), adjusts 

its weight vector by equation (8). The closer a node is to 

the BMU the more its weight is altered.  (t) is a function 

decreasing with the distance (5) of currently processed 

node wij to BMU wu (9). 

 

         ( 
         

 

      
) (7) 

 

7) Increment iteration index       

8) Repeat steps 2 - 7 while     

B. Weight Vectors 

In standard SOM each point of the neuron lattice at position 

    is represented by a weight vector    , where  

    (   
      

        
 ). When SOM is initialized the 

weights    
        are generated randomly and 

independently from an interval (0,1). Given the input vector, 

the neurons weights are altered slightly to reduce the output 

error. This is iterated in a loop many times. Since weight 

vectors are initialized randomly, a trained SOM would for the 

same learning set look differently after each initialization. This 

means that recognized cluster may be located in the upper 

right part of the neurons lattice after first initialization, 

however in the lower left part of the lattice on the second 

initialization. We want to preserve the position and orientation 

of the clusters in the neurons lattice for the purpose of 

anomaly detection.  

In upgraded SOM the weights are used only to identify the 

position of BMU in the lattice based on the input vector. 

Having a set of input vectors       
     

       {      } 
and dimension of neuron lattice     we define initialization 

value for each neuron as (10). 

 

 
 

Fig. 1.  An example how input data are transferred into learned SOM. 
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C. Semi-Supervised Learning 

Our model is build on an assumption that learning set 

contains only normal data. For a selected time period, that is 

a learning period (e.g. one month), measured data are 

considered normal. Only after that period the model starts to 

detect outliers in human behavior. The outliers are data 

significantly far away from trained normal clusters. 

At initialization time we would like to have a SOM, where 

the whole neuron lattice represents only one cluster - 

anomalous behavior. While learning the SOM, there are 

created clusters representing normal behavior. We never know 

in advance how many normal clusters the SOM will learn. 

This is in high contrast to the standard SOM, where weights 

are initialized randomly and therefore there are many clusters 

at the beginning and SOM iteratively converges to a number 

of few final clusters. 

As we mentioned in the previous section, weights     are 

used to find BMU in the lattice. While learning the model, 

weights' values are not amended and remain the same. Since 

weights     are not used for learning, we define another 

weight value           for each neuron in the lattice that is 

used for clustering. 

Weights     are initialized to 0, where 0 represents anomaly 

behavior. While learning, weights     are increased for inputs 

that represent standard behavior and converge to 1. 

 

 Algorithm 1 Upgraded SOM algorithm 

2: Set                              represents number of iterations 

 Set {      } 
4:       

             
   

       
             

  

6: for                   do 

          
        

      

8:          
        

      

 end for 

10:      

 while       do 

12:      for          do 

           for                   do 

14:                      (      ) 

           end for 

16:             {   }             

           for                   do 

18: 
                                                    

         

           end for 
20:      end for 

            
22: end while 

D. The Algorithm 

The upgraded SOM is described in Algorithm 1. The main 

difference between standard and upgraded SOM is in 

initialization phase (lines 5 - 10), where     is set based on the 

input set and amended weights     are initialized to 0 for each 

neuron. Next important difference is located on line 18, where 

we update only weights     for each iteration. Weights     

remain unchanged. 

V. ANOMALY RECOGNITION 

A. Parameters 

During a day the user performs many unpredictable short 

transitions among the rooms, which are considered noisy and 

do not add any additional information to the main patterns 

which are in our focus. Therefore, we filter unwanted firings 

for activities shorter than a parameter τD, in particular, 

activities with duration      are used neither in training 

phase nor for anomaly recognition. This parameter needs to be 

specified manually and reflects the period which is considered 

significantly important in anomaly recognition. 

Showing it on the example with a kitchen and a TV, 

a difference between a time instant when the user goes into 

a living room to change a TV channel and a time instant when 

he comes back to the kitchen is relatively small, most probably 

less than a minute.  

All parameters required by the model are the following: 

 I, J – a size of the neurons lattice     

 λ – a number of iterations used for learning     

 α  - a learning rate that specifies how quickly the 

BMU neighborhood shrinks over time  

 τD  - a time threshold that defines a filter for training 

data and recognition resolution  

 

I represents duration of an activity and J represents time 

within the day (24 hours). If we set I and J to a number of 

seconds within the day, which is 86400, the neurons lattice 

would contain ≈ 2
34

 neurons. It would be computationally 

intensive and quite unnecessary. If we demand the precision of 

5 minutes, as defined by τD, we can divide the day into 288 

slots. The longest duration of an activity is sleeping and we 

are working with the value of 10 hours (since this parameter is 

configurable, we do not refer to any relevant study). When 

dividing 10 hours into 5 minutes intervals we get 120 slots, 

which is the value of I.  

Apparently, the size of the neurons lattice I,J is dependent 

on the parameter τD: 

                  

         

 

Parameters α, λ have been identified experimentally by 

testing   {              },   {                  }. 
Based on the coverage of anomaly clusters we concluded to 

use      and      . 
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B. Learning Phase 

Listing of Algorithm 2 represents a learning phase of the 

whole model. An input to the model is a set of locations L 

given by the arrangement of sensors in user's household and 

a set of activities A recorded during a learning period. 

Firstly, there are created sets    containing just activities ai 

from the location l (lines 7 - 13). Secondly, for each location 

    there is learned a SOM. Thus we get normal clusters    

for every location l (line 16). 

C. Recognition Phase 

The anomaly recognition is realized in discrete time instants 

either when the user physically transits from one location to 

another (in the same manner as in the learning phase) or in 

time interval of τD with timestamp (synthetic) activities. When 

the user loses consciousness or falls and is not able to move, 

he does not perform any activities. Because of this, we use 

timestamp activities (with the location of last sensor firing) to 

identify if the current activity is not unusually long. 

 Algorithm 2 Model learning 

2: Set                                                     inputs to the model 

 Set                                                             parameters      

4: for          do 

            
6:          { } 
 end for 

8: for          do 

                     

10:       if       then 

                 
12:                     

       end if 
14: end for 

 for          do 

16:            
                                as defined in Algorithm 1 

18:  end for      

 

Anomalies are recognized in the following way (t denotes 

the current time instant): 

 

 unusual activity: For this type of anomaly only real 

activities are considered. When such an activity does not 

belong to anomaly cluster in that particular location and 

is significantly long, it is considered anomalous (Fig. 2). 

 unusually long activity: For this type of anomaly only 

timestamp activities are considered. Firstly the system 

needs to check whether for a particular location lt and 

start time st there exists a normal cluster. Only if duration 

of the timestamp activity is longer than normal cluster 

(point (st, dt) is above normal cluster) it is evaluated as 

an anomaly (Fig. 3). 

 unusually short activity: For this type of anomaly only 

real activities are considered. A transit activity is 

evaluated anomalous if it does not belong into a normal 

cluster. The system checks whether for a particular start 

time st there exists a normal cluster, which duration is 

longer than that of tested at (Fig. 4). 

VI. SMART-HOME SYSTEM BASED ON OSGI PLATFORM 

Real data for experimental verification of our model were 

gathered in Valdespartera Living Lab which is part of 

European Network of Living Labs (ENoLL). In the living lab 

there is installed a smart-home system implemented with 

several services for safe warnings, camera monitoring, 

automation, lighting scenarios, energy saving scenarios, daily 

tasks guiding, learning and traineeship, monitoring bio 

measurements, etc. [12]. 

The whole system is divided into three layers: hardware 

layer, core system and external services which may be located 

either on the same computer or may communicate remotely 

with the core infrastructure. The core system gathers and 

processes the data from hardware layer and decides upon 

configuration criteria whether values conform to a normal 

state of the household. If they do not (e.g. gas is detected) the 

 
Fig. 2.  Unusual activity. 
  

 
Fig. 3.  Unusual long duration of an activity. 
 

 
Fig. 4.  Unusual short duration of an activity. 
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carer is informed about this situation through alerts such as 

SMS, email, call, or information on UI.  

The core of the system is implemented in Java 

programming language, based on a modular framework 

Apache Felix OSGi [13]. Modules, in OSGi terminology, 

called bundles, interact through interfaces defined by 

osgi4ami-tecnodiscap. 

A. OSGi4AMi Middleware 

Ambient Assisted Living applications make use of the 

intermediate layer between device technology on one side and 

rule logic with user interfaces on the other. The advantage is 

the flexibility and adaptability of future hardware technologies 

as well as new scenarios based on beneficiaries' requirements. 

Such an approach helps also in development process, when 

several different developer groups may work on a common 

application in parallel. 

Several middleware platforms have already been and still 

are in a development process in cooperative projects [14][15]. 

Although there have been various middleware proposed, none 

of them have become a standard yet. They are developed for 

slightly different domains and designed under different goals, 

therefore their implementation may vary. Though, the main 

idea is the same. 

In our system we have adopted osgi4mi-tecnodiscap 

middleware [16]. This middleware is aimed at hiding 

hardware specific protocols and standards. For example, 

services do not have the information whether a temperature 

value came from a sensor built on a wired or a wireless 

technology. In Fig. 5 a simplified scheme of osgi4mi-

tecnodiscap middleware is shown. The hardware layer (in our 

case ZigBee and 1-Wire network) is propagated through 

abstract interfaces as TemperatureSensor, MotionSensor, etc. 

to the layer of services. The interfaces are implemented in 

Java programming language and serve also as connection 

points for bundles in OSGi platform. The upper layer, labeled 

as External services, represents services or applications that 

are not a part of the OSGi platform. 

B. System Overview 

Global architecture overview of the system is depicted in 

Fig. 6. Residential gateway (RG) represents arbitrary 

computer with the support of Java Virtual Machine (JVM) and 

sufficient number of USB ports to connect device networks. 

There are located all OSGi bundles: a driver for each physical 

device technology, configuration bundle, logging support, rule 

management bundles and application server Virgo. 

The user may interact with the system in different ways: by 

a smart-phone with Android operation system, through 

a multimedia center via a TV situated in user household or 

remotely by web user interface. The carer is notified about an 

unexpected situation by SMS and email alerts or directly by a 

phone call. 

User interface provides a web UI for monitoring, 

controlling devices located in a household, calendar tasks 

management and some additional functionality such as 

weather forecast or interface for enabling and disabling system 

services. 

C. Sensory Installation 

In our experiment the monitoring was done in an apartment 

with one inhabitant, a PhD student, living alone for a period of 

two months. The apartment consisted of six rooms including 

kitchen and bathroom, however only four of them were really 

used. For the experimental study we have used only PIR 

(presence infra red) sensors. All the sensors were built on the 

ZigBee technology, developed at laboratory CAITA-

Tecnodiscap (we have not used commercial ones). The 

placement of sensors is illustrated in Fig. 7. 

The flat's area is divided into 5 locations: Hall - Ha, 

Kitchen - Ki, Living room - Li, Bedroom – Be and Bathroom -

Ba. Both toilet and shower are located together in the 

bathroom. 

Photos of installed sensors are presented in Fig. 8. Each 

sensory unit (small white box) is compound of three different 

sensors: a presence sensor, a light sensor and a temperature 

sensor. For the purpose of our research we have collected only 

presence sensor firings. As visible in the pictures, the sensors 

have wired power supply, albeit the data transmission is 

wireless. It is because the sensors required abruptly high 

energy consumption and the batteries were required to be 

changed every two weeks. This was a compromise we have 

made for the sake of higher quality data (to avoid missing data 

because of discharged batteries). 

 

 
 

Fig. 5.  Simplified scheme of osgi4ami-tecnodiscap middleware. 

  
 

 
 

Fig. 6. Main components of the smart-home system. 
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VII. EXPERIMENTAL RESULTS 

To create a consistent and a suitable ADL dataset is a 

difficult task demanding reliable sensor network installation 

and sufficiently long time period for data acquisition. There 

are very few publicly available databases containing records 

from presence sensors collected in a smart-home environment. 

One of the publicly available databases is provided by 

MavHome project [17]. The problem is, they monitored 

a student with quite a hectic life and it is very problematic to 

find any patterns in his behavior. This is the reason, why we 

decided to build the simulator and to test the model on the 

synthetic data. We have also tested the model on data gathered 

in Valdespartera Living Lab presented in the previous section. 

We presume a person lives alone and pets are not 

considered, though this could be solved with a special RFID 

tag on a pet's collar and disregarding any sensor firings 

generated by a pet (if a pet is relatively small). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Number of Training Days 

Four SOMs learned for different learning periods (from 5 

till 30 days) are presented in Fig. 9. The same as previously, 

the yellow color separates normal from anomaly clusters. As 

visible in the figure, there is not a big difference between 

a database consisting of 20 training days and a database 

consisting of 30 days (even 10 days seems to be sufficient). 

To prove this assumption we have realized a test with different 

number of training days. The results are presented in Fig. 10, 

where the SOM was trained for 2, 4, 6, up to 40 days. The y-

axis indicates a proportion of the area (in percentage) trained 

for normal behavior to the whole neurons lattice area (120 x 

120 neurons). Above 16 training days the coverage area 

increases just slightly (even falls down for 22 days which is 

caused by the fact, that it is the probabilistic model). The 

increase from 20 training days (13,8%) up to 40 training days 

(15,2%) is only 1,4%. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Results from Simulated Data 

To experimentally verify the model we have used data from 

the simulator. The verification consisted of the following 

steps:  

1) The simulator was used to generate a training dataset 

for a period of 20 days. 

2) The model was trained on this dataset with 

parameters: λ = 10, α = 5.0. 

 
 

Fig. 7. Main components of the smart-home system. 

 
 

Fig. 8. Placement of presence sensors within a laboratory flat. 

 
 

Fig. 9. SOMs learned on a simulated data using different training period, 
λ= 10; α = 5:0. 

 

 

 
 
Fig. 10. The coverage area of normal clusters to the whole neurons lattice 

area for different training periods. 

 

TABLE I 

CONFUSION MATRIX FOR SYNTHETIC DATA 
 

Actual class Predicted class 

 Normal Unusual Accur. 

Normal 17 290 150 99.1% 

Unusual 770 27 430 97.2% 

Unusual long 1230 15 430 92.6% 

Unusual short 940 4 860 83.8% 
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3) Separate testing datasets were generated for each of: 

normal activities, unusual activities, unusually long 

activities, unusually short activities and activities in 

wrong location (for missing activity verification). 

4) The confusion matrix was created for each testing 

dataset. 

 

The simulator is built as a Markov process, where the 

probability of the next state is given only by the current state. 

Its objective is to simulate movement sensors - to generate a 

synthetic sequence of times ti and locations li when presence 

sensor records movement of the user. While generating data, 

the simulator moves forward through the pattern states (these 

are the input to the system) and among these transitions 

generates noisy firings. 

To generate a testing datasets we manually created 

reference points representing anomalies (e.g. firing at 4.00am 

in the bedroom). From these reference anomalies we generated 

synthetically data in a frequency of 5 minutes for both start 

time and duration of an activity. Thus we get hundreds of test 

cases. This was repeated for 10 different daily scenarios.  

C. Results from Real Data 

When processing the data, we needed to differentiate 

between weekends and working days. Weekends and holidays 

were a lot noisy without any regular patterns, because the 

student was on his research mobility and made trips or went to 

parties during his spare days. In the contrary, working days 

were quite regular with the majority of time spent at the 

university. Within the period of two months (60 days), there 

were 37 working days and 23 free days. 

For training the model we used 20 days, the remaining days 

were used for testing. The trained SOMs are depicted in 

Fig. 11. The parameter τD was set to 5 minutes. As visible in 

the bedroom, the student used to go to sleep at 1:00am and 

was sleeping from 5 to 8 hours. He never cooked by himself, 

therefore there are only short activities in the kitchen. A table, 

where the student used to eat, was located in the living room, 

which had also the impact on the duration of the activities 

performed in the kitchen. The mainly occupied location was 

the living room, where the student was working as well as 

relaxing (watching TV), which is visible on scattered points in 

evening hours. A daily hygiene he performed before going to 

bed (around 1:00am) and in morning hours (around 7:00am). 

Since the student was usually more than 10 hours out at the 

university and we wanted to preserve the parameters of the 

neurons lattice introduced before (I = J = 120), the activities 

for location "out" were split into two parts - before 3:00pm 

and after 3:00pm. 

At the time of data collection we did not have an 

implemented service for anomaly recognition. Because of this, 

we could test the model only afterwards by batch processing. 

We created normal activities from remaining days (20 days 

were used for testing and 17 for testing) and manually created 

anomalous scenarios.  

The examples of anomalous scenarios are presented in 

Table II. Each entry corresponds to the one activity and 

provides the values: location, start time, end time, actual class, 

predicted class by the model and a short description when 

such an anomaly may occur. Daily pattern of the student was 

the same within the whole period of 37 days. 

For the anomalous activities we get the accuracy of 94.6% 

(35 from 37 correct). Incorrectly were recognized short stays 

in the bedroom at night (in the table marked in bold and 

italics). It is caused by the fact, that SOM for the bedroom is 

trained for relatively wide range of start times, what is 

inappropriate (the normal cluster is too wide). For short 

activities (taking only 10 or 20 minutes) the shorter radius 

around BMU σ(t) would be more suitable. This is the 

limitation of our model, which should be improved for 

precisely defined scenarios. 

VIII. CONCLUSION 

We have presented the service for anomaly detection in 

human daily patterns, that is capable to recognize anomalies 

like: unusual activity, unusually short activity, unusually long 

activity and missing activity (not present when expected) in 

data gathered from presence sensors. To our best knowledge, 

it is the first time a neural network Self-Organizing Maps is 

adopted for this purpose. Based on a shape of the input data 

(location, start time and activity duration), we have amended 

slightly the initialization and training phase of SOM. 

A separate SOM is created for every location. 

 

TABLE II 

ANOMALOUS DATA USED FOR TESTING THE MODEL WITH A PREDICTED 

VALUE (U = UNUSUAL, L = UNUSUALLY LONG, S = UNUSUALLY SHORT) 

Loc Start End Actual Predict. Desc. 

Be 9:40:00 14:30:00 U U unusual sleep 

Ki 3:10:00 3:50:00 U U waken up 

Ki 20:10:00 22:30:00 U U unusual 

Li 2:20:00 3:40:00 U U waken up 

Li 10:20:00 13:15:00 U U not at work 

Ba 2:25:00 2:35:00 U Normal waken up 

Ba 4:12:00 4:19:00 U Normal waken up 

Be 0:40:00 9:30:00 L L long sleep 

Be 2:05:00 10:00:00 L L long sleep 

Ba 1:34:00 2:50:00 L L fall 

Ki 7:34:00 9:30:00 L L fall 

Ki 21:14:00 23:59:00 L L fall 

Li 00:00:01 3:00:00 L L fall 

Li 1:10:00 3:00:00 L L fall 

Be 00:10:00 2:30:00 S S sleepless night 

Be 00:50:00 4:10:00 S S sleepless night 

Ou 7:50:00 10:50:00 S S not at work 

Ou 7:50:00 13:00:00 S S not at work 

Ou 15:00:00 16:10:00 S S early at home 
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In comparison to other current approaches our service 

supports recognition of more anomaly types, provides more 

informative output what actually happened to the user and 

rather quick recognition response. Naturally, the recognition is 

not as quick as in fall detection systems, however the objective 

of our service is little different. 

The experimental study was realized on synthetic firings 

from presence sensors and data gathered in real installation of 

a smart-home system as well. The model was tested on both 

datasets with promising results. The accuracy ranges from 

83.8% to 99.1% for unusually short activities and unusual 

activities respectively. The model incorrectly recognizes 

anomalies which differ only in 10 or 20 minutes from standard 

behavior. Function σ(t) should be amended slightly to better 

model around BMU. 

We are aware of the fact, that rigorous testing requires 

a higher number of respondents and also a database containing 

data collected from a longer time period. Future research we 

see in real implementation and deployment of the model in 

several testing smart-homes and in cooperation with carers to 

optimize the parameters of the model.  
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