

1

Abstract — The paper presents a technique for anomaly

detection in user behavior in a smart-home environment.

Presented technique can be used for a service that learns daily

patterns of the user and proactively detects unusual situations.

We have identified several drawbacks of previously presented

models such as: just one type of anomaly - inactivity, intricate

activity classification into hierarchy, detection only on a daily

basis. Our novelty approach desists these weaknesses, provides

additional information if the activity is unusually short/long, at

unusual location. It is based on a semi-supervised clustering

model that utilizes the neural network Self-Organizing Maps.

The input to the system represents data primarily from presence

sensors, however also other sensors with binary output may be

used. The experimental study is realized on both synthetic data

and areal database collected in our own smart-home installation

for the period of two months.

Index Terms — anomaly detection, behavioral patterns,

clustering, Self-Organizing Maps, smart-home

I. INTRODUCTION

LDERLY people are often living alone, demanding

increased attention of relatives or friends. Even one fall

can lead to a dangerous situation as the loss of consciousness

and mobility. If not controlled frequently, a person may lay on

a ground for many hours or even days without any help.

A prompt action may save the life. Smart-home systems,

which are currently getting very popular, may act as detectors

of such anomalous situations and therefore be supportive for

relatives and carers. The benefit is on both sides, the elderlies

would feel safer and the relatives would not be under such

pressure to control the beneficiaries very frequently.

The functionality such as measuring values of sensors and

actuating devices is already commercially available. These

systems are marked with a term domotics and provide

improved convenience, comfort, energy efficiency and

security. At present, the focus is oriented more on processing

of data gathered from ambient sensors. The aim is to make

these systems more "intelligent", to allow them to learn the

habits and patterns of the habitant adapt to them and operate in

a proactive way.

M. Novak and F. Jakab are with the Department of Computers and

Informatics, Technical University of Košice, Letná 9, Košice, Slovakia,
e-mail: marek.novak@tuke.sk, frantisek.jakab@tuke.sk

L. Lain is with Tecnodiscap, University of Zaragoza, Campus Río Ebro

C/Mariano Esquilor S/N Edificio I+D+I, Zaragoza, Spain,
e-mail: llain@unizar.es

While working on a project MonAMI [1] we have built

a service that was able to detect anomalous firings from

presence sensors. Standard behavior of the user was not

trained from observation (measurements from sensors),

however was configured manually by an administrator based

on a survey with the user. The users were asked to specify

time when they wake up, go to sleep and leave the home. The

service was aimed to send an alarm message when a measured

value does not fit into a predefined interval. When filling the

questionnaires, the beneficiaries were doubtful and the

collected data did not serve us for the service configuration as

we expected [2]. This is a significant drawback that prevents

the successful usage of such a service.

In this paper we present a novelty method for a system

which is capable to learn the behavioral patterns of the user by

observing and to detect anomalies among recognized patterns.

Detected anomalies may be used as an informative input for

a carer, relative or a friend who can react promptly. The

presented system utilizes neural network Self-Organizing

Maps (SOM).

Section II presents related works in the area of anomaly

detection in behavioral patterns. Section III describes types of

anomalies our system is able to recognize, input values of the

system and clustering approach. Section IV presents updated

algorithm of the SOM for the purpose of our anomaly

detection service. Section V. illustrates the model itself and

required parameters. In section VI is shortly described

a technical solution of our smart-home installation based on

OSGi framework. Section VII discusses experimental study

realized both on synthetic data and real database collected in

the period of two months.

II. RELATED STUDY

Although there have been realized several works devoted to

anomaly detection in human daily patterns in recent years,

they are still far from real adoption and they suffer of many

drawbacks. These works differ in sensing hardware and

machine learning techniques used to detect the anomalies.

Below are listed selected works that are very close to that of

ours and which inspired us to propose a novelty method

solving their deficiencies.

V. Guralnik and K.Z. Haigh [3] were among the first ones

who have proven the possibility to find patterns in human

behavior in a smart-home environment. They have proposed

a machine learning approach to model human sequential

patterns based on sequential pattern mining [4]. The fact, that

Anomaly Detection in User Daily Patterns in

Smart-Home Environment

Marek Novák, František Jakab, and Luis Lain

E

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Health Informatics (JSHI), June Edition, 2013
Volume 3, Issue 6

2

it is possible to identify human daily patterns, is an important

assumption we built on.

J. Weisenberg et al. [5] created an inactivity threshold

function. The main idea is to mark an event as anomalous

when a monitored individual is inactive for an unusually long

period of time based on historical data for a given time of the

day. The threshold is a composition of maximum inactivity

data point for a given time interval and two buffers to allow

slight shifts in schedule. If detected inactivity exceeds the

corresponding alert threshold, an alert is issued. A

disadvantage of this approach is a rather long period of

anomaly detection at night, so when the user loses

consciousness at 2:00am, the system will recognize it only

after 7 hours.

Another closely related work is of S. Mahmoud et al. [6],

who compared binary similarity and dissimilarity measures for

different days. They applied similarity measures as Jaccard-

Needham, Dice, Roger Tanmoto and Kulzinsky on data

gathered from occupancy sensors including door and motion

sensors. As a main drawback of this approach we consider the

inability to get more descriptive feedback about the anomaly.

The result of their method is just binary, whether a particular

day is significantly different (dissimilar) to any previous day,

or not. It is not possible to acquire information which activity

at which time was anomalous.

Similarly B. Kaluža and M. Gams [7] investigated the

possibility to track changes in daily living dynamics. Firstly,

they identified user's posture from 5 body-worn wireless tags

with accelerometers. From the spatial coordinates, velocity

and absolute distances between tags they classified one of the

three postures: lying, sitting and standing. Secondly, they

recorded for each particular activity a proportion of time the

user performed it and monitored the changes in living habits.

As a deficiency we consider the usage of obtrusive sensing (5

body tags) and anomaly detection only on a daily basis.

W. Kang et al. [8] considered activities as a hierarchical

structure, where main actions (preparing breakfast, preparing

dinner) are composed of sub-actions (sensor firings). They

applied hierarchical Hidden Markov Model (HHMM) to find

exceptional behavior patterns. A hierarchical topology of

HHMM is mapped to the hierarchy of actions. Anomaly

detection is based on time interval coverage of main actions to

sub-actions. They assume sub-actions should last shorter than

a covering main action. An important deficiency of this work

is manual classification of sub-actions (sensor firings) into

main actions.

Other works such as the one of O. Brdiczka, et al. [9] use

various 3D video tracking, audio tracking systems or many

specialized wearable devices to record and recognize specific

postures and actions of the user. We consider such approaches

obtrusive to users who refuse to use them because of the

privacy loss. Similar response from users we get also from

MonAMI project, where the users refused to use obtrusive

sensors such as accelerometers attached to body and cameras.

Therefore we have decided to focus on sensors in ambient

environment, in particular presence sensors and reed switches.

Unlike the work of J. Weisenberg et al. [5] we focus also on

other types of anomalies. In fact, our model can detect

unusually long activity (inactivity), unusually short activity

and unexpected activity at an unusual place and time. Thus we

can cover also anomalies like falling down in the bathroom at

night. Since we work with the knowledge of location, start

time and duration of an activity, we can better describe when

and where the anomaly occurred, in comparison to works of

S. Mahmoud et al. [6] and B. Kaluža et al. [7], who just have

the information that a particular day differs from previous

days.

Our premises for the model are:

 to detect several types of anomalies, not just

inactivity

 to use only unobtrusive sensors

 to avoid hierarchical level classification (main

activities into sub-activities and sub-sub-activities)

 to provide early alert notification, not just on a daily

basis

Simply put, our vision is to propose a model able to provide

information where, when and what kind of anomaly happened

to the beneficiary, as early as possible.

III. RELATED STUDY

We aim to design an unobtrusive outlier detection service

based on motion (presence) data classification. Although we

consider mainly the input from presence sensors, also reed

switches and smart plugs may be added (a smart plug

measures and monitors electricity usage of a plugged electric

device). All these sensors provide binary output, if the device

is in state ON or OFF.

The service trains for a specific time interval (e.g. one

month) standard (expected) behavior of the user, given the

observations. After this period it starts to evaluate observed

activities and recognize whether they are anomalous or

normal. Training is done by clustering observed data points

into clusters of expected behavior. When the model is trained,

the activities not fitting into any normal cluster are evaluated

as anomalous. For this purpose we use an upgraded neural

network Self-Organizing Maps (SOM).

We presume a person lives alone and pets are not

considered, though this could be solved with a special RFID

tag on a pet's collar and disregarding any sensor firings

generated by a pet (if a pet is relatively small).

A. Types of Anomalies

The service can detect following anomalies:

 unusual activity (activity in unusual time) - An

example situation of an unusual activity is when the

user is sitting in the kitchen or the living room at

night for some hours, but is expected to be sleeping.

Wakeful nights are often a sign of some problem.

 unusually long activity - Unusually long duration of

an activity may occur when the user falls or loses

consciousness. Duration of such an anomaly will be

unusually long. The model is not aimed to

immediately safe the life (the fall will not be

3

immediately recognized), but rather provide an

informative output if something unusual happens.

 unusually short activity - Unusually short duration

of an activity may occur for instance at night, when

the user wakes up much more early than usual, e.g.

he is usually sleeping till 7:30am but one day wakes

up at 2:40am. This may indicate health problems

when the user is not sleeping peacefully.

B. Input Values

In our model we work with activities, which are the

abstraction of real activities done by the user in a household

environment. An activity could be: cooking, sleeping,

watching TV, bathing and so on. The abstraction is based on

our simplification of the real world, that an activity is

composed of three values: location, start time and duration.

Let be an i-th activity ai a tuple (1):

 (1)

where:

 li is location of a sensor

 si is start time of an activity

 di is duration of an activity

Location li is usually a room, where the sensor is physically

located, but not inevitably constrained to it. If an elderly

would be living in a dwelling with rather big rooms, the

surface may be separated in more locations.

Duration di in location li as a time interval between a time

instant tstart when the state of the sensor is first changed from

OFF to ON in location li, and time instant tend, when the state

of the sensor is first changed from OFF to ON in location lj,

where li ≠ lj.

C. Clustering

Given a set of all activities A we define a set Al ⊂ A, which

contains only activities from location l (2).

 (2)

For each Al we create standard behavior clusters Cl.

Activities not belonging into Cl are considered anomalous.

Clustering algorithms from a set of K-means are not

applicable in our model, due to the fact they require a number

of clusters k in advance. For each location l there would be

a different number of clusters and we never know them in

advance. There could be only one cluster for a bedroom -

sleeping at night, however three clusters for a kitchen -

preparing breakfast, preparing lunch and preparing dinner.

Hierarchical clustering models like Nearest-neighbor chain

or CURE data clustering are also not applicable because we

are not building a hierarchy of activities in a particular

location. Our objective is only to construct areas in a two

dimensional space given by vector (s, d) of normal or expected

behavior and the remaining part of this two dimensional space

mark as anomalous.

For our model we have chosen the neural network Self

Organizing Maps. SOM is usually used to visualize

multidimensional data into 2 dimensional space [10] by

grouping similar data together and thus reducing dimension of

the input data set. The output is usually a two dimensional

map with groups of different colors. Its advantage is that it

does not require a number of clusters as an input parameter to

the algorithm, preserve topological properties of the input

space and moreover, the boundaries among clusters are not

strict but rather gradient. The number of iterations influences

how gradient is the boundary among clusters. The advantage

is that it is configurable and we can tune them to our

requirements.

IV. UPGRADED SOM

Although an important aspect of the SOM is that it can

classify data without supervision, we utilize it for semi-

supervised learning. Semi-supervised in our context means,

that SOM will not be trained on labeled training data

consisting of vector pairs - an input vector and a target vector

(both normal and anomaly data), but all training data would

be considered normal. While testing the model, data far from

normal regions would be considered anomalous.

As a result, we would like to get a learned SOM similar to

that illustrated in Fig.1. On the left side there are gathered data

for location "Bedroom". On the right side is the trained SOM.

Clusters of turquoise color going through orange to red

represent normal behavior. In this example simulated data are

directly mapped to SOM (indicated by arrows) and their

pattern is preserved. Since this is not a standard SOM

behavior, we have updated it slightly by changing

initialization phase and weight vectors.

A. Standard Algorithm

Let xk be the input vector of a dimension n (3) (upper index

denotes an element in vector). Each neuron has its weight

vector wij at position (i, j) where 1 < i < I, 1 < j < J and I, J is

the size of neurons lattice. Size of the weight vector is

corresponding to the size of input vector of a dimension n (4).

Let t be an iteration index, λ be an iteration limit, α be

a constant parameter for learning rate, u be the index of the

best matching unit (BMU) described in the more detail below,

σo be the starting radius around BMU given by I or J and w(t)

the weight vector in iteration t.

Description of an algorithm is taken from [10][11].

 { } (3)

 (

) (4)

1) Each node's weight is initialized to a random value from

uniform distribution, usually in an interval (0,1) and

iteration index t is initialized to 1.

4

2) A vector xk is chosen at random from the set of training

data and presented to the lattice.

3) For each node there is calculated an Euclidean distance

dij of the input vector xk to weight vector of that node wij.

Node with the minimum distance is called Best Matching

Unit (BMU) and its position in the neurons lattice is

defined as u. The weight of BMU is denoted as wu.

 ()

 () √(

)

 (

)

 (5)

 { }

4) The radius around BMU given by a formula (6) is

calculated for the iteration t. This area of the

neighborhood around BMU shrinks in each iteration.

A value σ0 in this formula denotes a default size of the

lattice in the iteration t = 0. If the lattice is a square, the

 . If the lattice is not a square ≠ , the

 .

 (

) (6)

5) The learning rate value l(t) given by a formula (7) is

calculated for the iteration t. Similarly to the area radius,

the learning rate decreases with each iteration. α is

a parameter of the model.

 (

) (7)

6) Every node within the BMU's neighborhood σ(t), adjusts

its weight vector by equation (8). The closer a node is to

the BMU the more its weight is altered. (t) is a function

decreasing with the distance (5) of currently processed

node wij to BMU wu (9).

 (

) (7)

7) Increment iteration index

8) Repeat steps 2 - 7 while

B. Weight Vectors

In standard SOM each point of the neuron lattice at position

 is represented by a weight vector , where

 (

). When SOM is initialized the

weights
 are generated randomly and

independently from an interval (0,1). Given the input vector,

the neurons weights are altered slightly to reduce the output

error. This is iterated in a loop many times. Since weight

vectors are initialized randomly, a trained SOM would for the

same learning set look differently after each initialization. This

means that recognized cluster may be located in the upper

right part of the neurons lattice after first initialization,

however in the lower left part of the lattice on the second

initialization. We want to preserve the position and orientation

of the clusters in the neurons lattice for the purpose of

anomaly detection.

In upgraded SOM the weights are used only to identify the

position of BMU in the lattice based on the input vector.

Having a set of input vectors

 { }
and dimension of neuron lattice we define initialization

value for each neuron as (10).

Fig. 1. An example how input data are transferred into learned SOM.

5

 (

) (10)

C. Semi-Supervised Learning

Our model is build on an assumption that learning set

contains only normal data. For a selected time period, that is

a learning period (e.g. one month), measured data are

considered normal. Only after that period the model starts to

detect outliers in human behavior. The outliers are data

significantly far away from trained normal clusters.

At initialization time we would like to have a SOM, where

the whole neuron lattice represents only one cluster -

anomalous behavior. While learning the SOM, there are

created clusters representing normal behavior. We never know

in advance how many normal clusters the SOM will learn.

This is in high contrast to the standard SOM, where weights

are initialized randomly and therefore there are many clusters

at the beginning and SOM iteratively converges to a number

of few final clusters.

As we mentioned in the previous section, weights are

used to find BMU in the lattice. While learning the model,

weights' values are not amended and remain the same. Since

weights are not used for learning, we define another

weight value for each neuron in the lattice that is

used for clustering.

Weights are initialized to 0, where 0 represents anomaly

behavior. While learning, weights are increased for inputs

that represent standard behavior and converge to 1.

 Algorithm 1 Upgraded SOM algorithm

2: Set represents number of iterations

 Set { }
4:

6: for do

8:

 end for

10:

 while do

12: for do

 for do

14: ()

 end for

16: { }

 for do

18:

 end for
20: end for

22: end while

D. The Algorithm

The upgraded SOM is described in Algorithm 1. The main

difference between standard and upgraded SOM is in

initialization phase (lines 5 - 10), where is set based on the

input set and amended weights are initialized to 0 for each

neuron. Next important difference is located on line 18, where

we update only weights for each iteration. Weights

remain unchanged.

V. ANOMALY RECOGNITION

A. Parameters

During a day the user performs many unpredictable short

transitions among the rooms, which are considered noisy and

do not add any additional information to the main patterns

which are in our focus. Therefore, we filter unwanted firings

for activities shorter than a parameter τD, in particular,

activities with duration are used neither in training

phase nor for anomaly recognition. This parameter needs to be

specified manually and reflects the period which is considered

significantly important in anomaly recognition.

Showing it on the example with a kitchen and a TV,

a difference between a time instant when the user goes into

a living room to change a TV channel and a time instant when

he comes back to the kitchen is relatively small, most probably

less than a minute.

All parameters required by the model are the following:

 I, J – a size of the neurons lattice

 λ – a number of iterations used for learning

 α - a learning rate that specifies how quickly the

BMU neighborhood shrinks over time

 τD - a time threshold that defines a filter for training

data and recognition resolution

I represents duration of an activity and J represents time

within the day (24 hours). If we set I and J to a number of

seconds within the day, which is 86400, the neurons lattice

would contain ≈ 2
34

 neurons. It would be computationally

intensive and quite unnecessary. If we demand the precision of

5 minutes, as defined by τD, we can divide the day into 288

slots. The longest duration of an activity is sleeping and we

are working with the value of 10 hours (since this parameter is

configurable, we do not refer to any relevant study). When

dividing 10 hours into 5 minutes intervals we get 120 slots,

which is the value of I.

Apparently, the size of the neurons lattice I,J is dependent

on the parameter τD:

Parameters α, λ have been identified experimentally by

testing { }, { }.
Based on the coverage of anomaly clusters we concluded to

use and .

6

B. Learning Phase

Listing of Algorithm 2 represents a learning phase of the

whole model. An input to the model is a set of locations L

given by the arrangement of sensors in user's household and

a set of activities A recorded during a learning period.

Firstly, there are created sets containing just activities ai

from the location l (lines 7 - 13). Secondly, for each location

 there is learned a SOM. Thus we get normal clusters

for every location l (line 16).

C. Recognition Phase

The anomaly recognition is realized in discrete time instants

either when the user physically transits from one location to

another (in the same manner as in the learning phase) or in

time interval of τD with timestamp (synthetic) activities. When

the user loses consciousness or falls and is not able to move,

he does not perform any activities. Because of this, we use

timestamp activities (with the location of last sensor firing) to

identify if the current activity is not unusually long.

 Algorithm 2 Model learning

2: Set inputs to the model

 Set parameters

4: for do

6: { }
 end for

8: for do

10: if then

12:

 end if
14: end for

 for do

16:
 as defined in Algorithm 1

18: end for

Anomalies are recognized in the following way (t denotes

the current time instant):

 unusual activity: For this type of anomaly only real

activities are considered. When such an activity does not

belong to anomaly cluster in that particular location and

is significantly long, it is considered anomalous (Fig. 2).

 unusually long activity: For this type of anomaly only

timestamp activities are considered. Firstly the system

needs to check whether for a particular location lt and

start time st there exists a normal cluster. Only if duration

of the timestamp activity is longer than normal cluster

(point (st, dt) is above normal cluster) it is evaluated as

an anomaly (Fig. 3).

 unusually short activity: For this type of anomaly only

real activities are considered. A transit activity is

evaluated anomalous if it does not belong into a normal

cluster. The system checks whether for a particular start

time st there exists a normal cluster, which duration is

longer than that of tested at (Fig. 4).

VI. SMART-HOME SYSTEM BASED ON OSGI PLATFORM

Real data for experimental verification of our model were

gathered in Valdespartera Living Lab which is part of

European Network of Living Labs (ENoLL). In the living lab

there is installed a smart-home system implemented with

several services for safe warnings, camera monitoring,

automation, lighting scenarios, energy saving scenarios, daily

tasks guiding, learning and traineeship, monitoring bio

measurements, etc. [12].

The whole system is divided into three layers: hardware

layer, core system and external services which may be located

either on the same computer or may communicate remotely

with the core infrastructure. The core system gathers and

processes the data from hardware layer and decides upon

configuration criteria whether values conform to a normal

state of the household. If they do not (e.g. gas is detected) the

Fig. 2. Unusual activity.

Fig. 3. Unusual long duration of an activity.

Fig. 4. Unusual short duration of an activity.

7

carer is informed about this situation through alerts such as

SMS, email, call, or information on UI.

The core of the system is implemented in Java

programming language, based on a modular framework

Apache Felix OSGi [13]. Modules, in OSGi terminology,

called bundles, interact through interfaces defined by

osgi4ami-tecnodiscap.

A. OSGi4AMi Middleware

Ambient Assisted Living applications make use of the

intermediate layer between device technology on one side and

rule logic with user interfaces on the other. The advantage is

the flexibility and adaptability of future hardware technologies

as well as new scenarios based on beneficiaries' requirements.

Such an approach helps also in development process, when

several different developer groups may work on a common

application in parallel.

Several middleware platforms have already been and still

are in a development process in cooperative projects [14][15].

Although there have been various middleware proposed, none

of them have become a standard yet. They are developed for

slightly different domains and designed under different goals,

therefore their implementation may vary. Though, the main

idea is the same.

In our system we have adopted osgi4mi-tecnodiscap

middleware [16]. This middleware is aimed at hiding

hardware specific protocols and standards. For example,

services do not have the information whether a temperature

value came from a sensor built on a wired or a wireless

technology. In Fig. 5 a simplified scheme of osgi4mi-

tecnodiscap middleware is shown. The hardware layer (in our

case ZigBee and 1-Wire network) is propagated through

abstract interfaces as TemperatureSensor, MotionSensor, etc.

to the layer of services. The interfaces are implemented in

Java programming language and serve also as connection

points for bundles in OSGi platform. The upper layer, labeled

as External services, represents services or applications that

are not a part of the OSGi platform.

B. System Overview

Global architecture overview of the system is depicted in

Fig. 6. Residential gateway (RG) represents arbitrary

computer with the support of Java Virtual Machine (JVM) and

sufficient number of USB ports to connect device networks.

There are located all OSGi bundles: a driver for each physical

device technology, configuration bundle, logging support, rule

management bundles and application server Virgo.

The user may interact with the system in different ways: by

a smart-phone with Android operation system, through

a multimedia center via a TV situated in user household or

remotely by web user interface. The carer is notified about an

unexpected situation by SMS and email alerts or directly by a

phone call.

User interface provides a web UI for monitoring,

controlling devices located in a household, calendar tasks

management and some additional functionality such as

weather forecast or interface for enabling and disabling system

services.

C. Sensory Installation

In our experiment the monitoring was done in an apartment

with one inhabitant, a PhD student, living alone for a period of

two months. The apartment consisted of six rooms including

kitchen and bathroom, however only four of them were really

used. For the experimental study we have used only PIR

(presence infra red) sensors. All the sensors were built on the

ZigBee technology, developed at laboratory CAITA-

Tecnodiscap (we have not used commercial ones). The

placement of sensors is illustrated in Fig. 7.

The flat's area is divided into 5 locations: Hall - Ha,

Kitchen - Ki, Living room - Li, Bedroom – Be and Bathroom -

Ba. Both toilet and shower are located together in the

bathroom.

Photos of installed sensors are presented in Fig. 8. Each

sensory unit (small white box) is compound of three different

sensors: a presence sensor, a light sensor and a temperature

sensor. For the purpose of our research we have collected only

presence sensor firings. As visible in the pictures, the sensors

have wired power supply, albeit the data transmission is

wireless. It is because the sensors required abruptly high

energy consumption and the batteries were required to be

changed every two weeks. This was a compromise we have

made for the sake of higher quality data (to avoid missing data

because of discharged batteries).

Fig. 5. Simplified scheme of osgi4ami-tecnodiscap middleware.

Fig. 6. Main components of the smart-home system.

8

VII. EXPERIMENTAL RESULTS

To create a consistent and a suitable ADL dataset is a

difficult task demanding reliable sensor network installation

and sufficiently long time period for data acquisition. There

are very few publicly available databases containing records

from presence sensors collected in a smart-home environment.

One of the publicly available databases is provided by

MavHome project [17]. The problem is, they monitored

a student with quite a hectic life and it is very problematic to

find any patterns in his behavior. This is the reason, why we

decided to build the simulator and to test the model on the

synthetic data. We have also tested the model on data gathered

in Valdespartera Living Lab presented in the previous section.

We presume a person lives alone and pets are not

considered, though this could be solved with a special RFID

tag on a pet's collar and disregarding any sensor firings

generated by a pet (if a pet is relatively small).

A. Number of Training Days

Four SOMs learned for different learning periods (from 5

till 30 days) are presented in Fig. 9. The same as previously,

the yellow color separates normal from anomaly clusters. As

visible in the figure, there is not a big difference between

a database consisting of 20 training days and a database

consisting of 30 days (even 10 days seems to be sufficient).

To prove this assumption we have realized a test with different

number of training days. The results are presented in Fig. 10,

where the SOM was trained for 2, 4, 6, up to 40 days. The y-

axis indicates a proportion of the area (in percentage) trained

for normal behavior to the whole neurons lattice area (120 x

120 neurons). Above 16 training days the coverage area

increases just slightly (even falls down for 22 days which is

caused by the fact, that it is the probabilistic model). The

increase from 20 training days (13,8%) up to 40 training days

(15,2%) is only 1,4%.

B. Results from Simulated Data

To experimentally verify the model we have used data from

the simulator. The verification consisted of the following

steps:

1) The simulator was used to generate a training dataset

for a period of 20 days.

2) The model was trained on this dataset with

parameters: λ = 10, α = 5.0.

Fig. 7. Main components of the smart-home system.

Fig. 8. Placement of presence sensors within a laboratory flat.

Fig. 9. SOMs learned on a simulated data using different training period,
λ= 10; α = 5:0.

Fig. 10. The coverage area of normal clusters to the whole neurons lattice

area for different training periods.

TABLE I

CONFUSION MATRIX FOR SYNTHETIC DATA

Actual class Predicted class

 Normal Unusual Accur.

Normal 17 290 150 99.1%

Unusual 770 27 430 97.2%

Unusual long 1230 15 430 92.6%

Unusual short 940 4 860 83.8%

9

3) Separate testing datasets were generated for each of:

normal activities, unusual activities, unusually long

activities, unusually short activities and activities in

wrong location (for missing activity verification).

4) The confusion matrix was created for each testing

dataset.

The simulator is built as a Markov process, where the

probability of the next state is given only by the current state.

Its objective is to simulate movement sensors - to generate a

synthetic sequence of times ti and locations li when presence

sensor records movement of the user. While generating data,

the simulator moves forward through the pattern states (these

are the input to the system) and among these transitions

generates noisy firings.

To generate a testing datasets we manually created

reference points representing anomalies (e.g. firing at 4.00am

in the bedroom). From these reference anomalies we generated

synthetically data in a frequency of 5 minutes for both start

time and duration of an activity. Thus we get hundreds of test

cases. This was repeated for 10 different daily scenarios.

C. Results from Real Data

When processing the data, we needed to differentiate

between weekends and working days. Weekends and holidays

were a lot noisy without any regular patterns, because the

student was on his research mobility and made trips or went to

parties during his spare days. In the contrary, working days

were quite regular with the majority of time spent at the

university. Within the period of two months (60 days), there

were 37 working days and 23 free days.

For training the model we used 20 days, the remaining days

were used for testing. The trained SOMs are depicted in

Fig. 11. The parameter τD was set to 5 minutes. As visible in

the bedroom, the student used to go to sleep at 1:00am and

was sleeping from 5 to 8 hours. He never cooked by himself,

therefore there are only short activities in the kitchen. A table,

where the student used to eat, was located in the living room,

which had also the impact on the duration of the activities

performed in the kitchen. The mainly occupied location was

the living room, where the student was working as well as

relaxing (watching TV), which is visible on scattered points in

evening hours. A daily hygiene he performed before going to

bed (around 1:00am) and in morning hours (around 7:00am).

Since the student was usually more than 10 hours out at the

university and we wanted to preserve the parameters of the

neurons lattice introduced before (I = J = 120), the activities

for location "out" were split into two parts - before 3:00pm

and after 3:00pm.

At the time of data collection we did not have an

implemented service for anomaly recognition. Because of this,

we could test the model only afterwards by batch processing.

We created normal activities from remaining days (20 days

were used for testing and 17 for testing) and manually created

anomalous scenarios.

The examples of anomalous scenarios are presented in

Table II. Each entry corresponds to the one activity and

provides the values: location, start time, end time, actual class,

predicted class by the model and a short description when

such an anomaly may occur. Daily pattern of the student was

the same within the whole period of 37 days.

For the anomalous activities we get the accuracy of 94.6%

(35 from 37 correct). Incorrectly were recognized short stays

in the bedroom at night (in the table marked in bold and

italics). It is caused by the fact, that SOM for the bedroom is

trained for relatively wide range of start times, what is

inappropriate (the normal cluster is too wide). For short

activities (taking only 10 or 20 minutes) the shorter radius

around BMU σ(t) would be more suitable. This is the

limitation of our model, which should be improved for

precisely defined scenarios.

VIII. CONCLUSION

We have presented the service for anomaly detection in

human daily patterns, that is capable to recognize anomalies

like: unusual activity, unusually short activity, unusually long

activity and missing activity (not present when expected) in

data gathered from presence sensors. To our best knowledge,

it is the first time a neural network Self-Organizing Maps is

adopted for this purpose. Based on a shape of the input data

(location, start time and activity duration), we have amended

slightly the initialization and training phase of SOM.

A separate SOM is created for every location.

TABLE II

ANOMALOUS DATA USED FOR TESTING THE MODEL WITH A PREDICTED

VALUE (U = UNUSUAL, L = UNUSUALLY LONG, S = UNUSUALLY SHORT)

Loc Start End Actual Predict. Desc.

Be 9:40:00 14:30:00 U U unusual sleep

Ki 3:10:00 3:50:00 U U waken up

Ki 20:10:00 22:30:00 U U unusual

Li 2:20:00 3:40:00 U U waken up

Li 10:20:00 13:15:00 U U not at work

Ba 2:25:00 2:35:00 U Normal waken up

Ba 4:12:00 4:19:00 U Normal waken up

Be 0:40:00 9:30:00 L L long sleep

Be 2:05:00 10:00:00 L L long sleep

Ba 1:34:00 2:50:00 L L fall

Ki 7:34:00 9:30:00 L L fall

Ki 21:14:00 23:59:00 L L fall

Li 00:00:01 3:00:00 L L fall

Li 1:10:00 3:00:00 L L fall

Be 00:10:00 2:30:00 S S sleepless night

Be 00:50:00 4:10:00 S S sleepless night

Ou 7:50:00 10:50:00 S S not at work

Ou 7:50:00 13:00:00 S S not at work

Ou 15:00:00 16:10:00 S S early at home

10

In comparison to other current approaches our service

supports recognition of more anomaly types, provides more

informative output what actually happened to the user and

rather quick recognition response. Naturally, the recognition is

not as quick as in fall detection systems, however the objective

of our service is little different.

The experimental study was realized on synthetic firings

from presence sensors and data gathered in real installation of

a smart-home system as well. The model was tested on both

datasets with promising results. The accuracy ranges from

83.8% to 99.1% for unusually short activities and unusual

activities respectively. The model incorrectly recognizes

anomalies which differ only in 10 or 20 minutes from standard

behavior. Function σ(t) should be amended slightly to better

model around BMU.

We are aware of the fact, that rigorous testing requires

a higher number of respondents and also a database containing

data collected from a longer time period. Future research we

see in real implementation and deployment of the model in

several testing smart-homes and in cooperation with carers to

optimize the parameters of the model.

ACKNOWLEDGMENT

This work is the result of the Project implementation:

Competency Centre for Knowledge technologies applied in

Innovation of Production Systems in Industry and Services,

ITMS: 26220220155, supported by the Research &

Development Operational Programme funded by the ERDF.

REFERENCES

[1] "Project page: Monami," may 2011, accessed: May 2013. [Online].

Available: http://www.monami.info/

[2] D. Šimšík, A. Galajdová, D. Siman, M. Novák, and P. Galajda,
"Services for seniors - experience of testing in slovakia field trials,"

Assistive Technology Research Series: Everyday Technology for

Independence and Care - AAATE 2011, vol. 29, pp. 1082–1089, 2011.

[3] V. Guralnik and K. Z. Haigh, "Learning models of human behaviour

with sequential patterns," in Proceedings of the AAAI-02 workshop

"Automation as Caregiver", 2002, pp. 24–30, aAAI Technical Report
WS-02-02.

[4] R. Agrawal and R. Srikant, "Mining sequential patterns," in Proceedings

of the Eleventh International Conference on data Engineering, 1995,
pp.3–14.

[5] J. Weisenberg, P. Cuddihy, and V. Rajiv, "Augmenting motion sensing

to improve detection of periods of unusual inactivity," in Proceedings of
the 2nd International Workshop on Systems and Networking Support for

Health Care and Assisted Living Environments, ser. HealthNet 08, 2008,

pp. 2:1–2:6.
[6] S. M. Mahmoud, A. Lotfi, and C. Langensiepen, "Behavioural pattern

identification in a smart home using binary similarity and dissimilarity

measures," in Proceedings of the 2011 Seventh International Conference
on Intelligent Environments, ser. IE ’11. IEEE Computer Society, 2011,

pp. 55–60.

[7] B. Kaluža and M. Gams, "An approach to analysis of daily living

dynamics," World Congress on Engineering and Computer Science,

WCECS 2010, vol. 1, pp. 485–490, 2010.

[8] D. S. Wonjoon Kang, Dongkyoo Shin, "Detecting and predicting of
abnormal behavior using hierarchical markov model in smart home

network," in Industrial Engineering and Engineering Management
(IEEM), 2010, pp. 69–75.

[9] O. Brdiczka, M. Langet, J. Maisonnasse, and J. Crowley, "Detecting

Human Behavior Models From Multimodal Observation in a Smart
Home," Automation Science and Engineering, IEEE Transactions on,

vol. 6, no. 4, pp. 588–597, 2009.

[10] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol.
78, no. 9, pp. 1464–1480, Sep. 1990.

[11] M. Buckland, "Kohonen’s self organizing feature maps," accessed: May

2013. [Online]. Available: http://www.ai-
junkie.com/ann/som/som1.html

Fig. 11. Trained SOMs for real activities collected within the period of 20 days.

11

[12] "Valdespartera living lab," may 2013, accessed: May 2013. [Online].

Available: http://www.openlivinglabs.eu/livinglab/valdespartera-living-
lab

[13] A. Felix, "Apache Felix - Overview," accessed: May 2013. [Online].

Available: http://felix.apache.org/
[14] M.-R. Tazari, F. Furfari, J.-P. L. Ramos, and E. Ferro, "The PERSONA

service platform for AAL spaces," 2009.

[15] T. Fuxreiter, C. Mayer, S. Hanke, M. Gira, M. Sili, and J. Kropf, "A
modular platform for event recognition in smart homes," in e-Health

Networking Applications and Services (Healthcom), 2010 12th IEEE

International Conference on, 2010, pp. 1–6.
[16] L. Lain, "osgi4ami-tecnodiscap," accessed: May 2013. [Online].

Available: http://sourceforge.net/projects/osgi4ami-tdc/

[17] G. Youngblood and D. Cook, "Data mining for hierarchical model
creation," Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, vol. 37, no. 4, pp. 561 –572, 2007.

Marek Novák is an internal PhD student at Technical University of Košice.

His research interest is mainly in design and development of various services
for a smart-homes environment. He has cooperated in an international project

MonAMI. His PhD thesis is dedicated to finding anomalies in user behavioral

daily patterns. Besides smart-homes, he is interested in e-learning supportive
services and tools for programming courses. He is a member of Computer

Networks Laboratory.

František Jakab received the MSc. degree in Systemotechnic engineering

from the St. Petersburg Electrotechnical Institute (Russia) in 1984 and the
PhD. degree in 2005. He is employed as an assistant professor at the Dept. of

Computers and Informatics, Technical university of Košice, Slovakia. He is

the head of the Computer Engineering Group and Computer Networks
Laboratory. His research interests include projecting of computer network,

modeling, simulation and network management, new form of multimedia-

based communication, QoS, telelearning systems, intelligent tutoring systems.
He has been a coordinator of several large international e-learning oriented

projects supported by EC. He is a coordinator of the Cisco Networking

Academy Program for the Slovak Republic and head of the Application
Section of the Communication Technology Forum Association in Slovak

Republic.

Luis Lain is a full-time researcher at CAITA-Tecnodiscap group at

University of Zaragoza. He finished Computer Science studies in 2000 and

has been working in main national and international IT companies (financial,
telecommunications...) since then. Last 5 years he has participated in all the

European and National projects the CAITA-Tecnodiscap group is involved in,

leading technical coordination and managing resources and personnel (EU
projects MonAMI, EasyLine+, etc.). His interests include Java developments,

Open Source projects, ambient intelligence and assistive technology.

