

34

Abstract— This paper proposes an image compression scheme

using a personalized storage Discrete Wavelet Transform (DWT).

In image compression schemes based on DWT, the module that

generates these wavelet coefficients is sequentially attached to

some encoding bitplanes. As the level of DWT decomposition

increases the quantity of bits required to represent the wavelet

coefficients is increased. A significant amount of memory is

required to store these coefficients especially when the level of

decomposition of DWT is high. In this paper, a post-processing

method is proposed to set the amplitude of the variable

coefficients. This is accomplished, depending on the level of the

coefficient and the planes of most significant bits of the last levels

can be used to store other bitplanes from other levels. The results

show a significant reduction in memory consumption for

processing the algorithm that uses SPIHT wavelet decomposition

characteristics and a post-processing.

Index Terms— Wavelet transform, reduce memory, image

compression, processing, SPIHT.

I. INTRODUCTION

owadays, the discrete wavelet transform (DWT)

represents an important tool for compression of

multimedia signals. DWT allows to efficiently represent the

high frequency components in images, achieving high

compression ratios when combined with sophisticated

algorithms such as EZW (Embedded Zerotree Wavelet

coding), SPIHT (Set Partitioning in Hierarchical Trees) [1],

JPEG-2000 [2], and the recommendation CCSDS image

compression (The Consultative Committee for Space Data

Systems) [3, 4].

The DWT is applied in image fusion [5] as a tool for a

specific processing in multimedia signals; it is also used on

network devices [6], in image recognition [7] and other

applications [8, 9]. These applications can be implemented in

embedded systems, including image compression that requires

Manuscript received June 10, 2012. This work was supported in part by

the Itasat Project (University of Campinas and Technological Institute of

Aeronautics).

R. Larico Chavez, Y. Iano and R. S. Higa are with the School of Electrical

and Computer Engineering, University of Campinas, SP, Brazil (e-mail:

rlarico@decom.fee.unicamp.br, yuzo@decom.fee.unicamp.br, rhiga@decom.

fee. unicamp.br).

R. Arthur is with the School of Technology, University of Campinas, SP,

Brazil (e-mail: rangel@ft.unicamp.br).

O. Saotome with the Institute Technological of Aeronautic, SP, Brazil (e-

mail: osaotome@ ita.br).

a considerable processing for storage. In this work, our focus

is on reducing the amount of memory during the processing of

WT coding using SPIHT. The DWT can be represented to M

bits per coefficient. In Fig. 1 we can observe the traditional

way in which the value of M can be reduced for use by

encoding bit planes. The most significant bit (MSB) of each

plane are coded according to a compression scheme (the

criterion of significance) until reaching a rate (lossy N <M) or

scanning of all bit planes (lossless N = M).

As shown in Fig. 1, it is possible to use only the first N most

significant bits (MSB) of M bits from DWT and thus apply

bitplane processing algorithms, depending on the application.

In this case, the characteristic of DWT to concentrate energy

into the LLi coefficients can be used, which represent an

approximation of the image. The other subbands (HLi, LHi,

HHi) represent the details of the signal for each level.

In the case of SPIHT compression algorithm, it is possible

to use this technique [10] as shown in Fig. 1. DWT can be

processed using SPIHT which cuts the least significant bits.

The SPIHT algorithm progressively processes the more

significant planes.

The state of the art research have recently tried more

efficient solutions to the problem of memory-constrain in the

development of hardware encoder bitplanes. One alternative is

to reduce the amount of memory, reducing the number of lists

[11]. Other fronts seek to modify the SPIHT coder [12] or

using other methods. Alternatively, the modulus of the DWT

SPIHT algorithm can be modified to reduce memory usage. In

order to reduce memory, DWT implementations use methods

for calculating the transform recursively [13] or methods based

on line and also calculating coefficient by coefficient (line-

based) [14]. These methods reduce the necessary memory

usage of module DWT emphasizing the method associated

Reduced memory wavelet transform coding

using post-processing for SPIHT algorithm

Roger F. Larico Chavez, Yuzo Iano, Osamu Saotome, Rangel Arthur and Rogerio Seiji Higa

N

level (1) level (2) level (n) level (LL)

. . .

. . .

M

bitplane ‘M’ (MSB)

bitplane ‘M-1’

.
.
.

bitplane ‘2’

bitplane ‘1’ (LSB)

bitplane ‘M-N’

.
.
.

N

Fig. 1. Planes of bits used for each level in the DWT.

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), June Edition, 2012

35

with the calculation. In [15] it is used post-processing of DWT

amplitudes reducing the amount of bits to represent the

coefficients. The previous techniques have to store the result

inside the encoder anyway, the main idea is to diminish the

required space without affecting the other modules of the

device.

In this paper we propose the coding scheme shown in Fig. 2,

which is an alternative way of storing the DWT coefficients

inside the encoder. A post-processing is applied to the DWT,

which consists of a reordering and an interface (Part II). After

that the SPIHT traditional algorithm can be applied for image

compression (Part III).

II. WAVELET TRANSFORM WITH POST-PROCESSING

Coding that uses the bitplanes methodology like the SPIHT

algorithm delivers an efficient and good compression. It also

allows the progressive transmission and low processing

complexity [1].

For coding SPIHT, the wavelet transform coefficients must

be stored in a memory bank for processing. This is because the

coefficients are first checked for significance (access to the

most significant bit planes) and later refined in each of the

coding steps. This would require a large amount of memory

space, especially when the image size is large and the

decomposition of the DWT is a high level [16].

In [15] the storage was performed until a specific bitplane,

the other bitplanes, the least significant ones, were

approximated giving good results. The used bitplane format

was a standard unmodified bitplane. This could also be applied

in this proposal, but here the idea. In our proposal the

caractheristics of the DWT like energy compaction and decay

of the coefficients by level are explored. For example, more

bits are required in the highest level to represent a coefficient

than in the lowest level, where the number of bits needed are

the lowest.

Table 1 shows the number of bits required for each

coefficient at every level of DWT for a set of eight images

(Airplane, Baboon, Lenna, Barbara, Goldhill, Peppers,

Sailboat and Satellite). The DWT is biorthogonal (bior4.4) and

only the integer part is used. The calculation was done in a

Matlab module as informative tool.

In Table 1, the forth column corresponds to the mean of bits

necessary to represent a coefficient in a given subband. This is

valid because there are many coefficients at each level, and the

overall average value includes many values that are near zero

and few high values or peaks that do not affect this average

[16]. The last column of Table 1 has the maximum number of

bits required to represent all the coefficients of the respective

subband. It is observed that with increasing levels of DWT

decomposition, there is a increase in the number of bits

required to represent the coefficients [17]. It is shown the

highest rates are located in the region LL of higher level

(characteristic of energy concentration), and the number of bits

needed to represent is 15 for this test group.

Thus, the implementation of traditional SPIHT bitplanes

encoder requires a minimum number of variable bits for each

subband. In this case, DWT requires 512 × 512 coefficients of

15 bits each, which requires a large amount of memory

storage. Using 15 bits for every coefficient, for example, in the

subband HL1, LH1, HH1 the first level consisting of 3/4 parts of

the entire array, the actual usage is only 9 bits at maximum.

Thus, 6 bits per coefficient to these three regions are wasted.

For the next levels, a similar behavior appears, totaling

approximately 37.78% allocation of unused memory (last

column of Table 1).

The Fig. 3 shows the idea of obtaining the positions of MSBi

(see eq. 2) bit planes for each i-th level (step 1). It is observed

a different position for each level, setting the position vector

vMSB (signaled by the red arrow).

},,...,,...,{ 1 LLni MSBMSBMSBMSBvMSB = (1)

In the representation of each coefficient, there is a sign bit

(in this representation it is the most significant coefficient). In

this Fig. 3, note that in LLn, the signal value is known (it is

TABLE I

NUMBER OF BITS REQUIRED TO REPRESENT EACH COEFFICIENT IN THE DWT

LEVELS

Level DWT
Subband

DWT
Size

Mean

bits
*

Max

bits
*

Level 6 LL6 8 × 8 15 15

Level 6 HL6, LH6, HH6 8 × 80 11 13

Level 5 HL5, LH5, HH5 16 × 16 9 13

Level 4 HL4, LH4, HH4 32 × 32 8 12

Level 3 HL3, LH3, HH3 64 × 64 7 11

Level 2 HL2, LH2, HH2 128 × 128 6 10

Level 1 HL1, LH1, HH1 256 × 256 5 9

* Mean and maximum of bits used per wavelet coefficient.

Image

SPIHT code

R
e
-o
rd
e
r

TWD

s
to
ra
g
e bit-stream

Post-processing

M N
bits

bits
M’
bits

Fig. 2. Coding scheme using the SPIHT and the proposed post processing

which decreases the number of bits required for each bit plane of M by N

bits.

level (1) level (2) level (n) level (LLn)

. . .

. . .

M

bitplane ‘M’ (MSB)

bitplane ‘M-1’

.
.
.

bitplane ‘2’

bitplane ‘1’ (LSB)

bitplane ‘M-N’

.
.
.

N

N N

N

MSB1

MSB2 MSBn

MSBLL

Fig 3. Vector to indicate the MSB for each subband.

36

always positive for an image approximation). Thus, the bit

plane MSBLL - 1 (blue arrow) is the most significant in LLn.

In order to reduce the memory needed to store the

coefficients of the DWT it is proposed a method of post-

processing to calculate the new amplitudes of the coefficients

(step 2). A rearrangement of a level 1 bit plane (that uses less

bits) is used to compensate other higher level, so the storage

size is equivalent to N bits (step 3). This is possible since the

area of level ‘n’ equals three times the area of level ‘n+1’. So,

a bit plane level 1 (without LL) equals three bit planes for the

remaining levels. Finally, the interface considers as zero the

part that cannot be saved (step 4).

A. Steps of post-processing

The post-processing is schematically suggested in Fig. 4.

The four steps are explained and exemplified below.

The first step is to get the vector of MSBi. This vector is

calculated with a subset criterion as seen in the last two

columns of Table 1 or by training using other techniques. In

this proposal a tool was created which calculates and provides

information such as those presented in Table 1. Also, if there

is a proper control of overflow, it is possible to use a weighted

average of the mean bit (second last column) and the

maximum number of bits (last column).

The second step, shown in Fig. 5, corresponds to

reorganization (shift) from each level. This operation is

intended to allow that the most significant bit MSBi

corresponds to the bit plane M at all levels. Specifically, the

reordering of bit planes in the region LLn corresponds to

MSBLL – 1. The plane MSBLL is not considered because it does

not change in this representation (the signal is always

positive). Thus, the vector vMSB is a reference of the new

order (fixed).

The third step shown in Fig. 6 uses a bit plane M-N +1 of

level 1 to save in that region the bit planes M-N, MN-1, M-N-2

of the other levels and LLn. Each quadrant HL1, LH1, HH1 of

level 1 is then the data bits of the respective planes.

After this step (step 3) the physical memory is already

reduced as they are using only N bits per coefficient

(equivalent). In Fig. 7, it is observed the memory after these

steps, using M-N +1 to M bit planes. The rest can be used for

other purposes, unallocated or simply released.

In the fourth step (Fig. 8), the new regulations must be

transparent to applications. Thus, the storage interface shows

the N-bit physical and virtual Mv bits with zeroed bit planes

(according to the preceding steps and the vector vMSB).

To represent a wavelet coefficient at any level i, N physical

bits were used and Mv virtual bits were retrieved. From the

Mv= M virtual bits provided by interface the least significant

of each level are normally lost (see "zeroed" on Fig. 8). In the

specific case of level 1, only the N-bit planes of that level are

saved. For other levels, i={2:n}, N+3 bits are always saved

Bitplane shift

Bitplane

Re-order

Interface

Calculate

MSBi Vector

M bits per coefficient

Post-processing

Step 1 Step 2

Step 3

DWT

N bits per coefficientDWT’

Used MSBi for each

level and specific

re-order in LLn

Used the first level

for storage (except

LL1)

Step 4

Re-order must

transparent

Fig 4. Flowchart of the proposed wavelet transform with post-processing.

level (LLn)level (1) level (2) level (n)

. . .

. . .

M

bitplane ‘M’ (MSB)

bitplane ‘M-1’

.
.
.

bitplane ‘2’

bitplane ‘1’ (LSB)

bitplane ‘M-N’

.
.
.

HL1, LH1, HH1

N N N N

HL1
LH1
HH1

Fig 6. Step to use the latest plane required (level 1) to store bit planes from

the other DWT levels.

level (LLn)level (1) level (2) level (n)

. . .

. . .

M

bitplanes ‘M’ (MSB)

bitplanes ‘M-1’

.
.
.

bitplanes ‘2’

bitplanes ‘1’ (LSB)

bitplanes ‘M-N’

.
.
.

N N N N

bitplanes ‘M-N+1’

Fig. 7. Representation of the physical memory used: N of M-bits, after post-

processing.

level (LLn)level (1) level (2) level (n)

. . .

. . .

M

bitplane ‘M’ (MSB)

bitplane ‘M-1’

.
.
.

bitplane ‘2’

bitplane ‘1’ (LSB)

bitplane ‘M-N’

.
.
.

N N N N

Fig. 5. Reordering step of using the vector vMSB from the proposed post-

37

and for the region LLn N+4 bits are saved.

III. SPIHT CODING

The SPIHT coder has an algorithm that explores the

similarities between subbands in wavelet decomposition of an

image. Firstly, the algorithm uses the coefficients considered

more important. Therefore, generates a bitstream from the bits

of these coefficients, refined step by step. Thus, it is possible

to get the original image progressively. This method uses

encoding of bit planes.

This work uses the traditional SPIHT [1] implementation

where DWT uses M bits to represent the coefficient. The

SPIHT algorithm is detailed in [1, 10, 16]. Basically, the

SPIHT encoder uses a partitioning of trees in order to maintain

the insignificant wavelet coefficients grouped into best larger

subsets [18]. In coding, a coefficient is considered significant

if its value is greater than or equal to the threshold T, or as

insignificant if its value is less than T. There are two steps in

the coding of the SPIHT, sorting and refinement step. The

general diagram, with emphasis on access to memory, is shown

in Fig. 9.

The traditional bitplanes coding requires the array of DWT

to be calculated and stored in a memory for SPIHT encoding.

This requires a large memory space that is only used for

reading. As shown in Fig. 8, the memory access of the DWT

can be checked in the algorithm in [1] as a feature this encoder

can access a bitplane step-by-step instead of the full

coefficient. Because of this behavior, segmentation produced

by the non-sequential coefficient proposal is not a problem for

this type of scheme.

The strip-SPIHT coding in [19] shows an implementation

that uses little memory for the SPIHT coding. It stores a few

lines of wavelet coefficients in a strip-buffer and then the

SPIHT encoding is made in a strip-base form, calculating part

of DWT and generating the SPIHT bitstream. In the same area

of research, the work published in [20], which uses lower

levels of decomposition DWT in conjunction with a new tree

structure SOT-C, managed to further reduce the memory

required for the coding scheme in SPIHT-based strip. The

published work [20] uses a specific encoding module in the

DWT making a coding for each subband to reconstruct the

coefficient, by adding the dequantization value ξ [15, 10].

IV. SIMULATIONS AND DISCUSSION

Setting configurations

The simulation software used was the Matlab. Also, in this

software, it was created a tool for DWT bits processing. It was

also used the traditional SPIHT encoder [1] customized for bit

to bit debugging. Both were inserted in the developed generic

procedure simulation as shown in Fig. 10. The set of 512 ×

512 pixels images used for testing were: Airplane, Baboon,

Lenna, Barbara, Goldhill, Peppers, Sailboat and Satellite. A

DWT was used biorthogonal (bior4.4), 6 decomposition

levels, using the integer part of coefficients.

The vector vMSB can be customized according to data in

Table 1. In this proposal, the construction of this vector obeys

the rule given below (eq. 2) to optimize the planes used.

}5,3,...,3,...,3,1{ ++++−= NNNNNvMSB (2)

where 2 < N < 12 the restriction of DWT performance that

generates coefficients with 15 bits for this test. Thus, the

threshold value of the vector is: vMSB = {11.13, ... , 13,15}.

The results generated for comparison used 6 to 9 bits for the

proposal and 11 to 14 bits in a system with the same modules

but without the proposal. These settings were used because

they generated the same performance range. Initialization

Sorting pass

Refinement

pass

Threshold

Update

DWT

bitstream

read LIP

write LSP
read DWT

read, move,

delete LIS

Offspring:

rw LSP, LIP
read DWT

read LSP

create :

LSP,LIP,LIS

read DWT

write LIP,

write LSP

Fig. 9. Block diagram of the SPIHT algorithm emphasizing memory access.

Post-processing
Wavelet

transform
SPIHT code

SPIHT decode
Inverse Wavelet

transform

Comparison

PSNR

Original image

Reconstruc

image

Fig. 10. Test run for DWT, the proposed post-processing and SPIHT.

level (1) level (2) level (n) level (LLn)

. . .

. . .

MV

bitplane ‘M’ (MSB)

bitplane ‘M-1’

.
.
.

bitplane ‘2’

bitplane ‘1’ (LSB)

bitplane ‘M-N’

.
.
.

zero

zero

zero

zero

zero

zero

zero

zero

zero

Fig. 8. Memory interpreted by the interface in the fourth step of the

proposal.

38

Simulations results

The simulation results are shown in Fig. 11, where the

traditional SPIHT uses DWT with N = 11, 12, 13, 14, 15 (bits)

and the proposed SPIHT uses DWT plus post-processing with

N = 6, 7, 8, 9 (bits).

Fig. 11 represents the performance curve SPIHT in PSNR

with controlled rate from 0.2 to 1.2 bpp (bit per pixel). In this

figure, it can be seen that N decreases and the performance

reaches a level where it could not be improved anymore.

However, this level in SPIHT post-processing (pos-proc) for

N=9, rate (up to 1 bpp) is better than the traditional SPIHT

N=12 and equal performance with N =13, 14 or 15 bits. This

level is defined in the proposal by the number of bits set to

zero, so the algorithm only sees Mv. That also can disrupt the

operation of the wavelet when the zeroed bit planes are not

homogeneous (for N = 6, 7 a slight decline is generated after

the1.0 bpp). The PSNR, on this curve, for N = 8 at a rate of up

to 1.0 bpp has a negligible variation, up to 0.6 bpp is equal to

the original performance with M = 15 using less 7 bit planes,

or used only 53% of the original (for M = 15) with very close

performance.

In Fig. 12.a an 11-bit configuration SPIHT without post-

processing is marked. It should be noted that this curve is the

closest to N = 8 used in the proposal. The improvement is

about 2dB. In Fig. 12.b it is noted that for a rate between 0.2

to 0.4 bpp, the proposed N = 7 behaves the same as for N = 12

(or higher). In Fig 12.c is noted that for a rate of 0.6 to 0.8

bpp, the proposal with N = 8 the behavior is similar and very

close to N= 12 (or higher). In Fig. 12.d observed that a rate of

0.2 to 1.0 bpp, the proposal with N = 9 behavior is equal to N

= 14. In each of these comparisons it can be seen that the

value of ‘n’ decreases with the use of post-processing.

In summary, the requirement of using SPIHT and DWT

with a post-processing N = 9 provides a performance similar

to that which does not use it with N = 15 (greater than 0.8

bpp). For rates lower than 0.8 bpp, the performance is

equivalent to the original M =15. Thus, it can be affirmed that

the post-processing method proposed here is important to

reduce the amount of memory to be used in the encoder

module DWT.

V. CONCLUSION

The post-processing method for DWT proposed here

reduces the number of bits required to represent each wavelet

coefficient. Calculating errors were introduced in the least

significant bits, and the lost is of little significance for N = 9 at

0.8 to 1.0 bpp. The best configuration that were viable for a

lossy compression scheme was found at N = 8 bits.

In the proposal for each compression rate is related a PSNR

quality, as shown in Fig 12. Then, for each application an ideal

rate could be set to minimize the quantity of bits used.

Simulation results show that the performance of traditional

coding using SPIHT and DWT with the proposed post

processing has PSNR equivalent to high rates for SPIHT

compression.

ACKNOWLEDGMENT

The authors thank the group of Laboratory Visual

Communications (LCV), CNPq, Fapesp, Capes, Capes-

RHTVD and Faepex.

REFERENCES

[1] A. Said and W. Pearlman, “A new, fast, and efficient image codec based

on set partitioning in hierarchical trees,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 6, no. 3, pp. 243 –250, jun

1996.

[2] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression

Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer

Academic Publishers, 2001.

[3] X. Xu and Y. Zhou, “Design of image data compression ip core based

on processor local bus,” in Database Technology and Applications

(DBTA), 2010 2nd International Workshop on, nov. 2010, pp. 1 –4.

[4] J. Zhang, M. Jing, and W. Shaochuan, “Robust transmission of

progressive images in the deep space communication,” in Wireless

Communications, Networking and Information Security (WCNIS), 2010

IEEE International Conference on, june 2010, pp. 4 –8.

[5] K. Kannan and S. Arumuga Perumal, “Optimal decomposition level of

discrete wavelet transform for pixel based fusion of multi - focused

images,” in Conference on Computational Intelligence and Multimedia

Applications, 2007. International Conference on, vol. 3, dec. 2007, pp.

314 –318.

[6] S. Rein and M. Reisslein, “Low-memory wavelet transforms for wireless

sensor networks: A tutorial,” Communications Surveys Tutorials, IEEE,

vol. 13, no. 2, pp. 291 –307, quarter 2011.

[7] Y. Jin, Y. Wang, Q. Ruan, and X. Wang, “A new scheme for 3d face

recognition based on 2d gabor wavelet transform plus lbp,” in Computer

Science Education (ICCSE), 2011 6th International Conference on,

aug. 2011, pp. 860 –865.

[8] Y. Iano, F. da Silva, and A. Cruz, “A fast and efficient hybrid fractal-

wavelet image coder,” Image Processing, IEEE Transactions on,

vol. 15, no. 1, pp. 98 –105, jan. 2006.

[9] J. Kulkarni, “Wavelet transform applications,” in Electronics Computer

Technology (ICECT), 2011 3rd International Conference on, vol. 1,

april 2011, pp. 11 –17.

[10] W. A. Pearlman and A. Said, “Image wavelet coding systems: Part ii of

set partition coding and image wavelet coding systems,” Found. Trends

Signal Process., vol. 2, pp. 181–246, March 2008. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1482330.1482331

[11] P. Lamsrichan, “A fast algorithm for low-memory embedded wavelet-

based image coding without list,” in Electrical

Engineering/Electronics, Computer, Telecommunications and

post-proc

post-proc

post-proc

N = 14 bits (original)

N = 13 bits (original)

N = 12 bits (original)

N = 11 bits (original)

N = 9 bits (post-proc

.

)

N = 8 bits ()

N = 7 bits ()

N = 6 bits ()

0 0.2 0.4 0.6 0.8 1 1.2
28

30

32

34

36

38

40

P
S
N
R
 (
d
B
)

bpp

Fig. 11. Performance of the proposed coding using traditional SPIHT and

DWT with post-processing in terms of signal to noise ratio (PSNR).

39

Information Technology (ECTI-CON), 2011 8th International

Conference on, may 2011, pp. 979 –982.

[12] Y. Sun, H. Zhang, and G. Hu, “Real-time implementation of a new low-

memory spiht image coding algorithm using dsp chip,” Image

Processing, IEEE Transactions on, vol. 11, no. 9, pp. 1112 – 1116, sep

2002.

[13] J. Oliver and M. Perez Malumbres, “On the design of fast wavelet

transform algorithms with low memory requirements,” Circuits and

Systems for Video Technology, IEEE Transactions on, vol. 18, no. 2,

pp. 237 –248, feb. 2008.

[14] C. Chrysafis and A. Ortega, “Line based reduced memory, wavelet

image compression,” in Data Compression Conference, 1998. DCC

’98. Proceedings, mar-1 apr 1998, pp. 398 –407.

[15] L. W. Chew, L.-M. Ang, and K. P. Seng, “Reduced memory spiht

coding using wavelet transform with post-processing,” in Intelligent

Human-Machine Systems and Cybernetics, 2009. IHMSC ’09.

International Conference on, vol. 1, aug. 2009, pp. 371 –374.

[16] W. A. Pearlman and A. Said, “Set partition coding: Part i of set partition

coding and image wavelet coding systems,” Found. Trends Signal

Process., vol. 2, pp. 95–180, February 2008. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1482328.1482329

[17] A. Klappenecker, F. U. May, and A. Nueckel, “Lossless image

compression using wavelets over finite rings and related architectures,”

A. Aldroubi, A. F. Laine, and M. A. Unser, Eds., vol. 3169, no. 1. SPIE,

1997, pp. 139–147. [Online]. Available: http://link.aip.org/link/?PSI/-

3169/139/1

[18] K. Sayood, Introduction to data compression, ser. Morgan Kaufmann

series in multimedia information and systems. Morgan Kaufmann

Publishers, 2000. [Online]. Available: http://books.google.com.br/-

books?id=ChSOjgiY84YC

[19] R. K. Bhattar, K. Ramakrishnan, and K. Dasgupta, “Strip based coding

for large images using wavelets,” Signal Processing: Image

Communication, vol. 17, no. 6, pp. 441 – 456, 2002. [Online].

Available: http://www.sciencedirect.com/science/article/pii/-

S092359650200019X

[20] L. W. Chew, L.-M. Ang, and K. P. Seng, “New virtual spiht tree

structures for very low memory strip-based image compression,” Signal

Processing Letters, IEEE, vol. 15, pp. 389 –392, 2008.

Roger F. Larico Chávez, bachelor's at Systems engineering for San Agustin

University, Peru in 2002. Masters and doctor degree in the School of

Electrical and Computer Engineering, University of Campinas, SP, Brazil in

2006 and 2012 respectively. Currently he is researcher in Visual

Communication Laboratory on the same University. His research interests

include image and video processing, compression and transmission.

Yuzo Iano, received his PhD. in electrical engineering in 1986. Currently

he is an associate Professor in electrical engineering at Unicamp (State

University of Campinas, Brazil). He also works at Visual Communication

Laboratory (LCV) on the same University. He is responsible for some digital

signal processing (sound and image) projects. His research interests include

video and audio coding, digital video and audio compression and digital

signal transmission.

Osamu Saotome, bachelor's at Engenharia Eletrônica from Instituto

Tecnológico de Aeronáutica (1974), master's and doctorate at Processamento

Digital de Sinais from Tokyo Institute Of Technology in 1984 1987

respectively. Has experience in Electric Engineering, focusing on Electronic

Circuits, acting on the following subjects: Real time systems, electronic

devices and systems, algorithms, digital signal processing and radar receiver.

R. Arthur, He received the B.S. degree in electrical engineering from the

University of São Paulo State (Unesp), Ilha Solteira, Brazil, in 1999, and the

M.Sc. and the Ph.D. degrees in electrical engineering in 2002 and 2007,

respectively, from the University of Campinas, SP, Brazil. Currently he is

professor at the Telecommunication Division at the School of Technology,

Unicamp, Brazil. His current research interest includes digital television in

single frequency network environments, video compressing based on wavelets

transform, video codec projects using digital signal processors and FPGA,

turbo and LDPC coding and mobile health devices.

Rogério Seiji Higa, is currently a PhD. candidate at UNICAMP (State

University of Campinas, Brazil). He received his Masters Degree in Electrical

Engineering at UNICAMP in 2008. He also works at Visual Communication

Laboratory (LCV) on the same University. His research interests include

image processing and computer graphics.

post-proc

post-proc

post-proc

N = 14 bits (original)

N = 13 bits (original)

N = 12 bits (original)

N = 11 bits (original)

N = 9 bits (post-proc

.

)

N =8 bits ()

N = 7 bits ()

N = 6 bits ()

0 0.2 0.4 0.6 0.8 1 1.2
28

30

32

34

36

38

40

bpp

P
S
N
R
 (
d
B
)

c)

P
S
N
R
 (
d
B
)

post-proc

post-proc

post-proc

N = 14 bits (original)

N = 13 bits (original)

N = 12 bits (original)

N = 11 bits (original)

N = 9 bits (post-proc

.

)

N =8 bits ()

N = 7 bits ()

N = 6 bits ()

0 0.2 0.4 0.6 0.8 1 1.2
28

30

32

34

36

38

40

bpp

d)

post-proc

post-proc

post-proc

N = 14 bits (original)

N = 13 bits (original)

N = 12 bits (original)

N = 11 bits (original)

N = 9 bits (post-proc

.

)

N =8 bits ()

N = 7 bits ()

N = 6 bits ()

P
S
N
R
 (
d
B
)

0 0.2 0.4 0.6 0.8 1 1.2
28

30

32

34

36

38

b)

bpp

40

post-proc

post-proc

post-proc

N = 14 bits (original)

N = 13 bits (original)

N = 12 bits (original)

N = 11 bits (original)

N = 9 bits (post-proc

.
)

N =8 bits ()

N = 7 bits ()

N = 6 bits ()

0 0.2 0.4 0.6 0.8 1 1.2
28

30

32

34

36

38

40

P
S
N
R
 (
d
B
)

a)

bpp

Fig. 12. Analysis of some points on the performance outcome.

