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Abstract— This paper proposes an image compression scheme 

using a personalized storage Discrete Wavelet Transform (DWT). 

In image compression schemes based on DWT, the module that 

generates these wavelet coefficients is sequentially attached to 

some encoding bitplanes. As the level of DWT decomposition 

increases the quantity of bits required to represent the wavelet 

coefficients is increased. A significant amount of memory is 

required to store these coefficients especially when the level of 

decomposition of DWT is high. In this paper, a post-processing 

method is proposed to set the amplitude of the variable 

coefficients. This is accomplished, depending on the level of the 

coefficient and the planes of most significant bits of the last levels 

can be used to store other bitplanes from other levels. The results 

show a significant reduction in memory consumption for 

processing the algorithm that uses SPIHT wavelet decomposition 

characteristics and a post-processing. 

 
Index Terms— Wavelet transform, reduce memory, image 

compression, processing, SPIHT. 

 

I. INTRODUCTION 

owadays, the discrete wavelet transform (DWT) 

represents an important tool for compression of 

multimedia signals. DWT allows to efficiently represent the 

high frequency components in images, achieving high 

compression ratios when combined with sophisticated 

algorithms such as EZW (Embedded Zerotree Wavelet 

coding), SPIHT (Set Partitioning in Hierarchical Trees) [1], 

JPEG-2000 [2], and the recommendation CCSDS image 

compression (The Consultative Committee for Space Data 

Systems) [3, 4]. 

The DWT is applied in image fusion [5] as a tool for a 

specific processing in multimedia signals; it is also used on 

network devices [6], in image recognition [7] and other 

applications [8, 9]. These applications can be implemented in 

embedded systems, including image compression that requires 

 
Manuscript received June 10, 2012. This work was supported in part by 

the Itasat Project (University of Campinas and Technological Institute of 

Aeronautics).  

R. Larico Chavez, Y. Iano and R. S. Higa are with the School of Electrical 

and Computer Engineering, University of Campinas, SP, Brazil (e-mail: 

rlarico@decom.fee.unicamp.br, yuzo@decom.fee.unicamp.br, rhiga@decom. 

fee. unicamp.br). 

R. Arthur is with the School of Technology, University of Campinas, SP, 

Brazil (e-mail: rangel@ft.unicamp.br). 

O. Saotome with the Institute Technological of Aeronautic, SP, Brazil (e-

mail: osaotome@ ita.br).  

a considerable processing for storage. In this work, our focus 

is on reducing the amount of memory during the processing of 

WT coding using SPIHT. The DWT can be represented to M 

bits per coefficient. In Fig. 1 we can observe the traditional 

way in which the value of M can be reduced for use by 

encoding bit planes. The most significant bit (MSB) of each 

plane are coded according to a compression scheme (the 

criterion of significance) until reaching a rate (lossy N <M) or 

scanning of all bit planes (lossless N = M). 

As shown in Fig. 1, it is possible to use only the first N most 

significant bits (MSB) of M bits from DWT and thus apply 

bitplane processing algorithms, depending on the application. 

In this case, the characteristic of DWT to concentrate energy 

into the LLi coefficients can be used, which represent an 

approximation of the image. The other subbands (HLi, LHi, 

HHi) represent the details of the signal for each level. 

In the case of SPIHT compression algorithm, it is possible 

to use this technique [10] as shown in Fig. 1. DWT can be 

processed using SPIHT which cuts the least significant bits. 

The SPIHT algorithm progressively processes the more 

significant planes.  

The state of the art research have recently tried more 

efficient solutions to the problem of memory-constrain in the 

development of hardware encoder bitplanes. One alternative is 

to reduce the amount of memory, reducing the number of lists 

[11]. Other fronts seek to modify the SPIHT coder [12] or 

using other methods. Alternatively, the modulus of the DWT 

SPIHT algorithm can be modified to reduce memory usage. In 

order to reduce memory, DWT implementations use methods 

for calculating the transform recursively [13] or methods based 

on line and also calculating coefficient by coefficient (line-

based) [14]. These methods reduce the necessary memory 

usage of module DWT emphasizing the method associated 
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Fig. 1.  Planes of bits used for each level in the DWT. 
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with the calculation. In [15] it is used post-processing of DWT 

amplitudes reducing the amount of bits to represent the 

coefficients. The previous techniques have to store the result 

inside the encoder anyway, the main idea is to diminish the 

required space without affecting the other modules of the 

device.  

In this paper we propose the coding scheme shown in Fig. 2, 

which is an alternative way of storing the DWT coefficients 

inside the encoder. A post-processing is applied to the DWT, 

which consists of a reordering and an interface (Part II). After 

that the SPIHT traditional algorithm can be applied for image 

compression (Part III). 

II. WAVELET TRANSFORM WITH POST-PROCESSING 

Coding that uses the bitplanes methodology like the SPIHT 

algorithm delivers an efficient and good compression. It also 

allows the progressive transmission and low processing 

complexity [1]. 

For coding SPIHT, the wavelet transform coefficients must 

be stored in a memory bank for processing. This is because the 

coefficients are first checked for significance (access to the 

most significant bit planes) and later refined in each of the 

coding steps. This would require a large amount of memory 

space, especially when the image size is large and the 

decomposition of the DWT is a high level [16]. 

In [15] the storage was performed until a specific bitplane, 

the other bitplanes, the least significant ones, were 

approximated giving good results. The used bitplane format 

was a standard unmodified bitplane. This could also be applied 

in this proposal, but here the idea. In our proposal the 

caractheristics of the DWT like energy compaction and decay 

of the coefficients by level are explored. For example, more 

bits are required in the highest level to represent a coefficient 

than in the lowest level, where the number of bits needed are 

the lowest.  

Table 1 shows the number of bits required for each 

coefficient at every level of DWT for a set of eight images 

(Airplane, Baboon, Lenna, Barbara, Goldhill, Peppers, 

Sailboat and Satellite). The DWT is biorthogonal (bior4.4) and 

only the integer part is used. The calculation was done in a 

Matlab module as informative tool. 

In Table 1, the forth column corresponds to the mean of bits 

necessary to represent a coefficient in a given subband. This is 

valid because there are many coefficients at each level, and the 

overall average value includes many values that are near zero 

and few high values or peaks that do not affect this average 

[16]. The last column of Table 1 has the maximum number of 

bits required to represent all the coefficients of the respective 

subband. It is observed that with increasing levels of DWT 

decomposition, there is a increase in the number of bits 

required to represent the coefficients [17]. It is shown the 

highest rates are located in the region LL of higher level 

(characteristic of energy concentration), and the number of bits 

needed to represent is 15 for this test group. 

Thus, the implementation of traditional SPIHT bitplanes 

encoder requires a minimum number of variable bits for each 

subband. In this case, DWT requires 512 × 512 coefficients of 

15 bits each, which requires a large amount of memory 

storage. Using 15 bits for every coefficient, for example, in the 

subband HL1, LH1, HH1 the first level consisting of 3/4 parts of 

the entire array, the actual usage is only 9 bits at maximum. 

Thus, 6 bits per coefficient to these three regions are wasted. 

For the next levels, a similar behavior appears, totaling 

approximately 37.78% allocation of unused memory (last 

column of Table 1). 

The Fig. 3 shows the idea of obtaining the positions of MSBi 

(see eq. 2) bit planes for each i-th level (step 1). It is observed 

a different position for each level, setting the position vector 

vMSB (signaled by the red arrow). 

},,...,,...,{ 1 LLni MSBMSBMSBMSBvMSB =  (1) 

In the representation of each coefficient, there is a sign bit 

(in this representation it is the most significant coefficient). In 

this Fig. 3, note that in LLn, the signal value is known (it is 

TABLE I 

NUMBER OF BITS REQUIRED TO REPRESENT EACH COEFFICIENT IN THE DWT 

LEVELS 

Level DWT 
Subband  

DWT 
Size  

Mean 

bits 
*
 

Max 

bits 
*
 

Level 6 LL6 8 × 8 15 15 

Level 6 HL6, LH6, HH6 8 × 80 11 13 

Level 5 HL5, LH5, HH5 16 × 16 9 13 

Level 4 HL4, LH4, HH4 32 × 32 8 12 

Level 3 HL3, LH3, HH3 64 × 64 7 11 

Level 2 HL2, LH2, HH2 128 × 128 6 10 

Level 1 HL1, LH1, HH1 256 × 256 5 9 

     

* Mean and maximum of bits used per wavelet coefficient. 
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Fig. 2.  Coding scheme using the SPIHT and the proposed post processing 

which decreases the number of bits required for each bit plane of M by N 

bits. 
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Fig 3.  Vector to indicate the MSB for each subband. 
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always positive for an image approximation). Thus, the bit 

plane MSBLL - 1 (blue arrow) is the most significant in LLn. 

In order to reduce the memory needed to store the 

coefficients of the DWT it is proposed a method of post-

processing to calculate the new amplitudes of the coefficients 

(step 2). A rearrangement of a level 1 bit plane (that uses less 

bits) is used to compensate other higher level, so the storage 

size is equivalent to N bits (step 3). This is possible since the 

area of level ‘n’ equals three times the area of level ‘n+1’. So, 

a bit plane level 1 (without LL) equals three bit planes for the 

remaining levels. Finally, the interface considers as zero the 

part that cannot be saved (step 4). 

A. Steps of post-processing 

The post-processing is schematically suggested in Fig. 4. 

The four steps are explained and exemplified below.  

The first step is to get the vector of MSBi. This vector is 

calculated with a subset criterion as seen in the last two 

columns of Table 1 or by training using other techniques. In 

this proposal a tool was created which calculates and provides 

information such as those presented in Table 1. Also, if there 

is a proper control of overflow, it is possible to use a weighted 

average of the mean bit (second last column) and the 

maximum number of bits (last column). 

The second step, shown in Fig. 5, corresponds to 

reorganization (shift) from each level. This operation is 

intended to allow that the most significant bit MSBi 

corresponds to the bit plane M at all levels. Specifically, the 

reordering of bit planes in the region LLn corresponds to 

MSBLL – 1. The plane MSBLL is not considered because it does 

not change in this representation (the signal is always 

positive). Thus, the vector vMSB is a reference of the new 

order (fixed). 

The third step shown in Fig. 6 uses a bit plane M-N +1 of 

level 1 to save in that region the bit planes M-N, MN-1, M-N-2 

of the other levels and LLn. Each quadrant HL1, LH1, HH1 of 

level 1 is then the data bits of the respective planes. 

After this step (step 3) the physical memory is already 

reduced as they are using only N bits per coefficient 

(equivalent). In Fig. 7, it is observed the memory after these 

steps, using M-N +1 to M bit planes. The rest can be used for 

other purposes, unallocated or simply released. 

In the fourth step (Fig. 8), the new regulations must be 

transparent to applications. Thus, the storage interface shows 

the N-bit physical and virtual Mv bits with zeroed bit planes 

(according to the preceding steps and the vector vMSB). 

To represent a wavelet coefficient at any level i, N physical 

bits were used and Mv virtual bits were retrieved. From the 

Mv= M virtual bits provided by interface the least significant 

of each level are normally lost (see "zeroed" on Fig. 8). In the 

specific case of level 1, only the N-bit planes of that level are 

saved. For other levels, i={2:n}, N+3 bits are always saved 
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Fig 4.  Flowchart of the proposed wavelet transform with post-processing. 
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Fig 6. Step to use the latest plane required (level 1) to store bit planes from 

the other DWT levels. 
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Fig. 7.  Representation of the physical memory used: N of M-bits, after post-

processing. 
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Fig. 5.  Reordering step of using the vector vMSB from the proposed post-
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and for the region LLn N+4 bits are saved. 

III. SPIHT CODING 

The SPIHT coder has an algorithm that explores the 

similarities between subbands in wavelet decomposition of an 

image. Firstly, the algorithm uses the coefficients considered 

more important. Therefore, generates a bitstream from the bits 

of these coefficients, refined step by step. Thus, it is possible 

to get the original image progressively. This method uses 

encoding of bit planes. 

This work uses the traditional SPIHT [1] implementation 

where DWT uses M bits to represent the coefficient. The 

SPIHT algorithm is detailed in [1, 10, 16]. Basically, the 

SPIHT encoder uses a partitioning of trees in order to maintain 

the insignificant wavelet coefficients grouped into best larger 

subsets [18]. In coding, a coefficient is considered significant 

if its value is greater than or equal to the threshold T, or as 

insignificant if its value is less than T. There are two steps in 

the coding of the SPIHT, sorting and refinement step. The 

general diagram, with emphasis on access to memory, is shown 

in Fig. 9. 

The traditional bitplanes coding requires the array of DWT 

to be calculated and stored in a memory for SPIHT encoding. 

This requires a large memory space that is only used for 

reading. As shown in Fig. 8, the memory access of the DWT 

can be checked in the algorithm in [1] as a feature this encoder 

can access a bitplane step-by-step instead of the full 

coefficient. Because of this behavior, segmentation produced 

by the non-sequential coefficient proposal is not a problem for 

this type of scheme. 

The strip-SPIHT coding in [19] shows an implementation 

that uses little memory for the SPIHT coding. It stores a few 

lines of wavelet coefficients in a strip-buffer and then the 

SPIHT encoding is made in a strip-base form, calculating part 

of DWT and generating the SPIHT bitstream. In the same area 

of research, the work published in [20], which uses lower 

levels of decomposition DWT in conjunction with a new tree 

structure SOT-C, managed to further reduce the memory 

required for the coding scheme in SPIHT-based strip. The 

published work [20] uses a specific encoding module in the 

DWT making a coding for each subband to reconstruct the 

coefficient, by adding the dequantization value ξ [15, 10]. 

IV. SIMULATIONS AND DISCUSSION 

Setting configurations 

The simulation software used was the Matlab. Also, in this 

software, it was created a tool for DWT bits processing. It was 

also used the traditional SPIHT encoder [1] customized for bit 

to bit debugging. Both were inserted in the developed generic 

procedure simulation as shown in Fig. 10. The set of 512 × 

512 pixels images used for testing were: Airplane, Baboon, 

Lenna, Barbara, Goldhill, Peppers, Sailboat and Satellite. A 

DWT was used biorthogonal (bior4.4), 6 decomposition 

levels, using the integer part of coefficients. 

The vector vMSB can be customized according to data in 

Table 1. In this proposal, the construction of this vector obeys 

the rule given below (eq. 2) to optimize the planes used. 

}5,3,...,3,...,3,1{ ++++−= NNNNNvMSB  (2) 

where 2 < N < 12 the restriction of DWT performance that 

generates coefficients with 15 bits for this test. Thus, the 

threshold value of the vector is: vMSB = {11.13, ... , 13,15}. 

The results generated for comparison used 6 to 9 bits for the 

proposal and 11 to 14 bits in a system with the same modules 

but without the proposal. These settings were used because 

they generated the same performance range.  Initialization
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Fig. 9.  Block diagram of the SPIHT algorithm emphasizing memory access. 
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Fig. 10.  Test run for DWT, the proposed post-processing and SPIHT. 
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Simulations results 

The simulation results are shown in Fig. 11, where the 

traditional SPIHT uses DWT with N = 11, 12, 13, 14, 15 (bits) 

and the proposed SPIHT uses DWT plus post-processing with 

N = 6, 7, 8, 9 (bits). 

Fig. 11 represents the performance curve SPIHT in PSNR 

with controlled rate from 0.2 to 1.2 bpp (bit per pixel). In this 

figure, it can be seen that N decreases and the performance 

reaches a level where it could not be improved anymore. 

However, this level in SPIHT post-processing (pos-proc) for 

N=9, rate (up to 1 bpp) is better than the traditional SPIHT 

N=12 and equal performance with N =13, 14 or 15 bits. This 

level is defined in the proposal by the number of bits set to 

zero, so the algorithm only sees Mv. That also can disrupt the 

operation of the wavelet when the zeroed bit planes are not 

homogeneous (for N = 6, 7 a slight decline is generated after 

the1.0 bpp). The PSNR, on this curve, for N = 8 at a rate of up 

to 1.0 bpp has a negligible variation, up to 0.6 bpp is equal to 

the original performance with M = 15 using less 7 bit planes, 

or used only 53% of the original (for M = 15) with very close 

performance. 

In Fig. 12.a an 11-bit configuration SPIHT without post-

processing is marked. It should be noted that this curve is the 

closest to N = 8 used in the proposal. The improvement is 

about 2dB. In Fig. 12.b it is noted that for a rate between 0.2 

to 0.4 bpp, the proposed N = 7 behaves the same as for N = 12 

(or higher). In Fig 12.c is noted that for a rate of 0.6 to 0.8 

bpp, the proposal with N = 8 the behavior is similar and very 

close to N= 12 (or higher). In Fig. 12.d observed that a rate of 

0.2 to 1.0 bpp, the proposal with N = 9 behavior is equal to N 

= 14. In each of these comparisons it can be seen that the 

value of ‘n’ decreases with the use of post-processing. 

In summary, the requirement of using SPIHT and DWT 

with a post-processing N = 9 provides a performance similar 

to that which does not use it with N = 15 (greater than 0.8 

bpp). For rates lower than 0.8 bpp, the performance is 

equivalent to the original M =15. Thus, it can be affirmed that 

the post-processing method proposed here is important to 

reduce the amount of memory to be used in the encoder 

module DWT. 

V. CONCLUSION 

The post-processing method for DWT proposed here 

reduces the number of bits required to represent each wavelet 

coefficient. Calculating errors were introduced in the least 

significant bits, and the lost is of little significance for N = 9 at 

0.8 to 1.0 bpp. The best configuration that were viable for a 

lossy compression scheme was found at N = 8 bits. 

In the proposal for each compression rate is related a PSNR 

quality, as shown in Fig 12. Then, for each application an ideal 

rate could be set to minimize the quantity of bits used.  

Simulation results show that the performance of traditional 

coding using SPIHT and DWT with the proposed post 

processing has PSNR equivalent to high rates for SPIHT 

compression.  
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Fig. 12.  Analysis of some points on the performance outcome. 

 


