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 

Abstract— Configuration space computation is a 

transformation process that reduces a robot to a single reference 

point by expanding obstacles on the image plane. The obstacles 

can be expanded by inverting the robot along a reference point 

and then slide this reference point along their borders. The area 

covered by the union of inverted robot during the sliding along 

with the obstacles defines the configuration space of obstacles. 

This approach reduces a complex problem into a simple one. In 

this paper, we present a parallel algorithm for computing the 

configuration space obstacles by using reconfigurable mesh 

multiprocessors. The reconfigurable mesh multiprocessor system 

is a multiprocessor model with flexible bus connection 

capabilities. The digitized images of the obstacles and the robot 

are stored in an image plane. The algorithm takes O(1) time and 

is optimal.  

 
Index Terms— Configuration space, robotics, image 

processing, parallel algorithms, Reconfigurable mesh 

I. INTRODUCTION 

CONFIGURATION space computation found applications in 

motion planning, computer graphics, robot-assisted 

surgery, automated assembly plans among many others. 

For example, Wytyczak-Partyka et. al[15]. propose no fly zone 

concept to assist surgeons. By defining the configuration space 

of the instrument, their system can provide a collision free 

working space for surgeons.  In computer graphics application, 

Bandi and Thalmann adopted Configuration space approach to 

simulate human finger animation [1]. In [4], Ivanisevic and 

Lumelsky used configuration space as means to enhance 

human performance in teleoperation tasks. Because computing 

configuration space concept provides a generalized framework 

to study the motion planning problem and therefore is an 

important problem in path planning for automatic robotics 

applications  see [3], [10], [11], [12], [13], [17]. 

Our aim in this paper is to develop constant time algorithm 

for computing the configuration space on reconfigurable mesh 

multiprocessors (RMESH). In [9], Kavraki used a Fast Fourier 

Transform based algorithm to compute configuration space 

obstacles. The objective of path planning is to find a path to 
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move a robot  A  from a position  s  (the initial position) to 

another position  d  (the final position) without colliding with 

the obstacles already in space R. A common way to solve this 

problem is the configuration space approach which reduces the 

robot  A  to a single reference point  p  and expands each 

obstacle
j

B
 

to include all the positions of  p  that cause a 

collision between  A  and  
j

B .The expansion of an obstacle  
j

B  

is called the configuration space obstacle of  
j

B . In the new 

representation, the object A  (robot) becomes a single point. 

The configuration space approach then effectively reduces a 

complex problem to a simple one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To calculate the configuration space obstacle of an 

obstacle
j

B , one can firstly invert robot A, i.e. to rotate  A about 

a reference point, say r, by 180  and then slide the reference 

point around the boundary of  obstacle
j

B . The union of the 

areas covered by A during the sliding, and the area originally 

covered by 
j

B  defines the configuration space obstacle of
j

B . 

Figure 1 shows a robot A with reference point Ar and the 

inverted robot with reference point Ar’. Figure 1 also shows 

the configuration space obstacle derived by using robot Ar and 
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Fig. 1.  Compute configuration space with robot inversion 

Fig.  2.  A point robot r and the expanded obstacles B1 & B2 
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its inversion Ar’ respectively. Figure 2 shows an example of 

two obstacles 1B  and 2B . The areas enclosed by the dark lines 

are the configuration space obstacles of 1B  and 2B . Note the 

triangular robot A becomes a point r. 

 

Parallel algorithms targeted at different architectures had 

been proposed to speed up the whole process of path planning. 

For example, Dehne, Hassenklover, and Sack have presented a 

systolic algorithm for computing the configuration space 

obstacles in a plane for a rectilinear convex robot [2]. Their 

algorithm takes O(N)  time for an  NN   image on an NN   

mesh computer. Tzionas, Thanailakis, and Tsalides have 

presented a parallel algorithm for collision free path planning 

of a diamond-shaped robot and its implementation in VLSI 

[16].  Jenq and Li developed optimal algorithms for computing 

the configuration space for circular, rectangular and convex 

robots by using hypercube computers [7], [8]. Their algorithms 

run in O(logN) time for an NN   image by using NN   

processors and are optimal for hypercube computers.  

In this paper, we consider convex robots and convex 

obstacles. The digitized bitmap image of a convex robot is a 

rectilinear convex polygon. Note the converse statement may 

not be true. A polygon is rectilinear convex if (1) the polygon 

is formed by horizontal and vertical line segments, and (2) the 

intersection of the polygon with any horizontal or vertical line 

consists of at most one line segment.  

 

Since the class of reconfigurable mesh computers is a 

superset of the class of mesh computers, the algorithm 

developed by Dehne, Hassenklover, and Sack can be easily 

simulated with the same complexity, i.e., O(N), on a RMESH. 

In this paper, a constant time algorithm to compute 

configuration space on an DNN  RMESH is developed, 

where D is the diameter of the robot. We can achieve same 

time complexity and at the same time reduce the number of 

processor to NN  when the shape of the robot is either 

rectangular or circular. 

We organize the remainder of the paper as follows. In 

section 2, we briefly describe the basic architecture and 

configuration of RMESH. In section 3, we list and develop 

some new fundamental RMESH data manipulation operations. 

These operations are functioned as building blocks on which 

the configuration space algorithms are developed. In section 4, 

the constant time algorithm for computing configuration space 

obstacles with a convex robot is discussed. We conclude this 

report in section 5. 

II. PRELIMINARIES ON RMESH 

The particular reconfigurable mesh architecture that we use 

in this paper is called RMESH[14]. It employs a 

reconfigurable bus to connect together all processors. Figure 3 

shows a 244   RMESH. By opening some of the switches, 

the bus may be reconfigured into smaller buses that connect 

only a subset of the processors. The flexible connection 

capability makes RMESH a powerful model to generate 

efficient solutions for various applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The important features of an RMESH are: 

1. An LMN  RMESH is a 3-dimensional mesh-

connected array of processing elements (PEs). 

Each PE in the RMESH is connected to a 

broadcast bus, which is itself constructed as a 

LMN   grid. The PEs are connected to the 

bus at the intersection of the grids. Each PE 

manages up to six bus switches (see Fig. 3) that 

are software controlled and can be used to 

reconfigure the bus into sub buses. The ID of 

each PE is a triple (i , j, k ) where i is the row 

index,  j is the column index and k is the plane 

index. The ID of the upper left corner PE on 

plane zero is (0,0,0) and that of the lower right 

one is (N-1,M-1,0).  

2. The six switches associated with each PE are 

labeled as E (east), W (west), S (south), N 

(north), B (back), and F (front). Notice that the 

east (west, north, south, back, front) switch of a 

PE is also the west (east, south, north, front, 

back) switch of the PE (if any) on its right (left, 

top, bottom, back, front). Two PEs can 

simultaneously set (connect, close) or unset 

(disconnect, open) a particular switch as long as 

the settings do not conflict. The broadcast bus 

can be subdivided into subbuses by opening 

(disconnecting) some of the switches. 

3.  Only one of the processors connected to a given 

subbus can broadcast its data on the subbus at 

any time. 

4.  In unit time, data put on a subbus can be read by 

every PE connected to it. Command broadcast(I) 

is used by a PE to broadcast the value in its 

register I to all the PEs on its subbus. 

5.  The statement R = content(bus) is used by a PE 

to read the content of the bus into its R register.  

6. Row buses are formed when each processor 

disconnects (opens) its S switch, B switch, and 

connects (closes) its E switch. The column buses 

Switch Processor (PE) Link 

Fig. 3.  A 244  RMESH 
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can be formed by disconnecting the E and B 

switches, and connecting the S switch of each 

PE. Similarly, Z buses can be formed by 

connecting F (or B) switch and disconnecting E 

and S switches of each PE, while the plane buses 

can be formed when each PE only disconnects its 

B switch. 

 

3.1. Broadcast 

In a data broadcast operation, data originated in one PE are 

sent to the remaining N -1 PEs, where N is the total number of 

PEs in the RMESH network. This operation takes O(1)  time. 

 

3.2 Diagonalization 

This operation will diagonalize a row (column) of elements, 

by which we mean moving a specific row (column) elements to 

diagonal positions with respect to that row (column). See 

Figure 4 for illustration. With the RMESH bus, this operation 

can be done in O(1) time.  

 

 

 

 

 

 

 

 

 

 

 

3.3. Rank 

Each PE(i) has a flag  selected(i), which is set to true if PE(i) 

is selected. A rank operation assigns a rank to each PE, where 

the rank of PE(i),  rank(i), is the number of selected PEs whose 

indices are less than  i. This operation takes O(logN)  time. 

However, N elements on a single row can be ranked in O(1) 

time on an NN   RMESH [6]. 

 

3.4. Shift 

Each PE has data in its A variable that is to be shifted to B 

variable of a processor that is s units, s > 0, to right or left in 

the same row (column). A variant of shift is the operation of 

circular shift, which performs shift with wrap-around. These 

operations can be done in O(s) time. If 1s  then the time 

becomes O(1). However, shifting a row of m elements for 

distance s can be done in O(1) time, if the ssm  )(  

neighboring PEs are available to use. The procedure is given 

in Figure 5. 

 

Step1 Partition the m elements into 








s

m
 blocks. 

Step2 Diagonalize each of the s elements upward onto the 

corresponding ss block.  

Step3 Form row subbuses for diagonal elements between 

even–odd blocks (i.e., block pairs ( 10 ), 

( 32 ), …, etc.) 

Step4 PEs on even blocks broadcast(A), where A is the 

value to be shifted. 

Step5 PEs on diagonal of odd blocks do B=content(bus). 

Step6   Column buses are formed on odd blocks. 

Step7  PEs on diagonal of odd blocks broadcast(B) 

Step8 The s elements on the bottom row of odd blocks do 

B=content(bus) 

Step9 (Phase 2) Repeat Step4 through Step8 for odd-even 

blocks (i.e., block pairs  ( 21 ), ( 43 ), …, 

etc).  

 

Fig. 5.  Constant time algorithm for shift operation. 

 

Figure 6 shows the two-phase shift operation for 20m  

elements by using 424 PEs. The 20 PEs at bottom row are to 

be shifted 4 positions to the left. The 424  PEs are 

partitioned into six 44  blocks. The arrows represent data 

movement. If wrapped around shift is required then extra steps 

are needed to handle this. We omit the details here. The 

complexity can be easily seen to be O(1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. DrawSegment 

This operation is defined only for PEs on the same row or 

column, for simplicity, we will use just one index to identify a 

processor, i.e., we use PE(i) to identify a processor in the 

implied row or column under consideration. Each PE(i) has a 

flag mark(i), a variable  A(i), and another variable ext(i). PE(i) 

is marked if mark(i) true. A DrawSegment operation transmits 

the A(i) value of each marked PE( i ), to PE( i ), PE( i+1 

),...,PE( i+ext(i) ) or stop propagating when the other PE 

whose mark value true is encountered. This implementation 

takes  O(1)  time as the following. Without loss generality, let 

us assume A(i) = 1 are the same for all marked PEs. 

Fig. 4.  Diagonalization of a row of 4 elements 

Block4 Block2 Block0 

 

1st  move 

 
2nd   move 3rd   move 

Block 1 Block 3 

Block4 Block2 Block0 

 

Block 1 Block 3 

(a) Even  phase shift 

(b) Odd  phase shift 

Fig. 6.  Two phase shifting: (a) 1
st
  phase (b)2

nd
 phase 
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Furthermore, let us assume we will draw segments for the 

processors on the column 0 of plane 0 whose mark(i) is true 

and toward south. The procedure is in Figure 7 

 

 

 Step1 if mark(i) then disconnect N and B switches 

 Step2 if mark(i) then broadcast(i) 

 Step3 index(k) = content(bus), for Nk 0  

 Step4 if mark(i) then broadcast(ext(i)) 

 Step5 ext(k) = content(bus) for Nk 0  

 Step6 if ))()(( kkextkindex  and (mark(k) = false)  

then {mark(k) = true; A[k] = 1}, for Nk 0  

 

 Fig. 7.  A constant time DrawSegment operation  

 

Step1 form the column buses for the one dimensional 

RMESH under consideration. Step2 through Step5 send the 

row index of marked PE and its intended ext. value downward. 

Step6 is to determine which PEs are inside the range of the ext. 

of the marked PE above. For those PEs who are inside the 

range of the ext. set their A values. 

 

3.6. AdjacentUnion 

This operation is similar to the DrawSegment operation 

except that the A(i) is always of value 1. The other difference 

is that  when i+ext(i) of PE(i) is greater than j, for mark(j) = 

true and j > i, the A[i] value(which is one) continue 

propagating until PE with index i+ext(i) is encountered, while 

in DrawSegment operation the propagating value A[i] stops 

when PE( j) is encountered. This implementation takes 

O(logN)  time when there are N processors and can be done by 

recursive doubling on the size of the column buses and update 

the ext. values downward. It is similar to the hypercube 

operation used in [5] to compute the area of MAT. Since we 

are concerning constant time algorithms, there are two ways 

one can do to reduce the complexity to O(1).  Case (1) If the 

extended lengths ext(i) are the same for the participant PEs, 

and case (2) If  there are at least )(iextN   PEs available. 

Let us examine these two methods separately. For case 1, 

DrawSegment can be used to perform the task. The rational is 

that during the drawing of the segment when a marked PE is 

encountered the propagation stops. Fortunately, the uncovered 

portion, that shall be drawn will be covered (drawn) by the 

encountered PE (which will draw the same value). This is 

exactly the dominate property mentioned in [7]. 

As for case 2, we assume there are ))(max( iextN   PEs 

available; where the max(ext(i)) is the diameter, D, of the 

robot. Let us assume that all the N PEs participating in the 

operation are in the same row. We firstly partition the N 

processors into  DN /  partitions. The algorithm will run 

twice, one for the even blocks and the other for odd blocks. 

Each time when a block is processed, two blocks of processors 

are needed. Note each block is of size DD . The operation is 

very similar to the constant time shift operation mentioned 

earlier. The procedure is shown in Figure 8.  

 

 

Step1 Diagonalization(ext(i)) 

Step2 DrawSegment(ext(i)) for PEs on the diagonal of the 

block 

Step3 The PEs that are drawn from Step2 form column bus 

by disconnect N switch 

Step4 Broadcast (1) 

Step5 A[i](0,j)=content(bus) 

 

Fig. 8.  A constant time AdjacentUnion operation  

 

Step1 transfers the ext values to the diagonal PEs by 

Diagonalization operation. Step2 draws segment for each PE 

on the diagonal line based on the ext value received from 

Step1. At Step4, the PEs that are marked by the DrawSegment 

operation broadcast the value one to the PEs at row 0. This can 

be done by firstly setting up the column bus as in Step3. The 

AdjacentUnion operation completes at Step5 when the A[i] is 

received, if there is any. Figure 9 shows an example for this 

operation. The numbers on the bottom represent ext. values. 

The horizontal arrow lines are DrawSegment operation, while 

the vertical arrow lines stands for broadcasting operation of 

Step4. Note in the example, after the AdjacentUnion 

operation, the PEs are all marked except the one that is in the 

rightmost position. 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Inversion 

This operation rotates a rectilinear polygon by 180  around a 

given valid reference point (i,j). A reference point (i,j) is valid 

iff i, j are integers in the range of 0...N-1 and after the rotation 

the rectilinear polygon remains within the NN   image plane. 

This operation can be accomplished in constant time on an 

NN   RMESH provided the gray value of each pixel in the 

image of the rectilinear polygon is identical to one another. 

The procedure is outlined in Figure 10. 

 

Step1 Reference point broadcasts its i and j indices to all 

pixels of the robot. 

Step2 All right and left boundary pixels for the rectilinear 

polygon identify themselves. 

Step3 Every right boundary pixel collects length 

information of its row segment and computes newJ 

index after the inversion. 

0 2 3 0 6 0 7 

Ext values 

Fig. 9.  AdjacentUnion operation on RMESH 
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Step4 The PEs corresponding to the right boundary pixels 

do diagonalization on window of HH  with the 

information of newJ and length information 

calculated at Step3, where H is the height of the 

rectilinear polygon. 

Step5   Diagonal PEs broadcast newJ and length. 

Step6 The PEs on the off-diagonal of the HH  window 

receive the information. 

Step7 Setup row buses and broadcast newJ and length. 

Step8 if received jnewJ   index for PEs in the HH   

window then do DrawSegment(length). 

Fig.  10.  Inversion operation for a rectilinear polygon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the inversion process of a simple rectilinear 

polygon. Figure 12 illustrates Steps 3 through 8 of the 

procedure.  

 

In Step1, the reference point PE, using the plane bus, 

broadcasts its coordinates (i,j) to all the PEs. Since the robot is 

rectilinear convex, it can be decomposed into a set of unit 

width horizontal segments.  In Step2, after each PE checks its 

right and left neighbors, the PEs located at either ends of the 

horizontal segments can identify themselves. Once the left and 

right boundary PEs have identified themselves, they can 

determine the segment lengths for all the unit width horizontal 

segments. The length computation is accomplished by first 

setting up row buses, then each left boundary PE broadcasting 

the column index of its left neighbor on its row bus, and finally 

each right boundary PE receiving the index on its row bus and 

subtracting it from its column index to get the segment length. 

From laws of geometry, when a line segment is rotated 

by 180 , the right end point of the line segment becomes the 

left end point of the rotated line segment. Since line segments 

are preserved under rotation, the length information of a line 

segment would be sufficient to reconstruct the rotated line 

segment if the coordinates of its left end point is known. The 

coordinates of the left end point is determined by the PE, 

currently located at the right end point of the corresponding 

not yet rotated segment, by applying the transformation matrix 

to its coordinates. This is done in Step3. After this step, the 

right boundary PEs need to send their segment lengths to the 

corresponding PEs located at the left boundary of the rotated 

segments. This can be accomplished by diagonalization 

operation, followed by column bus broadcast, and finally 

followed by row bus broadcast. These are done in Steps 4 to 7. 

Step8 reconstructs the polygon. The operations in each step 

can be done in parallel. The time complexity is O(1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. COMPUTATION OF CONFIGURATION SPACE ON RMESH 

Using the fundamental operations developed in the previous 

section, we present a constant time RMESH algorithm to 

compute configuration space obstacles for those robots of 

which the digitized images may be modeled by WBPs (well 

behaved polygons). Briefly speaking, a WBP is a polygon that 

can be partitioned into at most four L-shaped polygons as 

shown in Figure 13. The reader is referred to  [8] for a more 

detailed discussion of this type of polygons. Note that the 

digitized images of commonly encountered robot shapes, such 

as circles, rectangles, or convex polygons (possibly with 

rotation), are WBPs. The intersection of the two dotted lines, 

in Figure 13, is called the base point. 

 

Some instances of the WBPs may have two base points. An 

example of such an instance is shown in Figure 14. A 

Base 

point 

Fig. 13.  A WBP convex robot partitioned into four L-shaped polygons 

      length 

newJ 

Reference point 

Fig. 11.  Inversion of a rectilinear polygon 

Step7 & 

Step 8 

Step5 &  

Step6 

Step4 

NewJ = j 

 

Right  

boundary 

DrawSegment 

length 

Fig. 12.  Illustration of step3 to step8 of Inversion 
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technique of applying shift operations on the obstacles to 

reduce WBPs having two base points to that having one base 

point is developed in [8]. The same technique is used here. 

The reader is referred to [8] again for an elaborated discussion 

 

 

 

 

 

 

 

 

 

 

 

 

The computation of configuration space obstacles for a 

WBP shaped robot is reduced to that for a L-shaped robot. The 

final configuration space obstacles are computed by applying 

at most four iterations of the algorithm, that computes the 

configuration space obstacles for a L-shaped robot, and taking 

the union of the configuration space obstacles obtained from 

these iterations. Since the algorithms for the four different 

kinds of L-shaped robots are basically symmetrical, we only 

present the procedure for L-shaped robots having the base 

point at their upper right corner. Such a L-shaped robot is 

simply referred to as a robot in the remainder of the paper. 

Before we proceed any further, let us note that the 

information describing the robot is needed by each obstacle 

PE, so that the PEs know how to expand the obstacles 

simultaneously, as if each obstacle has the robot slid around its 

boundary concurrently.  

During the obstacle expansion, each obstacle first expands 

itself vertically, and then horizontally. For vertical expansion, 

each obstacle PE simply marks H PEs to its south as obstacle 

PEs, where H is the height of the robot. Once each obstacle PE 

receives the broadcasted H value, it can expands itself south-

ward in O(1) time by applying the DrawSegment operation of 

Section 3.5. 

Unlike vertical expansion, where before the expansion all 

obstacle PEs are the original obstacle PEs, horizontal 

expansion involves obstacle PEs that may be the original 

obstacle PEs or the new obstacle PEs due to vertical 

expansion. Hence, different horizontal expansion lengths may 

be required by different obstacle PEs. 

For an original obstacle PE, the length of 0
th

 (top) horizontal 

segment of the robot is used as its horizontal expansion length. 

For a new obstacle PE, its expansion length depends on its 

vertical distance from the original obstacle PE at the boundary.  

For a new obstacle PE, if this distance is k, the length of k-1
th

 

horizontal segment of the robot is used for its horizontal 

expansion. Thus, during horizontal expansion phase, each 

obstacle PE not only needs to know its vertical distance from 

the original obstacle PE (for an original obstacle PE this 

distance is 0), but also needs to know its horizontal expansion 

length. 

In order to carry out the index (vertical distance) based 

retrieval of the length information in constant time, the 

following tiling procedure is developed. The procedure tiles 

the length and index of each horizontal segment of the robot 

for future reference, and operates on an DNN   RMESH, 

where D is the height of the robot, i.e., the number of unit 

width horizontal segments that the robot has. The tiling 

procedure is shown as in Figure 15. 

 

Step1 Use shift operations to identify boundary pixel of 

the L-shaped robot 

Step2 If right boundary pixel then setup row bus by 

disconnecting E, and B switches and broadcast its 

j index on the bus 

Step3 A= content(bus) for PE(i,0,0) 

Step4 If left boundary pixel then form row bus by 

disconnecting E, and B switches and broadcast its 

j index on the bus 

Step5 B=content(bus) for PE(i,0,0) 

Step6 For PE(i,0,0) that receive A and B do runLength 

:= A-B and form Z bus 

Step7 Rank from top to down for PEs that received A 

and B; put rank result in R 

Step8 Broadcast(runLength) on Z bus for PE (i,0,0) 

from Step6 

Step9 runLength=content(bus) for PE(i,0,k), where  

sk 0  

Step10 Broadcast(R) on Z bus for PE (i,0,0) from Step6 

Step11 D=content(bus) for PE(i,0,k), where  sk 0  

Step12 Form plane bus 

Step13 Broadcast(runLength) for PE(i,0,k) and k==D 

Step14 runLength=content(bus) 

 

 

Fig. 15. Tiling of the length information for L-shaped polygon 

 

Let l0, l1, l2, … ld-1, be the lengths of the horizontal segments 

of a robot from top to bottom respectively. Let rnuLength be a 

register that each PE has. The goal of the tiling procedure is to 

assign li to all the runLength registers in plane i, 10  Di . 

Of course, l0, l1, l2, … ld-1, must be first calculated by the tiling 

procedure, and then distributed to different planes. 

Step1 uses four shift operations to identify boundary PEs. If 

a PE is in the right most boundary of the robot(on its row) it 

sends its column index to the leftmost PE of the 

NN  RMESH on that row. This is done in Step2 and Step3. 

Similar the left most boundary PEs of the robot send their 

column indices to the leftmost PEs of the NN  RMESH on 

their rows. Step4 and Step5 fulfill this. Every leftmost PE then 

calculates the run length of the robot on that row. The next 

step is to rank the row strips of the robot starts from the top of 

the strip to the bottom(Step7). Note this operation is a special 

case of the general rank operation. Here the PEs involved in 

the ranking is in consecutive top to bottom fashion. Therefore 

the ranking operation can be done in O(1) time by first identify 

the top boundary PE(note the rank of this PE is 0). Followed 

by one broadcasting of the row index and simple algebra, other 

PEs can then determine their ranks. At this time the PEs that 

Fig. 14.  A WBP convex robot with two base points 
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are in the leftmost column of the NN  RMESH have the run 

length information of the robot on that particular row and the 

ranking information. These information will then broadcast to 

other planes by using Z bus. On receiving the run length 

information at Step9 and rank at Step11, the PEs can then 

compare the rank value with its k index. If these two values 

match then the PE will broadcast the runlength information to 

the PEs on its plane and this is done in Step12, 13 and 14 by 

using plane bus. It is easily seen the complexity is O(1). 

 

 

Step0 Tiling; 

Step1 compute vertical-boundary(i,j,k);  

 form column bus; 

Step2 If vertical-boundary(i,j,k) then  

disconnect N switch; 

broadcast(i); 

  temp(i,j,k) = content(bus);  

If not obstacle(i,j,k) then 

 distance(i,j,k) =i-temp(i,j,k); 

Step3 If vertical-boundary(i,j,k) then 

DrawSegment(height(i,j,k)) toward south; 

Step4 If A(i,j,k) then obstacle(i,j,k) = true; 

Step5 form z bus; 

Step6 If obstacle(i,j,k) then broadcast(distance(i,j,k)) 

  temp(i,j,k)= content(bus) 

 if (k= = temp(i,j,k)) then broadcast(runLength(i,j,k));  

 runLength(i,j,k) = content(bus);   

Step7 if obstacle(i,j,k) then 

AdjacentUnionRight(runLength(i,j,k)); 

 

Fig. 16. Computing of configuration space for L-shaped robot 

 

The algorithm to compute the configuration space obstacles 

is shown in Figure 16. The algorithm assumes that the 

digitized images of the obstacles and a robot are loaded into 

plane zero of the RMESH computer. During the image 

loading, two boolean variables, robot and obstacle, of each PE 

are initialized. A PE’s robot variable is initialized to true iff it 

is a robot PE, i.e., it contains a pixel value of the robot. A PE’s 

obstacle variable is initialized to true iff it is a obstacle PE. It 

is also assumed that the inversion operation has been 

performed and resulted in the robot under discussion. 

Like all the algorithms presented in the paper, algorithm of  

Figure 16 is executed by every PE in the RMESH. Each 

PE(i,j,k) has the following important variables that are related 

to the current algorithm: robot(i,j,k), obstacle(i,j,k), 

runLength(i,j,k), distance(i,j,k), height(i,j,k), vertical-

boundary(i,j,k), A(i,j,k), and temp(i,j,k). Each PE also has 

three constants i,j,k, which form the ID of the PE. Hence, in 

the algorithm symbols i,j,k refer to the constants i,j,k 

respectively.  

The temp variable is used for obtaining bus data by each PE 

and does not have a significant role in the algorithm like the 

rest of the variables. The obstacle and robot variables are 

initialized during image loading as indicated earlier. In 

addition, the loading phase also initializes each vertical-

boundary variable to false, A variable to zero, and distance 

variable to zero. 

Variable robot(i,j,k) is only used in Step0 by the tiling 

procedure, which initializes the runlength(i,j,k)  and 

height(i,j,k)  variables of each PE. After Step0, the height of 

the robot is stored in the height(i,j,k) variable of each PE, and 

the length of the i
th

 horizontal segment is stored in the 

runLength(i,j,k) variable of each PE in plane i. Thus, the 

values of runLength(i,j,k) variables of the PEs belonging to the 

same plane are the same. 

In Step1, each obstacle PE checks its neighbor PEs to see if 

it needs to assign  true to its vertical-boundary(i,j,k) variable. 

The shift operations are used for getting the values of the 

obstacle(i,j,k) variables of the neighboring PEs. Once this is 

done, the PEs set up the column buses for the next step. Step2 

computes the values for the distance(i,j,k) variables. Each 

boundary PE sets up its column sub bus and sends its row 

index to the PEs down the south. Then each PE gets the row 

index from the bus and determines its distance to the boundary 

PE. The value of distance(i,j,k) will not be used later unless 

PE(i,j,k) is or becomes an obstacle PE. Step 3 carries out the 

vertical expansion. During the expansion, the value of A(i,j,k) 

will be set by DrawSegment operation if PE(i,j,k) is on the 

expansion path, i.e., PE(i,j,k) is a new obstacle PE. Step 4 

reflects this fact by adjusting the obstacle variables. Step 5 

prepares the Z buses so that the obstacle PEs can obtain their 

horizontal expansion length. Getting the length is done in Step 

6. Step 7 carries out the horizontal expansion and completes 

the algorithm. 

 

IV. CONCLUSIONS 

Basic data manipulation operations on RMESH such as 

odd-even phase shifting operation, DrawSegment operation, 

AdjacentUnion operation, Image inversion operation were 

conceptualized and their implementation were developed. 

These operations may be used as basic building blocks to 

develop algorithms to solve more complex problems 

efficiently, which was demonstrated in this paper. Using these 

operations along with other existing operations a novel 

algorithm for computing configuration space obstacles was 

developed. 

The algorithm we developed for computing the 

configuration space obstacles is for convex robot by using 

DNN   reconfigurable mesh with buses (RMESH), where 

D is the diameter of the robot under consideration. The 

algorithm is asymptotically optimal when time complexity is 

concerned.  The algorithm runs in constant time and uses 

constant space. There are other interesting questions which we 

did not address in this report. Can we reduce the size of the 

RMESH and achieve the same optimal complexity? Can we 

compute configuration space obstacles when arbitrary shape 

robot is concerned? If yes, can we still achieve the constant 

time and space complexity? 
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