

1



Abstract— Configuration space computation is a

transformation process that reduces a robot to a single reference

point by expanding obstacles on the image plane. The obstacles

can be expanded by inverting the robot along a reference point

and then slide this reference point along their borders. The area

covered by the union of inverted robot during the sliding along

with the obstacles defines the configuration space of obstacles.

This approach reduces a complex problem into a simple one. In

this paper, we present a parallel algorithm for computing the

configuration space obstacles by using reconfigurable mesh

multiprocessors. The reconfigurable mesh multiprocessor system

is a multiprocessor model with flexible bus connection

capabilities. The digitized images of the obstacles and the robot

are stored in an image plane. The algorithm takes O(1) time and

is optimal.

Index Terms— Configuration space, robotics, image

processing, parallel algorithms, Reconfigurable mesh

I. INTRODUCTION

CONFIGURATION space computation found applications in

motion planning, computer graphics, robot-assisted

surgery, automated assembly plans among many others.

For example, Wytyczak-Partyka et. al[15]. propose no fly zone

concept to assist surgeons. By defining the configuration space

of the instrument, their system can provide a collision free

working space for surgeons. In computer graphics application,

Bandi and Thalmann adopted Configuration space approach to

simulate human finger animation [1]. In [4], Ivanisevic and

Lumelsky used configuration space as means to enhance

human performance in teleoperation tasks. Because computing

configuration space concept provides a generalized framework

to study the motion planning problem and therefore is an

important problem in path planning for automatic robotics

applications see [3], [10], [11], [12], [13], [17].

Our aim in this paper is to develop constant time algorithm

for computing the configuration space on reconfigurable mesh

multiprocessors (RMESH). In [9], Kavraki used a Fast Fourier

Transform based algorithm to compute configuration space

obstacles. The objective of path planning is to find a path to

Manuscript revised June 30, 2011.

John Jenq is with the Department of Computer Science, Montclair State

University, Montclair NJ 07043 USA (phone: 973-655-7237; fax: 973-655-

4164; e-mail: jenqj@ mail.montclair.edu).

Dajin Wang is with the Department of Computer Science, Montclair State

University, Montclair NJ 07043 USA (e-mail: wangd@mail.montclair.edu).

Wingning Li is with the Department of Computer Science and Computer

Engineering, University of Arkansas, Fayetteville AR 72701 USA (e-mail:

wingning@uark.edu).

move a robot A from a position s (the initial position) to

another position d (the final position) without colliding with

the obstacles already in space R. A common way to solve this

problem is the configuration space approach which reduces the

robot A to a single reference point p and expands each

obstacle
j

B

to include all the positions of p that cause a

collision between A and
j

B .The expansion of an obstacle
j

B

is called the configuration space obstacle of
j

B . In the new

representation, the object A (robot) becomes a single point.

The configuration space approach then effectively reduces a

complex problem to a simple one.

To calculate the configuration space obstacle of an

obstacle
j

B , one can firstly invert robot A, i.e. to rotate A about

a reference point, say r, by 180 and then slide the reference

point around the boundary of obstacle
j

B . The union of the

areas covered by A during the sliding, and the area originally

covered by
j

B defines the configuration space obstacle of
j

B .

Figure 1 shows a robot A with reference point Ar and the

inverted robot with reference point Ar’. Figure 1 also shows

the configuration space obstacle derived by using robot Ar and

Computing the Configuration Space on

Reconfiguration Mesh Multiprocessors

John Jenq, Dajin Wang, and Wingning Li

C
Ar’

Ar

Fig. 1. Compute configuration space with robot inversion

Fig. 2. A point robot r and the expanded obstacles B1 & B2

B1

B2

r

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Robotics and Control (JSRC), June Edition, 2011

2

its inversion Ar’ respectively. Figure 2 shows an example of

two obstacles 1B and 2B . The areas enclosed by the dark lines

are the configuration space obstacles of 1B and 2B . Note the

triangular robot A becomes a point r.

Parallel algorithms targeted at different architectures had

been proposed to speed up the whole process of path planning.

For example, Dehne, Hassenklover, and Sack have presented a

systolic algorithm for computing the configuration space

obstacles in a plane for a rectilinear convex robot [2]. Their

algorithm takes O(N) time for an NN  image on an NN 

mesh computer. Tzionas, Thanailakis, and Tsalides have

presented a parallel algorithm for collision free path planning

of a diamond-shaped robot and its implementation in VLSI

[16]. Jenq and Li developed optimal algorithms for computing

the configuration space for circular, rectangular and convex

robots by using hypercube computers [7], [8]. Their algorithms

run in O(logN) time for an NN  image by using NN 

processors and are optimal for hypercube computers.

In this paper, we consider convex robots and convex

obstacles. The digitized bitmap image of a convex robot is a

rectilinear convex polygon. Note the converse statement may

not be true. A polygon is rectilinear convex if (1) the polygon

is formed by horizontal and vertical line segments, and (2) the

intersection of the polygon with any horizontal or vertical line

consists of at most one line segment.

Since the class of reconfigurable mesh computers is a

superset of the class of mesh computers, the algorithm

developed by Dehne, Hassenklover, and Sack can be easily

simulated with the same complexity, i.e., O(N), on a RMESH.

In this paper, a constant time algorithm to compute

configuration space on an DNN  RMESH is developed,

where D is the diameter of the robot. We can achieve same

time complexity and at the same time reduce the number of

processor to NN  when the shape of the robot is either

rectangular or circular.

We organize the remainder of the paper as follows. In

section 2, we briefly describe the basic architecture and

configuration of RMESH. In section 3, we list and develop

some new fundamental RMESH data manipulation operations.

These operations are functioned as building blocks on which

the configuration space algorithms are developed. In section 4,

the constant time algorithm for computing configuration space

obstacles with a convex robot is discussed. We conclude this

report in section 5.

II. PRELIMINARIES ON RMESH

The particular reconfigurable mesh architecture that we use

in this paper is called RMESH[14]. It employs a

reconfigurable bus to connect together all processors. Figure 3

shows a 244  RMESH. By opening some of the switches,

the bus may be reconfigured into smaller buses that connect

only a subset of the processors. The flexible connection

capability makes RMESH a powerful model to generate

efficient solutions for various applications.

The important features of an RMESH are:

1. An LMN  RMESH is a 3-dimensional mesh-

connected array of processing elements (PEs).

Each PE in the RMESH is connected to a

broadcast bus, which is itself constructed as a

LMN  grid. The PEs are connected to the

bus at the intersection of the grids. Each PE

manages up to six bus switches (see Fig. 3) that

are software controlled and can be used to

reconfigure the bus into sub buses. The ID of

each PE is a triple (i , j, k) where i is the row

index, j is the column index and k is the plane

index. The ID of the upper left corner PE on

plane zero is (0,0,0) and that of the lower right

one is (N-1,M-1,0).

2. The six switches associated with each PE are

labeled as E (east), W (west), S (south), N

(north), B (back), and F (front). Notice that the

east (west, north, south, back, front) switch of a

PE is also the west (east, south, north, front,

back) switch of the PE (if any) on its right (left,

top, bottom, back, front). Two PEs can

simultaneously set (connect, close) or unset

(disconnect, open) a particular switch as long as

the settings do not conflict. The broadcast bus

can be subdivided into subbuses by opening

(disconnecting) some of the switches.

3. Only one of the processors connected to a given

subbus can broadcast its data on the subbus at

any time.

4. In unit time, data put on a subbus can be read by

every PE connected to it. Command broadcast(I)

is used by a PE to broadcast the value in its

register I to all the PEs on its subbus.

5. The statement R = content(bus) is used by a PE

to read the content of the bus into its R register.

6. Row buses are formed when each processor

disconnects (opens) its S switch, B switch, and

connects (closes) its E switch. The column buses

Switch Processor (PE) Link

Fig. 3. A 244  RMESH

3

can be formed by disconnecting the E and B

switches, and connecting the S switch of each

PE. Similarly, Z buses can be formed by

connecting F (or B) switch and disconnecting E

and S switches of each PE, while the plane buses

can be formed when each PE only disconnects its

B switch.

3.1. Broadcast

In a data broadcast operation, data originated in one PE are

sent to the remaining N -1 PEs, where N is the total number of

PEs in the RMESH network. This operation takes O(1) time.

3.2 Diagonalization

This operation will diagonalize a row (column) of elements,

by which we mean moving a specific row (column) elements to

diagonal positions with respect to that row (column). See

Figure 4 for illustration. With the RMESH bus, this operation

can be done in O(1) time.

3.3. Rank

Each PE(i) has a flag selected(i), which is set to true if PE(i)

is selected. A rank operation assigns a rank to each PE, where

the rank of PE(i), rank(i), is the number of selected PEs whose

indices are less than i. This operation takes O(logN) time.

However, N elements on a single row can be ranked in O(1)

time on an NN  RMESH [6].

3.4. Shift

Each PE has data in its A variable that is to be shifted to B

variable of a processor that is s units, s > 0, to right or left in

the same row (column). A variant of shift is the operation of

circular shift, which performs shift with wrap-around. These

operations can be done in O(s) time. If 1s then the time

becomes O(1). However, shifting a row of m elements for

distance s can be done in O(1) time, if the ssm )(

neighboring PEs are available to use. The procedure is given

in Figure 5.

Step1 Partition the m elements into 








s

m
 blocks.

Step2 Diagonalize each of the s elements upward onto the

corresponding ss block.

Step3 Form row subbuses for diagonal elements between

even–odd blocks (i.e., block pairs (10),

(32), …, etc.)

Step4 PEs on even blocks broadcast(A), where A is the

value to be shifted.

Step5 PEs on diagonal of odd blocks do B=content(bus).

Step6 Column buses are formed on odd blocks.

Step7 PEs on diagonal of odd blocks broadcast(B)

Step8 The s elements on the bottom row of odd blocks do

B=content(bus)

Step9 (Phase 2) Repeat Step4 through Step8 for odd-even

blocks (i.e., block pairs (21), (43), …,

etc).

Fig. 5. Constant time algorithm for shift operation.

Figure 6 shows the two-phase shift operation for 20m

elements by using 424 PEs. The 20 PEs at bottom row are to

be shifted 4 positions to the left. The 424 PEs are

partitioned into six 44 blocks. The arrows represent data

movement. If wrapped around shift is required then extra steps

are needed to handle this. We omit the details here. The

complexity can be easily seen to be O(1).

3.5. DrawSegment

This operation is defined only for PEs on the same row or

column, for simplicity, we will use just one index to identify a

processor, i.e., we use PE(i) to identify a processor in the

implied row or column under consideration. Each PE(i) has a

flag mark(i), a variable A(i), and another variable ext(i). PE(i)

is marked if mark(i) true. A DrawSegment operation transmits

the A(i) value of each marked PE(i), to PE(i), PE(i+1

),...,PE(i+ext(i)) or stop propagating when the other PE

whose mark value true is encountered. This implementation

takes O(1) time as the following. Without loss generality, let

us assume A(i) = 1 are the same for all marked PEs.

Fig. 4. Diagonalization of a row of 4 elements

Block4 Block2 Block0

1st move

2nd move 3rd move

Block 1 Block 3

Block4 Block2 Block0

Block 1 Block 3

(a) Even phase shift

(b) Odd phase shift

Fig. 6. Two phase shifting: (a) 1
st
 phase (b)2

nd
 phase

4

Furthermore, let us assume we will draw segments for the

processors on the column 0 of plane 0 whose mark(i) is true

and toward south. The procedure is in Figure 7

 Step1 if mark(i) then disconnect N and B switches

 Step2 if mark(i) then broadcast(i)

 Step3 index(k) = content(bus), for Nk 0

 Step4 if mark(i) then broadcast(ext(i))

 Step5 ext(k) = content(bus) for Nk 0

 Step6 if))()((kkextkindex  and (mark(k) = false)

then {mark(k) = true; A[k] = 1}, for Nk 0

 Fig. 7. A constant time DrawSegment operation

Step1 form the column buses for the one dimensional

RMESH under consideration. Step2 through Step5 send the

row index of marked PE and its intended ext. value downward.

Step6 is to determine which PEs are inside the range of the ext.

of the marked PE above. For those PEs who are inside the

range of the ext. set their A values.

3.6. AdjacentUnion

This operation is similar to the DrawSegment operation

except that the A(i) is always of value 1. The other difference

is that when i+ext(i) of PE(i) is greater than j, for mark(j) =

true and j > i, the A[i] value(which is one) continue

propagating until PE with index i+ext(i) is encountered, while

in DrawSegment operation the propagating value A[i] stops

when PE(j) is encountered. This implementation takes

O(logN) time when there are N processors and can be done by

recursive doubling on the size of the column buses and update

the ext. values downward. It is similar to the hypercube

operation used in [5] to compute the area of MAT. Since we

are concerning constant time algorithms, there are two ways

one can do to reduce the complexity to O(1). Case (1) If the

extended lengths ext(i) are the same for the participant PEs,

and case (2) If there are at least)(iextN  PEs available.

Let us examine these two methods separately. For case 1,

DrawSegment can be used to perform the task. The rational is

that during the drawing of the segment when a marked PE is

encountered the propagation stops. Fortunately, the uncovered

portion, that shall be drawn will be covered (drawn) by the

encountered PE (which will draw the same value). This is

exactly the dominate property mentioned in [7].

As for case 2, we assume there are))(max(iextN  PEs

available; where the max(ext(i)) is the diameter, D, of the

robot. Let us assume that all the N PEs participating in the

operation are in the same row. We firstly partition the N

processors into  DN / partitions. The algorithm will run

twice, one for the even blocks and the other for odd blocks.

Each time when a block is processed, two blocks of processors

are needed. Note each block is of size DD . The operation is

very similar to the constant time shift operation mentioned

earlier. The procedure is shown in Figure 8.

Step1 Diagonalization(ext(i))

Step2 DrawSegment(ext(i)) for PEs on the diagonal of the

block

Step3 The PEs that are drawn from Step2 form column bus

by disconnect N switch

Step4 Broadcast (1)

Step5 A[i](0,j)=content(bus)

Fig. 8. A constant time AdjacentUnion operation

Step1 transfers the ext values to the diagonal PEs by

Diagonalization operation. Step2 draws segment for each PE

on the diagonal line based on the ext value received from

Step1. At Step4, the PEs that are marked by the DrawSegment

operation broadcast the value one to the PEs at row 0. This can

be done by firstly setting up the column bus as in Step3. The

AdjacentUnion operation completes at Step5 when the A[i] is

received, if there is any. Figure 9 shows an example for this

operation. The numbers on the bottom represent ext. values.

The horizontal arrow lines are DrawSegment operation, while

the vertical arrow lines stands for broadcasting operation of

Step4. Note in the example, after the AdjacentUnion

operation, the PEs are all marked except the one that is in the

rightmost position.

3.7. Inversion

This operation rotates a rectilinear polygon by 180 around a

given valid reference point (i,j). A reference point (i,j) is valid

iff i, j are integers in the range of 0...N-1 and after the rotation

the rectilinear polygon remains within the NN  image plane.

This operation can be accomplished in constant time on an

NN  RMESH provided the gray value of each pixel in the

image of the rectilinear polygon is identical to one another.

The procedure is outlined in Figure 10.

Step1 Reference point broadcasts its i and j indices to all

pixels of the robot.

Step2 All right and left boundary pixels for the rectilinear

polygon identify themselves.

Step3 Every right boundary pixel collects length

information of its row segment and computes newJ

index after the inversion.

0 2 3 0 6 0 7

Ext values

Fig. 9. AdjacentUnion operation on RMESH

5

Step4 The PEs corresponding to the right boundary pixels

do diagonalization on window of HH  with the

information of newJ and length information

calculated at Step3, where H is the height of the

rectilinear polygon.

Step5 Diagonal PEs broadcast newJ and length.

Step6 The PEs on the off-diagonal of the HH  window

receive the information.

Step7 Setup row buses and broadcast newJ and length.

Step8 if received jnewJ  index for PEs in the HH 

window then do DrawSegment(length).

Fig. 10. Inversion operation for a rectilinear polygon.

Figure 11 shows the inversion process of a simple rectilinear

polygon. Figure 12 illustrates Steps 3 through 8 of the

procedure.

In Step1, the reference point PE, using the plane bus,

broadcasts its coordinates (i,j) to all the PEs. Since the robot is

rectilinear convex, it can be decomposed into a set of unit

width horizontal segments. In Step2, after each PE checks its

right and left neighbors, the PEs located at either ends of the

horizontal segments can identify themselves. Once the left and

right boundary PEs have identified themselves, they can

determine the segment lengths for all the unit width horizontal

segments. The length computation is accomplished by first

setting up row buses, then each left boundary PE broadcasting

the column index of its left neighbor on its row bus, and finally

each right boundary PE receiving the index on its row bus and

subtracting it from its column index to get the segment length.

From laws of geometry, when a line segment is rotated

by 180 , the right end point of the line segment becomes the

left end point of the rotated line segment. Since line segments

are preserved under rotation, the length information of a line

segment would be sufficient to reconstruct the rotated line

segment if the coordinates of its left end point is known. The

coordinates of the left end point is determined by the PE,

currently located at the right end point of the corresponding

not yet rotated segment, by applying the transformation matrix

to its coordinates. This is done in Step3. After this step, the

right boundary PEs need to send their segment lengths to the

corresponding PEs located at the left boundary of the rotated

segments. This can be accomplished by diagonalization

operation, followed by column bus broadcast, and finally

followed by row bus broadcast. These are done in Steps 4 to 7.

Step8 reconstructs the polygon. The operations in each step

can be done in parallel. The time complexity is O(1).

III. COMPUTATION OF CONFIGURATION SPACE ON RMESH

Using the fundamental operations developed in the previous

section, we present a constant time RMESH algorithm to

compute configuration space obstacles for those robots of

which the digitized images may be modeled by WBPs (well

behaved polygons). Briefly speaking, a WBP is a polygon that

can be partitioned into at most four L-shaped polygons as

shown in Figure 13. The reader is referred to [8] for a more

detailed discussion of this type of polygons. Note that the

digitized images of commonly encountered robot shapes, such

as circles, rectangles, or convex polygons (possibly with

rotation), are WBPs. The intersection of the two dotted lines,

in Figure 13, is called the base point.

Some instances of the WBPs may have two base points. An

example of such an instance is shown in Figure 14. A

Base

point

Fig. 13. A WBP convex robot partitioned into four L-shaped polygons

 length

newJ

Reference point

Fig. 11. Inversion of a rectilinear polygon

Step7 &

Step 8

Step5 &

Step6

Step4

NewJ = j

Right

boundary

DrawSegment

length

Fig. 12. Illustration of step3 to step8 of Inversion

6

technique of applying shift operations on the obstacles to

reduce WBPs having two base points to that having one base

point is developed in [8]. The same technique is used here.

The reader is referred to [8] again for an elaborated discussion

The computation of configuration space obstacles for a

WBP shaped robot is reduced to that for a L-shaped robot. The

final configuration space obstacles are computed by applying

at most four iterations of the algorithm, that computes the

configuration space obstacles for a L-shaped robot, and taking

the union of the configuration space obstacles obtained from

these iterations. Since the algorithms for the four different

kinds of L-shaped robots are basically symmetrical, we only

present the procedure for L-shaped robots having the base

point at their upper right corner. Such a L-shaped robot is

simply referred to as a robot in the remainder of the paper.

Before we proceed any further, let us note that the

information describing the robot is needed by each obstacle

PE, so that the PEs know how to expand the obstacles

simultaneously, as if each obstacle has the robot slid around its

boundary concurrently.

During the obstacle expansion, each obstacle first expands

itself vertically, and then horizontally. For vertical expansion,

each obstacle PE simply marks H PEs to its south as obstacle

PEs, where H is the height of the robot. Once each obstacle PE

receives the broadcasted H value, it can expands itself south-

ward in O(1) time by applying the DrawSegment operation of

Section 3.5.

Unlike vertical expansion, where before the expansion all

obstacle PEs are the original obstacle PEs, horizontal

expansion involves obstacle PEs that may be the original

obstacle PEs or the new obstacle PEs due to vertical

expansion. Hence, different horizontal expansion lengths may

be required by different obstacle PEs.

For an original obstacle PE, the length of 0
th

 (top) horizontal

segment of the robot is used as its horizontal expansion length.

For a new obstacle PE, its expansion length depends on its

vertical distance from the original obstacle PE at the boundary.

For a new obstacle PE, if this distance is k, the length of k-1
th

horizontal segment of the robot is used for its horizontal

expansion. Thus, during horizontal expansion phase, each

obstacle PE not only needs to know its vertical distance from

the original obstacle PE (for an original obstacle PE this

distance is 0), but also needs to know its horizontal expansion

length.

In order to carry out the index (vertical distance) based

retrieval of the length information in constant time, the

following tiling procedure is developed. The procedure tiles

the length and index of each horizontal segment of the robot

for future reference, and operates on an DNN  RMESH,

where D is the height of the robot, i.e., the number of unit

width horizontal segments that the robot has. The tiling

procedure is shown as in Figure 15.

Step1 Use shift operations to identify boundary pixel of

the L-shaped robot

Step2 If right boundary pixel then setup row bus by

disconnecting E, and B switches and broadcast its

j index on the bus

Step3 A= content(bus) for PE(i,0,0)

Step4 If left boundary pixel then form row bus by

disconnecting E, and B switches and broadcast its

j index on the bus

Step5 B=content(bus) for PE(i,0,0)

Step6 For PE(i,0,0) that receive A and B do runLength

:= A-B and form Z bus

Step7 Rank from top to down for PEs that received A

and B; put rank result in R

Step8 Broadcast(runLength) on Z bus for PE (i,0,0)

from Step6

Step9 runLength=content(bus) for PE(i,0,k), where

sk 0

Step10 Broadcast(R) on Z bus for PE (i,0,0) from Step6

Step11 D=content(bus) for PE(i,0,k), where sk 0

Step12 Form plane bus

Step13 Broadcast(runLength) for PE(i,0,k) and k==D

Step14 runLength=content(bus)

Fig. 15. Tiling of the length information for L-shaped polygon

Let l0, l1, l2, … ld-1, be the lengths of the horizontal segments

of a robot from top to bottom respectively. Let rnuLength be a

register that each PE has. The goal of the tiling procedure is to

assign li to all the runLength registers in plane i, 10  Di .

Of course, l0, l1, l2, … ld-1, must be first calculated by the tiling

procedure, and then distributed to different planes.

Step1 uses four shift operations to identify boundary PEs. If

a PE is in the right most boundary of the robot(on its row) it

sends its column index to the leftmost PE of the

NN  RMESH on that row. This is done in Step2 and Step3.

Similar the left most boundary PEs of the robot send their

column indices to the leftmost PEs of the NN  RMESH on

their rows. Step4 and Step5 fulfill this. Every leftmost PE then

calculates the run length of the robot on that row. The next

step is to rank the row strips of the robot starts from the top of

the strip to the bottom(Step7). Note this operation is a special

case of the general rank operation. Here the PEs involved in

the ranking is in consecutive top to bottom fashion. Therefore

the ranking operation can be done in O(1) time by first identify

the top boundary PE(note the rank of this PE is 0). Followed

by one broadcasting of the row index and simple algebra, other

PEs can then determine their ranks. At this time the PEs that

Fig. 14. A WBP convex robot with two base points

7

are in the leftmost column of the NN  RMESH have the run

length information of the robot on that particular row and the

ranking information. These information will then broadcast to

other planes by using Z bus. On receiving the run length

information at Step9 and rank at Step11, the PEs can then

compare the rank value with its k index. If these two values

match then the PE will broadcast the runlength information to

the PEs on its plane and this is done in Step12, 13 and 14 by

using plane bus. It is easily seen the complexity is O(1).

Step0 Tiling;

Step1 compute vertical-boundary(i,j,k);

 form column bus;

Step2 If vertical-boundary(i,j,k) then

disconnect N switch;

broadcast(i);

 temp(i,j,k) = content(bus);

If not obstacle(i,j,k) then

 distance(i,j,k) =i-temp(i,j,k);

Step3 If vertical-boundary(i,j,k) then

DrawSegment(height(i,j,k)) toward south;

Step4 If A(i,j,k) then obstacle(i,j,k) = true;

Step5 form z bus;

Step6 If obstacle(i,j,k) then broadcast(distance(i,j,k))

 temp(i,j,k)= content(bus)

 if (k= = temp(i,j,k)) then broadcast(runLength(i,j,k));

 runLength(i,j,k) = content(bus);

Step7 if obstacle(i,j,k) then

AdjacentUnionRight(runLength(i,j,k));

Fig. 16. Computing of configuration space for L-shaped robot

The algorithm to compute the configuration space obstacles

is shown in Figure 16. The algorithm assumes that the

digitized images of the obstacles and a robot are loaded into

plane zero of the RMESH computer. During the image

loading, two boolean variables, robot and obstacle, of each PE

are initialized. A PE’s robot variable is initialized to true iff it

is a robot PE, i.e., it contains a pixel value of the robot. A PE’s

obstacle variable is initialized to true iff it is a obstacle PE. It

is also assumed that the inversion operation has been

performed and resulted in the robot under discussion.

Like all the algorithms presented in the paper, algorithm of

Figure 16 is executed by every PE in the RMESH. Each

PE(i,j,k) has the following important variables that are related

to the current algorithm: robot(i,j,k), obstacle(i,j,k),

runLength(i,j,k), distance(i,j,k), height(i,j,k), vertical-

boundary(i,j,k), A(i,j,k), and temp(i,j,k). Each PE also has

three constants i,j,k, which form the ID of the PE. Hence, in

the algorithm symbols i,j,k refer to the constants i,j,k

respectively.

The temp variable is used for obtaining bus data by each PE

and does not have a significant role in the algorithm like the

rest of the variables. The obstacle and robot variables are

initialized during image loading as indicated earlier. In

addition, the loading phase also initializes each vertical-

boundary variable to false, A variable to zero, and distance

variable to zero.

Variable robot(i,j,k) is only used in Step0 by the tiling

procedure, which initializes the runlength(i,j,k) and

height(i,j,k) variables of each PE. After Step0, the height of

the robot is stored in the height(i,j,k) variable of each PE, and

the length of the i
th

 horizontal segment is stored in the

runLength(i,j,k) variable of each PE in plane i. Thus, the

values of runLength(i,j,k) variables of the PEs belonging to the

same plane are the same.

In Step1, each obstacle PE checks its neighbor PEs to see if

it needs to assign true to its vertical-boundary(i,j,k) variable.

The shift operations are used for getting the values of the

obstacle(i,j,k) variables of the neighboring PEs. Once this is

done, the PEs set up the column buses for the next step. Step2

computes the values for the distance(i,j,k) variables. Each

boundary PE sets up its column sub bus and sends its row

index to the PEs down the south. Then each PE gets the row

index from the bus and determines its distance to the boundary

PE. The value of distance(i,j,k) will not be used later unless

PE(i,j,k) is or becomes an obstacle PE. Step 3 carries out the

vertical expansion. During the expansion, the value of A(i,j,k)

will be set by DrawSegment operation if PE(i,j,k) is on the

expansion path, i.e., PE(i,j,k) is a new obstacle PE. Step 4

reflects this fact by adjusting the obstacle variables. Step 5

prepares the Z buses so that the obstacle PEs can obtain their

horizontal expansion length. Getting the length is done in Step

6. Step 7 carries out the horizontal expansion and completes

the algorithm.

IV. CONCLUSIONS

Basic data manipulation operations on RMESH such as

odd-even phase shifting operation, DrawSegment operation,

AdjacentUnion operation, Image inversion operation were

conceptualized and their implementation were developed.

These operations may be used as basic building blocks to

develop algorithms to solve more complex problems

efficiently, which was demonstrated in this paper. Using these

operations along with other existing operations a novel

algorithm for computing configuration space obstacles was

developed.

The algorithm we developed for computing the

configuration space obstacles is for convex robot by using

DNN  reconfigurable mesh with buses (RMESH), where

D is the diameter of the robot under consideration. The

algorithm is asymptotically optimal when time complexity is

concerned. The algorithm runs in constant time and uses

constant space. There are other interesting questions which we

did not address in this report. Can we reduce the size of the

RMESH and achieve the same optimal complexity? Can we

compute configuration space obstacles when arbitrary shape

robot is concerned? If yes, can we still achieve the constant

time and space complexity?

8

REFERENCES

[1] S. Bandi, D. Thalmann, “ A Configuration Space Approach for Efficient

Animation of Human Figures”, IEEE Computer Society Workshop on

Motion of Non-Rigid and Articulated Objects, pp. 38 – 45, 1997.

[2] F. Dehne, A. Hassenklover, and J. Sack, "Computing the configuration

space for a robot on a mesh-of-processors,” Proceedings 1989 ICPP.

vol. 3, pp. 40-47, 1989.

[3] Dinesh Manocha,Liangjun Zhang,Young J. Kim , “C-DIST: efficient

distance computation for rigid and articulated models in configuration

space”, Proceedings of the 2007 ACM symposium on Solid and

physical modeling, pp. 159-169, 2007.

[4] I. Ivanisevic, V. J. Lumelsky, "Configuration space as a means for

augmenting human performance in teleoperation tasks", IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics",

vol. 30, no. 3, pp 471 – 484, 2000.

[5] J. Jenq and S. Sahni, “Serial and Parallel Algorithms for the Medial

Axis Transform”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Dec. pp 1218-1224, 1992.

[6] J. Jenq and S. Sahni, “Reconfigurable Mesh Algorithms for

Fundamental Data Manipulation Operations” in Computing on

Distributed memory Multiprocessors, NATO series F, ed. F. Ozguner,

Spring Verlag, pp 27-46, 1993.

[7] J. Jenq and W. Li, “Optimal hypercube algorithms for robot

configuration space computation”, Proceedings of the 1995 ACM

Symposium on Applied Computing, pp 182-186.

[8] J. Jenq and W. Li, “Computing the Configuration Space for a Convex

Robot on Hypercube Multiprocessors”, Proceedings of the 7th IEEE

Symposium of Parallel and Distributed Processing, pp 160-167, 1995.

[9] L. Kavraki, "Computation of Configuration-Space Obstacles Using the

Fast Fourier Trnasform", IEEE Transactions on Robotics and

Automation, vol. 11(3), pp 408-413, 1995.

[10] C.L. Lia,1, K.W. Chanb, S.T. Tanb, "A configuration space approach to

the automatic design of multiple-state mechanical devices", Computer-

Aided Design 31, pp 621–653, 1999, Elsevier.

[11] T. Lozano-Perez and M. A. Wesley, "An algorithm for planning

collision-free paths among polyhedral obstacles," CACM, pp. 5609.-

570, 197.

[12] T. Lozano-Perez, "Spatial planning: A configuration space approach,"

IEEE Trans. on Computers, pp. 108-120, 1983..

[13] T. C. Manjunath, Gopala, Ashok Kusagur, B. G. Nagaraja , “Simulation

& Implementation of Shortest Path Algorithm with a Mobile Robot

Using Configuration Space Approach”, International Conference on

Advanced Computer Control, pp. 197-201, 2009.

[14] R. Miller, V. Prasanna-Kumar, D. Reisis, and Q. Stout, “Parallel

Computations on Reconfigurable Meshes”, IEEE Transactions on

Computers, vol. 42(6), pp 678-692, 1993.

[15] Andrzej Wytyczak-Partyka, Jerzy W. Rozenblit, Chuan Feng, Allan J.

Hamilton, “Defining Spatial Regions in Computer-Assisted

Laparoscopic Surgical Training”, IEEE International Conference on the

Engineering of Computer-Based Systems, pp. 176-183, 2009.

[16] P. Tzionas, A. Thanailakis, and P. Tsalides, "Collision-Free Path

Planning for a Diamond-Shaped Robot Using Two dimensional Cellular

Automata", IEEE Transactions on Robotics and Automation, vol.13(2),

pp 237-250, 1997.
[17] Wang Yuquan, Zhu Qidan, Zhou Fang, Wang Tong, "Path Planning for

Multi-Joint Manipulator Based on the Decomposition of Configuration

Space", International Conference on Intelligent Computation

Technology and Automation, pp. 661-664, 2009.

John Jenq is an associate professor of Computer Science Department at

Montclair State University, Montclair New Jersey. Dr. Jenq received his

Master of Science and PhD from University of Minnesota, Minneapolis in

1986 and 1991 respectively. His research interests include parallel and

distributed computation, image processing, pattern recognition, data mining,

algorithmic robotics, and internet applications . Dr. Jenq is a member of both

ACM and IEEE.

Dajin Wang is a professor of Computer Science Department at Montclair

State University. Dr. Wang received his B. Eng degree from Shanghai

University of Science and Technology in 1982, Master of Science and PhD

from Stevens Institute of Technology in 1986 and 1990 respectively. His

research interests include interconnection networks, fault tolerant computing,

parallel and distributed computing, wireless mobile and sensor networks, and

algorithmic robotics.

Wingning Li is a professor with Department of Computer Science and

Computer Engineering, University of Arkansas, where he has been serving

from 1998-present. Dr. Li obtained his B.S. Degree in Computer Science

University of Iowa, December 1982, his M.S. Degree in Computer Science

University of Minnesota, November 1985, and his Ph.D. Degree in Computer

Science University of Minnesata, September 1989. Dr. Li research interests

are in the areas of Computer-aided design for VLSI circuits, combinatorial

optimization, design and analysis of algorithms in both theoretical and

experimental settings, parallel computing, software reuse and construction,

and GUI design and development. Dr. Li is member of both ACM and IEEE.

