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Abstract— A modified log domain decoding algorithm of Low 

density parity check (LDPC) codes over GF(q) using permutation 

to simplify the parity check equation  is presented in this paper 

which is different from the conventional log domain decoding 

algorithm of Low Density Parity Check (LDPC) codes over GF(q) 

[11]. Modified Log domain is mathematically equivalent to the 

conventional log domain decoding but modified log-domain has 

advantages in terms of implementation, computational 

complexity and numerical stability. Further a variant of Log 

domain decoding defined as modified min-sum decoding is 

proposed, yielding a lower computational complexity and a little 

performance loss. The proposed algorithms and the conventional 

log domain decoding algorithm are compared both in terms of 

simulated BER performance of rate ½ LDPC code over GF(8) 

with N=204 and computational complexity.  

 
Index Terms— LDPC, GF (q), Log Domain Decoding, Min-sum 

decoding, sum-product algorithm, Iterative decoding. 

 

I. INTRODUCTION 

Low density parity check codes (LDPC) is a linear block 

code which is defined by a sparse parity check matrix and it 
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approaches Shannon –limit performance for binary field and 

long code lengths [1],[2],[4] ,[5].  But performance of binary 

LDPC code is degraded when the code word length is small or 

moderate, or when higher order modulation is for transmission 

[6].  LDPC codes designed over Galois Field GF (q>2) (also 

known as non-binary LDPC codes) have shown great 

performance for these cases [7]–[10]. But decoding 

complexity increases   with q which makes the use of non-

binary LDPC (NB-LDPC) codes is limited still today. 

The belief propagation can be extended to decode NB-

LDPC code but it has computational complexity dominated by 

O(q
2
)  operation for each check node processing [7].  The 

reduction in complexity of BP can be done by carrying out the 

computations in log domain [11], Fourier domain [3], and 

mixed domain [12].  When the Galois field is a binary 

extension field with order q=2
p
, the Fourier transform is easy 

to compute which reduces the decoding complexity to O(p
2P

) . 

[8], [3] report results for 2
p 

=256. Log- domain decoder 

combined with a Fast Fourier Transform (FFT)  at the check 

node point with a look up table (LUT ) of required operations 

is presented in [13]. The decoding complexity can be further 

reduced by the log-domain extended Min-sum (EMS) [14] and 

Min-max [15] algorithms.  Although only additions are 

performed and it is independent of channel information, its 

complexity remains O(q
2
). The EMS algorithm employs ’sum’ 

instead of ’max’in the check node processing. As a result, it 

can achieve better error correcting performance with higher 

complexity than the Min-max algorithm. 

In this paper we propose two algorithms for decoding NB-

binary LDPC. First algorithm is in the Log-domain. We 

efficiently employ permutation to simplify the parity check 

equation. It involves only sum operations which make this 

algorithm computationally less complex. We then 

expeditiously extend this algorithm to its min sum version 

which requires less sum operations than first one and it makes 

this algorithm very attractive for practical purpose. 

The paper is organized as follows. In the next section we 

briefly discuss LDPC codes. We also present sum product 

algorithm and log-domain decoding algorithm over GF(q) in 

Section III and IV respectively to make the paper self 

contained. We develop our algorithm in section V. Section VI 

presents simulation results and section VI concludes this 

paper.  
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Fig. 1.Tanner graph representation of parity check matrix 

with row weight=3 and column weight=2. 

II. LOW DENSITY PARITY CHECK CODES 

LDPC code is defined by a sparse parity check matrix of M 

rows and N columns and the code rate is defined by R ≥  
   

 
. 

A vector c is a codeword if and only if it satisfies: 

 

                                                                                 (1) 

 

LDPC code is represented by a Tanner graph Fig. 1 which 

consists of N bit nodes and M check nodes that represent N 

bits of a codeword and M parity constraints. The graph has an 

edge between the nth bit node and mth check node if and only 

if bit is involved in the mth check i.e if Hmn =1. Decoding 

algorithms of LDPC codes are iterative message passing 

decoders based on a factor graph. 

In NB-LDPC code, the parity check matrix H of size           

M × N whose elements belong to a finite field GF(q) defining 

code CH such that     = {  ̂       (    |   ̂    }. The rank 

of H is N - K with K   N - M and the code rate R =
 

 
 ≥ 1- 

 

 
 as 

in binary case. 

The tanner graph Fig. 2 representation of a set of variable 

nodes belonging to GF (q) fully connected to a set of parity 

check nodes. We denote dv the column weight of a symbol 

node and dc is the row weight of a check node. dv and dc  vary 

according to the symbol index and check index respectively in 

irregular LDPC code. A single parity check equation in NB-

LDPC code involving dc and codeword symbols cn is as 

follows:  

        

 ∑      
     
    =0                                                     (2) 

 

in GF (q) and m = {1, 2, … dv}.Where hmn  is a nonzero value 

of the parity matrix H. 

The messages in NB-LDPC codes can be probability 

weights vectors or Log Likelihood Ratio (LLR) vectors. But 

the use of LLR is more advantageous than probability weights 

vectors because it avoids use of multiplication and addition 

operations sum operations and symbols are less sensitive to 

quantization error [16].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. Generalized factor graph of a NB-LDPC code [21].  

 

The following notation will be used for an LLR vector of a 

random variable z ε GF (q): 

 

  λ(z) =[ λ[0]… λ[q]  and     

 

  [ ]     
 (     

 (    
                                                     (3) 

 

with  (      being the probability that the random 

variables z takes on the values ai Є {1,2,…….q}. 

   The LLR messages at the channel output are q-1 

dimensional vectors in general denoted by  λch = [λch[k]kε 

{1,2,…q}]. Each symbol of the codeword cn , n Є {0,….,N-1} 

can be converted   into a   sequence   of     (   bits cni Є 

GF (2), i Є {0,….,     (    } for a binary additive white 

Gaussian noise channel (AWGN) i.e.  a block of  Kb bits  is 

converted to a sequence of K GF (2
b
) symbols according to 

some mapping, φ: (GF(2))
b
 → GF (2

b
).  Then message 

word b  Є (GF(2
b
))

k
, is encoded using the generator matrix, 

resulting in a codeword c Є C i.e. c = G
T
b. The codeword is 

now converted to a vector t using signal constellation 

mapping. We are assuming BPSK signaling but it is possible 

to use higher order modulation [17]. Thus ψ: GF (q) → Ω
b
, 

with Ω = {-1,+1} such that ψ (ck) = [tkb, ….t(k+1)(b-1)]
T
 and  

ti Є Ω [11]. 
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After BPSK mapping, the codeword is sent on the AWGN 

Channel: 

                                x = t + n                             (4) 

 

with x being the received noisy BPSK signal and n being a 

real white Gaussian noise random variable with variance 

    
  

      
  where 

  

  
 is the SNR per information bit. 

The following notations will be used throughout the paper. 

 

Notations: 

 n Є {1,2,…N} a variable node of H. 

 m Є {1,2,…M} a check node of H. 

   , set of neighbor variables nodes of the check node m. 

    , set of neighbor check nodes of the variable node n. 

     , set of neighbor variables nodes except n of the 

check node m. 

      set of neighbor check nodes except m of the 

variable node n. 

 L (m), set of Local configurations verifying the check 

node m i.e. the set of sequences of GF(q) symbols  

verifying the linear constraint. 

 L(m | an = a) set of local configurations verifying m, such 

that an = a; for given n Є    and a Є GF (q). 

 λn (a) , the a priori information of the variable node n 

concerning the symbol a. 

   ̂ (   , the a posteriori information of the variable node n 

concerning the symbol a. 

III. SUM PRODUCT ALGORITHM [1] 

The decoding algorithm has following four stages: 

Initialization..   
   

is used to initialize all  messages     
     

passing from a variable node to a check node with probability 

 (  |        
Updating Check Node. All messages coming from the check 

nodes are updated with:    

   
  ∑  (          

|               

  
 

  

 

where  (   |      {   }  based on    satisfies check m or 

not. 

Updating Bit Node. All messages coming from the variable 

nodes are updated with 

 

                        
   =      

          
     

                            (6) 

 

Where     is a normilzed factor chosen such that 

∑    
    

      

 

Tentative decoding. An estimation of variable node is made 

with : 

                               ̂=max   
           

   
                     (7) 

 

If H  ̂ =0 then stop. Otherwise if no. of iteration < maximum 

no .  of iteration , loop to updating check node. 

Otherwise, declare decoding failure and stop.  

IV. LOG DOMAIN DECODING OVER GF(Q) 

The Log domain decoding [11] has following steps: 

Initialization.   All messages passing form variables node to a 

check node are initialized with the LLR vector from the 

channel model. 

 

               =   (    ∑
      

       (       
                 (8) 

 
Updating Check Node. All the messages coming from the 

check nodes are updated with: 

    

λ(       
           

          
                              (9) 

 

The value of σ and ρ is calculated recursively. 

 

λ(         
     (         

        
     

               (10) 

 

 (       
)   =    (         

        
     

                (11) 

 

Updating Bit Node. All messages coming from the variable 

nodes are updated with: 

 

                       =    (    + ∑   (                      (12) 

 

Tentative decoding. An estimation of variable node is made 

with : 

                      ̂= argmax(     (  )                            (13) 

 

If H  ̂ =0 then stop. Otherwise if no. of iteration < maximum 

no .  of iteration , loop to updating check node. 

Otherwise, declare decoding failure and stop. 

V. PROPOSED ALGORITHM 

In this section, we develop our proposed algorithm which is 

known as modified log –domain decoding. Then the modified 

log-domain is extended to modified min-sum decoding which 

is less computationally complex.  (     |    is the channel 

posterior probability of a Є GF (q). Ratio of channel posterior 

probability of a Є GF (q) and channel posterior probability of 

o is defined as 

 

λn (cn=a|r)=log 
 (     |  

 (     |  
=log  

 (     |   {      } 

   (     |   {      } 
   (14) 

 

Applying byes rule in numerator 

 (     |  {      }   = 
 (        {      } 

 (   {      } 
 

 

                                  = 
 (     |  {      }  (     {      } 

 (  |{      }  ({      } 
 

a 

(5) 

 

a 
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                                   = 
 (   |      (     {      } 

 (  |{      }  ({      } 
 

 

                                  = 
 (   |      (    |{      } 

 (  |{      } 
 

Similar way  for denominator 

 

 (     |  {      }  = 
  (   |      (    |{      } 

 (  |{      } 
 

 
Now for (14) 

 

  (cn|r) = log
 (   |       (    |{      } 

 (   |       (    |{      } 
 

 

          = log  
 (   |     

 (   |     
   + log  

  (    |{      } 

  (    |{      } 
         (15)                              

 

 

 

 

  (cn|r) consists of two terms which can be divided as 

intrinsic term and extrinsic term. Intrinsic term being 

logarithmic ratio of likelihood of non-binary symbols is 

calculated from the channel information i.e  rn affecting the bit 

cn. Likelihood of non-binary (GF(2
q
)) symbols is calculated 

from binary likelihood values provided by the channel. 

We define symbols likelihood values by 

 

 (   |         (  |[           ][        ]  

 

                          ∏   (  |        
 
                      (16)                                       

 

Where a ε GF (q) and ai is the ith bit of the binary   

representation of a. 

Now, (16) transforms to  

 

             log 
 (   |     

 (   |     
=∑

      

       (                  (17)                                          

 

The extrinsic term is determined by the information 

provided by all the other observations and the code structure. 

The parity check equations for non-binary case are of 

following form: 

 

                                  ∑            
                     (18) 

 

Where              (     m is the checks number. The 

parity check equation for check 1 is satisfied when: 

 

                                                    (19)     
 

The parity check equation for ci=x and x Є GF (q) is 

satisfied when:   

 

                                               (20)                              

 

  →

[
 
 
 
 
 

   (  

   (  
 
 
 

   ( 
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2
cn →
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   ( 
    

   (  ]
 
 
 
 
 

 

 

Fig. 3.  Permutation of the likelihood vectors 

 

But calculation of (20) is more complicated than binary case 

because now we have non-binary parity check matrix and each 

coded symbol has q likelihoods associated with it.                 

But this multiplication is easily accomplished by cyclically 

shifting downwards this column vector of likelihoods with the 

exception of first likelihoods. The power of primitive elements 

that is multiplied with the coded symbol is equal to the 

number of cyclic shifts. This process is known as permutation 

[3] Fig. 3. 

This permutation transforms the parity check (20) to: 

 

                                                             (21) 

 
This is more similar to binary parity check equations. When 

the likelihoods are cyclically shifted upwards, process is 

known as depermutation. 

The parity check computed using the mth check associated 

with cn, except for cn is denoted by  

 

         ∑              
                                              (22) 

 

After doing permutation, (22) is transformed to: 

 

        ∑          
                                                       (23) 

 

If cn=a , then zm,n + cn  = 0; that is , zm,n = a for all the 

checks m Є   n  in which cn participates. Now, extrinsic term 

in (15) is written as following way 

 

log 
 (    |{      } 

 (    |{      } 
 = log 

 (                     |{      } 

 (                     |{      } 
       

                                                                                            (24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Conditional independence among the set of bits. [21] 
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If the graph associated with the code is cycle free then the set 

of bits associated with zm,n are independent of the bits 

associated with  zm,n’  for m’  m Fig. 4.  Now (24) becomes 

 

log 
 (    |{      } 

 (    |{      } 
 =  log

∏     (      |{      } 

∏     (      |{      } 
   

 

                                =  ∑    
 (      |{      } 

 (      |{      }                   (25) 

 

Let, Log likelihood ratio can be defined as 

 

        (      |{      }   =
 (      |{      } 

 (      |{      } 
      (26) 

 
Then from (25)  

       

∑  (    |{      }     = 

                               ∑  (∑   |{      }      
          (27) 

 
From (15), (17) and (27), we can write 

 

λn (cn=a|r) = ∑
      

       (           +    

                                                      ∑  (    |{      }      

 

= ∑
      

       (        +∑ λ(∑   |{      }      
         

                                                                                              (28) 

 

Let 

  

ηm,n = (∑   |{      }      
                                   (29) 

               

This is the message which is passed from the check node m to 

the bit node n. Now (28) can be written as  

 

λn (cn=a|r) = ∑
      

       (          + ∑            (30)   

    

It is the message which is passed from the bit node n to check 

node m. Now we can employ iterative decoding between (29) 

and (30).  The different steps of  our proposed algorithms is 

presented below. 

 

A. Modified Log domain decoding  

Modified log domain decoding uses log likelihood ratio as 

message and it performs the following operations:  

 

Initialization: 

 

Initialize      
[ ]

 = 0 for all (m,n) with H(m,n)  . 

 

And      
[ ]

= ∑
      

       (                                       (31) 

 

Check node update:  All the messages coming from the 

check nodes are updated with: 

 

ηm,n =  (∑   |{      }       
                     (32) 

Bit node Update: All messages coming from the variable 

nodes are updated with: 

 

  (  =   
[ ]

(   + ∑                               (33) 

Tentative decoding : tentative decision of    ̂ : 

 

    ̂ = argmax  (  (  )                        (34) 

If H  ̂ =0 then stop. Otherwise if no. of iteration < maximum 

no .  of iteration , loop to check node update. 

Otherwise, declare decoding failure and stop.  

 

B. Modified min sum decoding 

The above modified log domain algorithm can be converted to 

a min sum algorithm which requires less operations according 

to procedure presented in [20].  

 

Initialization:  

 

Initialize      
[ ]

 = 0 for all (m,n) with H(m,n)  . 

 

And            =  =∑
      

       (                              (35)                         

 
Check node update: All messages coming from the variable 

nodes are updated with: 

 

βm,n=  min     (∑    |{      }        
)                        (36) 

 

 

The check node update process can be implemented efficiently 

by recursive method using forward and back ward matrix.  

 

Forward matrix: 

 

F1(a ) =       
(     

   ) 

 

Fi(a)  =    min (F(i-1) (a’),      
(                                (37) 

 

 

 

Backward matrix: 

 

Bd(a )=       
(     

   ) 

Bi(a) =  min (B(i+1)(a’),      
(                                  (38) 

 

 

a 

(an’)n’      
 

 
   ( |      
 

a’,a”   GF(q) 

a’+     
a“=a 

a’,a”  GF(q) 

a’+     
a“=a 
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Check node messages can be computed as follows: 

 

          
(a)= B2 (a)  &        

(a)= Fd-1(a) 

  
          

(a)= min (F(i-1)(a’), B(i+1)(a”))                        (39) 

 

 

 

Bit node update: All messages coming from the variable 

nodes are updated with: 

 

     =    +∑                              (40) 

                           =   min                                          (41) 

 

 

    =   
       

                                       (42) 

Tentative decoding: 

 

       ̂=     +∑                                     (43) 

Tentative decision of    ̂ :                   

  

   ̂ = argmax  (   ̂(  )                           (44) 

If H  ̂ =0 then stop. Otherwise if no. of iteration < maximum 

no . of iteration , loop to check node update. Otherwise, 

declare decoding failure and stop.  

VI. RESULT 

In this section we compare three decoding algorithms for NB-

LDPC: the Log domain decoding algorithm [11], modified log 

–domain decoding algorithm and min- sum decoding 

algorithm as discussed above.  

Fig. 5 shows the Bit Error Rate ( BER ) performance for a 

rate ½ LDPC code from [18] over GF (8) with N=204 and 

BPSK modulation. The decoding process is halted after a 

maximum 200 iterations.  The BER performance of modified 

log domain decoding and modified min-sum decoding is better 

than log domain decoding algorithms.  But the BER 

performance of modified min-sum decoding is 0.2 dB less 

than the modified log domain  as expected because  modified  

min-sum is approximation of modified  log domain decoding. 

The memory requirement is less in modified log domain but 

the computation complexity is much in modified log domain. 

The modified min sum requires less no. of iterations to 

converge. 

VII. CONCLUSION 

We have introduced modified log-domain algorithm and 

min-sum algorithm of sum-product algorithm (SPA) for 

LDPC codes over GF (q). A log-domain implementation 

has several advantages as far as practical implementation is 

concerned.  

 
Fig. 5. BER performance for an LDPC code over GF (8) 

 

We have compared the BER performance and computational 

complexity of the log domain algorithm, modified log-domain 

algorithm and modified min-sum algorithm. The modified 

log–domain algorithm has superior BER performance than 

modified min-sum algorithm for small SNR as verified by the 

computer simulations. It is expected because modified min-

sum is the approximation of modified log-domain. Modified 

min –sum gives rise to a small BER degradation. Both 

modified log domain algorithm and modified min-sum 

algorithm requires no message multiplications. So they may 

constitute a considerable saving in computational complexity 

as compared to the SPA.  There is a scope of finding the 

performance of the proposed algorithm in terms of extrinsic 

information transfer chart (EXIT) and density evolution. 

REFERENCES 

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:MIT 

Press, 1963.W.-K. Chen, Linear Networks and Systems (Book style).

 Belmont, CA: Wadsworth, 1993, pp. 123–135. 

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of 

capacity- approaching low-density parity check codes,” IEEE Trans. Inf. 

Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001 

[3] Barnault, L. and Declerq, D. (2003) Fast decoding algorithm for LDPC 
over GF(2q). IEEE Information Theory Workshop, Paris, France, pp. 

70–3E. H. Miller, “A note on reflector arrays (Periodical style—

Accepted for publication),” IEEE Trans. Antennas Propagat., to be 

published. 

[4] M. G. Luby,M.Mitzenmacher,M.A. Shokrollahi, and D. A. Spielman, 

“Improved low-density parity-check codes using irregular graphs,” IEEE 

Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001. 

[5] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke, “On 
the design of low-density parity check codes within 0.0045 dB of the 

Shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 

2001.  
[6] Voicila, A.; Declercq, D.; Verdier, F.; Fossorier, M.; Urard, P.; , "Low-

complexity decoding for non-binary LDPC codes in high order fields," 

Communications, IEEE Transactions on , vol.58, no.5, pp.1365-1375, 
May 2010 

[7]  M. Davey and D.J.C. MacKay, “Low Density Parity Check Codes over 
GF(q),” IEEE Commun. Lett., vol. 2, pp. 165-167,June 1998. 

a   GF(q) 

a 

a’,a”  GF(q) 

a’+a“=      
a 



 

29 

 

[8] X.-Y. Hu and E. Eleftheriou, “Binary Representation of Cycle Tanner-

Graph GF(2q) Codes,” The Proc. IEEE Intern. Conf.on Commun., Paris, 
France, pp. 528-532, June 2004. 

[9] C. Poulliat,M. Fossorier and D. Declercq, “Design of non binary LDPC 

codes using their binary image: algebraic properties,”ISIT’06, Seattle, 
USA, July 2006. 

[10] A. Bennatan and David Burshtein, ”Design and Analysis of Nonbinary 
LDPC Codes for Arbitrary Discrete-Memoryless Channels,” IEEE 
Trans. on Inform. Theory, vol. 52, no. 2, pp. 549-583, Feb. 2006. 

[11] H. Wymeersch, H. Steendam and M. Moeneclaey, ”Log-domain 

decoding of LDPC codes over GF(q),” Proc. IEEE Intl. Conf. on 
Commun., pp. 772-776, Paris, France, Jun. 2004. 

[12] Spagnol, C.; Popovici, E.M.; Marnane, W.P.; , "Hardware 

Implementation of ${rm GF}(2^{m})$ LDPC Decoders," Circuits and 
Systems I: Regular Papers, IEEE Transactions on , vol.56, no.12, 

pp.2609-2620, Dec. 2009. 

[13] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC 
codes for magnetic recording,” IEEE Trans. Magn., vol. 39, no. 3, pp. 

1081–1087, Mar. 2003. 

[14] D. Declercq, M. Fossorier, ”Decoding algorithms for nonbinary LDPC 
codes over GF(q)”, IEEE Trans. on Commun., vol. 55, no. 4, pp. 633- 

643, Apr. 2007. 

[15] V. Savin,“Min-Max decoding for non binary LDPC codes,” Proc. IEEE 
Intl. Symp. on Info. Theory, Toronto, Canada, Jul. 2008. 

[16] L. Ping and W.K. Leung, “Decoding low density parity check codes 

with finite quantization bits”, IEEE Commun. Lett.,4(2):pp.62-64, 

February 2000. 

[17] S. ten Brink, J. speidel and J. C. Yan. “Iterative demapping and 

decoding for multilevel modulation”. In IEEE GLOBECOME’98, 1998. 

[18] D.J.C. MacKay. "Online database of low-density parity check codes".        

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html 

[19] [T. k. Moon “Error Correction Coding- Mathematical Methods and 

Algorithms”, wiley publications. 

[20] D. Declercq and M. Fossorier, “Extended min-sum algorithm for 

decoding LDPC codes over GF(q),” in Information Theory, 2005. ISIT 

2005.Proceedings. International Symposium on, 2005, pp. 464–468. 

[21]  R. A. Carrasco , M. Johnston ,” Non binary error control coding for 

wireless communication and data storage” Wiley publications” 

 
 

 

 

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

