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 

Abstract—Network services are often provided by server 

clusters. From the perspective of operational expenditure and the 

global environment, the power consumption of server clusters 

should be decreased. This is possible by operating the minimum 

number of computers required to realize a sufficiently good 

performance against changes in load. To do this, it is necessary to 

accurately determine the number of computers that should be 

turned on or off for the measured load metrics. This number 

should be determined by estimating multiple load metrics because 

a single metric does not adequately represent the statuses of 

various bottlenecked resources. In addition, decision rules should 

be appropriately updated if there are changes in the service 

content or computer specifications. To satisfy these requirements, 

this study proposes a machine learning approach as a method of 

determining the number of server computers. Another technical 

requirement for power management is that the load metrics should 

be measured nonintrusively for the OS or hardware of the cluster 

computers. From this viewpoint, we employ traffic parameters as 

the metrics that reflect resource consumptions. These traffic 

parameters are passively measured on a machine that is separate 

from the server cluster.  

This paper first explains the machine learning approach to 

determine the number of computers. The implementation of the 

approach is then presented. The effectiveness of the scheme is 

confirmed experimentally. 

 
Index Terms— machine learning; power management; server 

cluster; measurement; traffic 

 

I. INTRODUCTION 

O satisfy a large number of requests, network services are 

often provided by a server cluster constructed with multiple 

computers. The power management of a server cluster [1] is 

important from the viewpoint of reducing operational 

expenditure and CO2 emissions. Because the amount of load 

assigned to a cluster changes during the daytime, power 

consumption can be reduced by turning off server computers 

with light loads and turning on computers with heavy loads [2]. 
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This is achieved by measuring the load on the cluster, 

determining which computers should be turned on or turned off, 

and finally, turning on/off computers. 

The key to realizing the efficient power management of a 

server cluster lies in determining which computers need to be 

turned on and off on the basis of the measured load. In previous 

studies, this on/off decision was made by comparing a single or 

a few measured load metrics with fixed thresholds. For 

example, the method discussed in [2] compares the utilization of 

the CPU, disk interface, and network interface with thresholds. 

However, an on/off decision based on a comparison between 

load metrics and thresholds does not always provide accurate 

results. This is because the optimal threshold depends on the 

service content and machine specifications. For example, the 

same value of CPU utilization leads to good performance for 

some contents but bad performance for other contents. This 

happens because the performance is affected by the 

consumption of different resources depending on the service 

content.  

To achieve an adequate on/off decision, multiple metrics that 

reflect the utilizations of various resources must be monitored. 

With this approach, it is favorable that the metrics are measured 

nonintrusively because of the robustness against excessive loads 

or failure. Some utilization information is available through the 

OS, which runs on a server computer. However, when the 

computer performance is significantly degraded owing to 

overload or failures, the utilization information may not be 

successfully obtained through the OS. Another reason is the 

compatibility of the software/hardware platform. The 

application interface used to extract resource utilization will 

differ based on the OS or hardware platform of a server 

computer. Thus, different measurement software must be 

developed for each OS or hardware. This increases the 

development time and cost. Therefore, it is necessary to employ 

the metrics, which can be measured independent of the 

hardware/software platform of the server computers. 

The relationship between the nonintrusively monitored 

metrics and the on/off decision is not simple, and thus it is 

necessary to develop a mechanism that automatically 

determines this relationship. Machine learning technology is 

very promising for this purpose. 

Machine learning is an important tool that can be used to 

discover a rule hidden in obtained data [3]. Machine learning 
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techniques has been successfully applied to various 

network/system management applications, including attack 

detection [4], spam mail filtering [5], and application 

classification [6]. If a machine learning technique is used to 

make the on/off decision, it is possible to find the decision rule 

hidden in multiple monitored load metrics. In addition, a 

decision rule can flexibly adapt to changes in service content or 

machine specifications by re-learning for the new environment. 

Thus, a machine learning approach is promising for determining 

the on/off status of computers from multiple load metrics. 

This paper proposes a power management method for server 

clusters. The proposed method employs the traffic parameters 

as the load metrics. These parameters can be nonintrusively 

obtained from captured packets. The proposed method employs 

a machine learning technique to make the on/off decision. For 

the machine learning technique, a method based on the decision 

tree model [3], [7] is examined. The paper explores the method 

by which a machine learning framework is applied to the power 

management of a server cluster. Load metrics and performance 

criteria are also presented. The proposed method was 

implemented and tested on an experimental server cluster. 

Through experiments, it was shown that the proposed method 

successfully reduces the power consumption of the server 

cluster while offering a sufficiently good performance. 

The rest of the paper is organized as follows. Section II 

reviews the previous related work. In Section III, we explore the 

problem addressed in this paper. Section IV proposes the 

machine learning approach for determining the number of 

computers required on the basis of the measured load metrics. 

The implementation of the proposed method is described in 

Section V. Section VI experimentally evaluates the feasibility 

and effectiveness of the proposed method. Finally, Section VII 

concludes the paper. 

 

II. RELATED WORK 

Power management techniques for server clusters have been 

reported in [2], [8-10]. In [2], two implementations called 

“power-aware cluster-based network server” and “power-aware 

OS for clusters” are examined. Both implementations turn 

computers in a cluster on and off on the basis of the load. The 

load metrics are the utilizations of the CPU, disk interface, and 

network interface. These metrics are measured on each cluster 

node by means of the /proc files of the Linux OS. By setting 

the threshold at 90% for these utilizations, the method 

determines whether a computer should be turned on or off. 

However, the accuracy of this decision procedure is insufficient 

because the most appropriate threshold depends on the service 

content or hardware specifications.  

Another power management method for a server cluster is 

examined in [8]. This method measures parameters including 

the CPU utilization, request queue length, and TCP connection 

rate, called “throughput.” Among these parameters, the 

allotment of resources is determined by comparing the CPU 

utilization with a target value. The target value is modified if the 

request queue length exceeds its threshold. Using this 

modification, the method can flexibly set the target value that 

corresponds to the variations of the bottlenecked resources. 

However, it is not easy to find the optimal threshold for the 

queue length. 

References [2] and [8] show the experimental results 

performed on prototype systems, whereas [9] and [10] report 

simulation studies. Of these, [9] formulates the power 

management method as an optimization problem by assuming 

the M/M/1 model for the response time. In the algorithm used in 

[9], the on/off decision is executed by comparing the request 

rate with a threshold, which is theoretically derived on the basis 

of the M/M/1 assumption. However, it is very unlikely that the 

relationship between the request rate and response time is 

exactly modeled by the M/M/1 system. Another formulation is 

found in [10], which minimizes the sum of the backlog cost, 

power cost, and reconfiguration cost for the current job backlog, 

thermal condition, and number of CPUs. To solve this problem, 

they presented a heuristic that determines the number of CPUs. 

However, the number of backlog jobs may not be an appropriate 

metric of the response time for the variety of jobs whose 

processing times are very different. It is also uncertain whether 

the exact number of backlog jobs is measurable in a cluster. 

 

III. PROBLEM DESCRIPTION 

Most existing methods determine the computers that should 

be turned on or off by comparing a single or a few load metrics 

with predefined threshold values. However, this approach is 

problematic in that the optimal threshold may change depending 

on the requested service content. Thus, a unique threshold 

cannot be guaranteed to always offer good performance for any 

requested content. This is because the performance bottleneck 

of the server computer significantly depends on the requested 

service content. Therefore, even for the same load metric value, 

the performance degrades for some service contents, whereas it 

does not degrade for other service contents. Thus, it is 

inadequate to determine the on/off status of server computers by 

comparing the metrics and thresholds. 

For example, let us assume that a web service is provided by a 

cluster. Then, suppose that the page data includes a set of large 

files and CGI scripts that require heavy computation. For this 

situation, consider that CPU utilization is used as the load 

metric. Then, the performance degradation will be accurately 

found by measuring the CPU utilization if most requests are 

directed to the CGI scripts. However, if the requests are directed 

to the large files, the performance will be degraded to a much 

smaller CPU utilization value. This happens because the 

bottlenecked resource is different in these cases. In the case of 

CGI scripts, CPU utilization may be an adequate metric because 

the computing power of the CPU is the bottleneck. Meanwhile, 

because the bottleneck is the read speed of the hard disk for 

large files, the performance when obtaining large files degrades 

for smaller CPU utilization. Therefore, it is difficult to 

determine the need to add/remove a computer by comparing the 
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CPU utilization to a threshold. 

The above problem is better understood by analyzing the 

result of the following experiment that was performed on two 

PCs, with the Linux OS, connected by a 1 Gb/s Ethernet. The 

apache Web server was running on one PC, whereas 

httperf [11] was executed as a client program on the other 

PC. The server PC provides three file sets: 100 HTML files of 

size 1 KB, 100 HTML files of size 1 MB, and a PHP script that 

computes prime numbers and returns the result in a table format. 

For this configuration, the requests were generated for each file 

set on the client PC. From the output of httperf, the average 

time to establish a TCP connection and the average bit rate on 

the network interface were obtained. At the same time, the CPU 

utilization on the server PC was recorded by the top command 

performed in the batch mode. The PCs have a Celeron 3.06 GHz 

processor and 512 KB of memory. 

Fig. 1 shows the relationship between the connection 

establishment time and CPU utilization. From the figure, it is 

observed that the performance degrades at a very different value 

of CPU utilization, depending on the file set. For the PHP script, 

the connection establishment time quickly increases when the 

CPU utilization increases to 92%. On the other hand, the 

connection establishment time increases for a much smaller 

utilization of 44% for the 1 KB file set. For the 1 MB file set, the 

utilization at which the degradation occurs is smaller and is 6%. 

This result suggests that it is impossible to determine the 

appropriate threshold of CPU utilization that is effective for 

every file set; the threshold optimized for the PHP script is very 

large for 1 MB files, whereas that optimized for the 1 MB files is 

very small for the script. 
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Fig. 1. Server performance versus CPU utilization. 

 

In Fig. 2, the connection establishment time is plotted against 

the bit rate of the network interface. As shown in the figure, the 

bit rate at which the connection establishment time increases 

differs greatly with the file set. Therefore, it is also difficult to 

decide appropriate thresholds for bit rates. Suppose that the 

thresholds for the CPU utilization and network interface bit rate 

are optimized for the PHP script and the 1 MB files, 

respectively. Then, these thresholds may work well for the PHP 

script and 1 MB files. However, the thresholds are not effective 

if most requests are directed to the 1 KB files, because neither of 

the thresholds is optimal for the 1 KB files. Therefore, it is 

inadequate to individually set thresholds for multiple metrics.  

 

0

50

100

150

200

250

300

0.1 1 10 100 1000

C
o

n
n

ec
ti

o
n

 E
st

ab
lis

h
m

en
t 

Ti
m

e 
(m

s)

Bit Rate (Mb/s)

1 KB Files
1 MB Files
PHP Script

 
Fig. 2. Server performance versus the bit rate on the network interface. 

 

The above results were obtained because the consumptions of 

different resources cause performance degradation. Fig. 1 

implies that the consumption of CPU utilization limits the 

performance for the PHP script. Moreover, Fig. 2 suggests that 

the capacity of the network interface determines the 

performance for the 1 MB files. For the 1 KB files, it is likely 

that the performance is affected by the consumption of some 

resource other than the CPU or network interface. There are 

various resources that may affect the performance. These 

include the CPU, network interface, bus, disks, memory, buffers 

for TCP/IP, and request queue buffer for TCP. In addition, 

server software settings, for example, the maximum number of 

concurrently served clients (MaxClients in apache), may also 

affect the performance. Thus, for an accurate on/off decision, it 

is necessary to monitor multiple load metrics that reflect the 

consumptions of those various resources. 

If multiple metrics are used, it becomes necessary to consider 

the complicated relationships among the metrics for the on/off 

decision. Using the measured metric values, the method must 

systematically find the computers that should be turned on or off. 

In addition, the mapping rule between the metric values and 

on/off decision must be updated against the changes in the 

service content and computer specifications, and it is necessary 

to develop an algorithm that can perform this update. 

To satisfy these requirements, the machine learning approach 

is considered promising. Using this approach, the mapping 

among multiple metrics and the number of required servers is 

algorithmically discovered from training data. Thus, it is 

expected that the on/off state of the computers will be accurately 

determined by utilizing multiple metrics, each of which is 

associated with a different server bottleneck. Moreover, even if 

the server specifications or service content change, it is easy to 

update the decision rule by relearning the data created for the 

new environment. 
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IV. PROPOSED METHOD 

This section explores the machine learning approach to 

determine the on/off state of computers by measuring multiple 

load metrics.  

For simplicity, this study assumes that the specifications of 

each computer in the cluster are identical. It is also assumed that 

the same volume of traffic is uniformly distributed to every 

computer. Strictly speaking, the power consumed on a computer 

depends on the load. However, the power variation caused by 

the load is small in comparison with that caused by turning the 

computer on or off. Thus, it is assumed that power consumption 

is determined by the number of computers currently turned on. 

Based on these assumptions, the on/off decision for the 

computers is reduced to the problem of determining how many 

computers should be turned on.  

Hereafter, this paper considers the case where the cluster 

provides the World Wide Web (WWW) service. However, the 

proposed method is also applicable to other services. 

A. Machine Learning Approach 

Suppose that a system takes one of the n states s1, …, sn. We 

can observe m attributes a1, …, am, which provide some 

information about the unknown current state. The value of each 

attribute is determined according to some probability 

distribution, which depends on the current state. Then, the 

purpose of machine learning is to build a classifier that 

estimates the unknown current state from the measured attribute 

values. Assume that we have training data that include the 

vectors of the actually occurred state and the attribute values 

measured under that state. For this situation, there exists a 

machine learning algorithm that builds a classifier from the 

training data. 

This study applies the above machine learning framework to 

determine the optimal number of computers that should be 

turned on. For this application, the states are the optimal number 

of computers needed for a sufficiently good performance, 

whereas the attributes are the load metric values. By employing 

this technique, it becomes possible to decide the exact number 

of computers by considering the relationship among the load 

metrics. It is also possible to easily update the classifier against 

changes in machine specifications or service content by 

relearning. 

There are several machine learning approaches, such as the 

artificial neural network, the naïve Bayes, and the Bayesian 

network. Among these approaches, this study examines the 

method based on a decision tree, which is often used in this field 

[3], [7]. For the program that generates the decision tree 

classifier, c4.5 [7] is employed. Program c4.5 has been 

examined in various studies in the network management field 

[4], [12], [13] and therefore is considered to be sufficiently 

reliable. It is also reported that the decision tree based method is 

advantageous because of its low computational cost [14]. This 

advantage is very important for the real time/online power 

management of clusters. 

B. Server Load Metrics 

Previous studies regarding the power management of server 

clusters often used a metric measured on each server computer. 

However, this study employs traffic parameters that are 

passively monitored on a computer that is separate from the 

server cluster. This scheme considerably simplifies the 

implementation because it is not necessary for the node to 

gather the metrics obtained at the computers in the cluster by 

means of polling. Another advantage is that the scheme requires 

neither processing on the server computers nor communication 

between the computers. Therefore, the measurement is robust 

even if the load on the server or network is excessive. Moreover, 

the traffic attributes are independent of the software or hardware 

platform used in the server cluster. This decreases the time and 

cost of developing the measurement software for different types 

of platforms. 

The employed traffic attributes are as follows: 

- Byte rate of the traffic sent to and received from the server 

cluster, RB. 

- Packet rate of the traffic sent to and received from the server 

cluster, RP. 

- TCP connection establishment rate, RC. 

- TCP SYN loss rate, RS. 

- Number of flows, NF 

Among the above metrics, the TCP SYN loss rate RS is 

defined as follows. Let NS be the number of TCP SYN messages 

sent to the server cluster during the measurement period. 

Moreover, let NA be the number of SYN ACK messages sent 

from the server cluster, then 

 
A

AS
S

N

NN
R


  (1) 

Metric Rs is considered to be effective for estimating the 

server condition [15].  

The number of flows is defined as the number of TCP 

connections existing in the last t s. The method of counting 

flows is explored in [16]. In this study, t is set to 1 s and the 

average value over a specified time period is used. 

The above metrics are relevant to the resource usage and 

performance. The byte (or bit) rate obviously represents the 

utilization of a network interface. Moreover, the number of 

packets that can be processed by the interface is often limited 

for short packets. Thus, the packet rate provides useful 

information that reflects the network interface performance. It is 

also clear that the establishment of a TCP connection consumes 

some of the resources of a server computer. This implies that the 

connection rate is related to the resource utilization. Another 

resource that significantly affects the performance is the TCP 

request queue buffer. The TCP SYN is lost when the TCP 

request queue buffer has overflowed. This significantly 

increases the response time [17]. Thus, the TCP SYN loss rate is 

a reliable metric that indicates the TCP request queue buffer. 

Finally, the number of flows is also important because an 

excessive number of flows causes a decreased throughput of 

each TCP connection. 
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C. Performance Criteria 

The purpose of applying machine learning is to determine the 

optimal number of server computers required to achieve a 

sufficiently good performance. For this purpose, it is necessary 

to clarify the criteria required for a sufficiently good 

performance. In this study, the server performance is considered 

to be sufficiently good if both of the following conditions are 

satisfied from the viewpoint of the WWW application: 

- The average time of the TCP connection establishment is 

less than 1 s. 

- The average bit rate achieved on the application layer from 

the server to a client is greater than 10 Mb/s. 

These criteria were determined because of the following 

reasons. If the first condition is satisfied, the connection will be 

established much faster than the time required by a user to 

accept the Web page response. The satisfaction of the second 

condition means that the bit rate is sufficiently large to perform, 

for example, movie streaming with DVD quality. Thus, it is 

believed that the conditions are rational as performance criteria 

to serve a Web page that includes a movie. 

In the experiment, the satisfaction of the above conditions is 

determined by the output of the measurement tool (httperf) 

performed on the client PC. The tool estimates the average time 

of the TCP connection establishment. Thus, the first condition 

can be examined directly from its output. The tool also shows 

the average download time. Thus, the bit rate of the application 

layer is easily calculated by the ratio of the page data size and 

the download time. 

 

V. IMPLEMENTATION 

A power management system for a small cluster was 

implemented to experimentally confirm the feasibility and 

effectiveness of the proposed approach. The functions of the 

system are as follows: 

- Measurement of the load metrics.  

- Feeding the metrics values to the c4.5 decision tree 

classifier.  

- Counting the number of server computers to be turned off 

or on.  

- Modification of the on/off status.  

Fig. 3 illustrates the system.  
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Fig. 3. Experimental configuration of the proposed method. 

 

As shown in Fig. 3, the system consists of a load balancing 

PC and a server cluster. The power management program is 

performed on the load balancing PC. The program is 

implemented on the Linux OS using C language. The load is 

shared among server computers by setting the Destination 

Network Address Translation (DNAT) [18] on the load 

balancing machine. 

The power management program executes the following 

procedure repeatedly: 

(1) Measure the load metrics RB, RP, RC, RS, and NF for a 

specified time Tm. This measurement is performed by 

capturing TCP/HTTP packets through the pcap library [19]. 

The metrics RB and RP are computed by the size and number 

of the packets captured during Tm. By counting the number 

of SYN ACK messages among the captured packets, RC is 

obtained. Similarly, RS is calculated from the numbers of 

TCP SYN and SYN ACK messages included in the captured 

packets. The average flow number NF is computed from the 

flow identifier shown in the packet header and the packet 

arrival time every 1 s. Then, it is averaged over the period Tm. 

Thus, these metrics are obtained for the packets captured by 

the pcap library. 

(2) Obtain the number of server computers, s, by inputting the 

load metrics RB, RP, RC, RS, NF into the c4.5 decision tree.  

(3) Let t denote the number of server computers that are 

currently turned on. If t < s, execute (4). If t > s, execute (5). 

Otherwise, return to (1). 

(4) Turn on s – t server computers that are currently sleeping. 

This is performed using the Wake-On-LAN mechanism. By 

executing ping, check whether the computers have been 

successfully turned on. After confirming the operation, 

modify the DNAT setting and distribute traffic to the newly 

added computers. 

(5) Modify the DNAT setting and shut down the traffic to t – s 

server computers that are currently on. Remotely log into 

these computers using ssh and set the hibernate 

command to be executed after Tw seconds. The time Tw is set 

to a sufficiently large value to avoid turning off the computer 

that holds the TCP connections. 

The structure and flow of the power control program is 

depicted in Fig. 4.  
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Fig. 4. Structure of the power management program. 

VI. EVALUATION 

A. Experiment Configuration 

By using the power management program, experiments were 

performed for a small server cluster. As shown in Fig. 3, the 

experimental network is configured with four server PCs, a load 

balancing PC, a client PC, and a power measurement PC. A 

WWW server program (apache) runs on each server PC. On 

the load balancing PC, the traffic from the client is distributed to 

the server PCs by DNAT and the power control program is 

executed. The requests for page data are generated on the client 

PC by performing httperf. The output of httperf is used 

to estimate two performance parameters: the average TCP 

connection establishment time and the average bit rate from the 

server to the client. The power consumption of the server PCs is 

monitored by a power meter. The result is sent to the power 

measurement PC through the USB interface. The Linux OS runs 

on the PCs, with the exception of the power measurement PC on 

which Microsoft Windows XP is used. The server PCs have an 

Intel Core2Duo 2.2 GHz CPU and 2 GB of memory. 

The server PCs provide six sets of page data files, as shown in 

Table 1. The purpose of employing different file sizes is to make 

various resources (e.g., hard disks and network interfaces) the 

performance bottlenecks. By adding the PHP script that needs 

extensive computations, it becomes possible to test the situation 

where the computational power of the CPU is the bottleneck. 

The training data is generated for these very different file sets 

with the aim being that the system will support a broad range of 

service requests. 

TABLE 1.  

FILE SETS PROVIDED BY THE SERVERS FOR TRAINING DATA. 

File Sets Content 

#1 100 HTML files, size of each file: 10 KB 

#2 100 HTML files, size of each file: 100 KB 

#3 100 HTML files, size of each file: 1 MB 

#4 100 HTML files, size of each file: 10 MB 

#5 100 HTML files, size of each file: 100 MB 

#6 

PHP script that sends an html document with 

randomly selected 500000 words: each word 

consists of 2 characters 

 

B. Training Data 

The training data were obtained as follows. Requests for the 

page data are generated for each file set by executing httperf 

with the connection rate Ri ( 200  i ). The measured load 

metrics and the outputs of httperf are written to files. This 

procedure is repeated while changing the number of server 

computers from 1 to 4. For each number of server computers, 

the output of httperf is checked to see whether the 

performance criteria described in Section 4.C are satisfied. Let s 

denote the optimal number of server computers for the pair of a 

file set and a connection rate. Then, s is obtained as the 

minimum number of computers that satisfies the criteria. Let x1, 

x2, x3, and x4 be the sets of the observed load metrics when the 

number of server computers is 1, 2, 3, and 4, respectively. Then, 

an instance of the training data is defined as the vector of (xs, s).  

The connection rate Ri was determined as follows. First, the 

maximum connection rate that satisfies the criteria is found for 

each file set by turning on all four server computers. Let RM be 

the maximum connection rate discovered with this procedure. 

Then, the rate Ri is defined as follows: 

 M0 1.0 RR   (2) 

 20/)( 0M0 RRiRRi   (3) 

By setting the connection rate as above, there always exists an 

optimal number of computers that satisfy the performance 

criteria. Simultaneously, it becomes possible to examine the 

characteristics of the system for a considerably wide range of 

connection rates.  

The performance of the server cluster is influenced by the 

connection rate and the probability distribution of the 

connection interval. The distribution of the connection interval 

is set to the exponential distribution. 

The period for generating the requests is set to 10 min for the 

file sets. This period is determined by considering the time 

needed by the system to be in a stationary state. The load metrics 

are computed from the captured packets within 60 s. Thus, ten 

sets of load metrics are obtained during the request generation 

period. From these load metric sets, four sets obtained during 

the stationary state are used for the training data. The employed 

measurement program is identical to the load measurement part 

of the power management program described in Section V.  

By generating the data as above, 480 data instances were 

obtained from six file sets, 20 connection rates, and four load 

metric sets. In addition to these data instances, 20 instances for 

no traffic load are included in the training data. This additional 

instance represents the condition where the number of 

computers should be one if there is no traffic load. Thus, the 

training data includes a total of 500 data instances. By inputting 

this training data to the c4.5 program, a decision tree classifier is 

constructed. 

C. Experimental Results 

The performance of the service and electrical power 

consumed by the server cluster were measured by operating the 
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power management program. From the result, we checked 

whether power savings were realized while satisfying the 

performance criteria.  

The experiments were executed while offering page requests 

for the file sets shown in Table 2. To confirm the robustness of 

the proposed method against the unlearned page requests, we 

used the file sets that were not used for the training data. 

TABLE 2.  

FILE SETS PROVIDED BY THE SERVERS FOR DYNAMIC LOAD. 

File Sets Content 

#7 100 HTML files, size of each file: 30 MB 

#8 100 HTML files, size of each file: 3 MB 

#9 

PHP script that sends an html document with 

randomly selected 10000 words: each word 

consists of 100 characters 

For each file set shown in Table 2, the maximum rate RM was 

first determined using the same procedure as that for obtaining 

the training data. The dynamic load was generated by executing 

httperf on the client PC while altering the connection rate as 

follows. Initially, httperf was started with a connection rate 

of 0.09RM. Then, httperf was launched every 24 min while 

increasing the connection rate by 0.09RM on each occasion. The 

maximum connection rate was 0.9RM. After the connection rate 

reached the maximum, httperf was started every 24 min 

while decreasing the connection rate by 0.09RM each time. 

Fig. 5 shows the characteristics of the load generated using this 

procedure. 
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Fig. 5. Characteristics of the dynamic load. 

 

In the experiment, the parameters Tm and Tw were set to 600 s 

and 120 s, respectively. 

While generating the load shown in Fig. 5 to the server cluster 

controlled by the proposed method, the performance was 

measured. As a result, the performance notably degraded for the 

period when the load increased. This happened because of the 

delay associated with the measurement period Tm. That is, when 

the classifier estimates the number of computers, the actual 

current load becomes larger than that measured during the 

previous Tm. Thus, the number of computers is underestimated 

for the next period.  

To prevent the above-mentioned problem, the power control 

program was slightly modified. Let s denote the number of 

computers estimated by the classifier, and let n be the total 

number of available server computers. Then, if s < n, s + 1 

instead of s is used as the number of computers to be turned on. 

Because this modification provides a margin for the server 

capacity, it is expected that the performance degradation will be 

avoided. 

Fig. 6 plots the number of server computers against the time 

for which the modified power management program was used. 

The figure shows the case when the connection request was 

given to file set #7. Fig. 6 shows that the number of computers is 

small for the light load period and large for the heavy load 

period. Thus, the figure implies that an adequate number of 

computers was turned on or off depending on the changes to the 

offered load. 

Obviously, this control reduces the power consumption 

compared with the case where the power management is not 

performed. This is clearly shown in Figs. 7–9, which compare 

the power consumption with the proposed method and that 

obtained by turning on all four server computers. Figs. 7, 8, and 

9 show the characteristics for file sets #7, #8, and #9, 

respectively. The average power consumption with the 

proposed method is about 64%–70% in the cases when all four 

server computers are turned on. This confirms that a 

considerable power reduction is obtainable by employing the 

proposed method. 
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Fig. 6. Number of operating computers versus time for file set #7. 
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Fig. 7 Power consumptions for file set #7. 
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Fig. 8 Power consumptions for file set #8. 
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Fig. 9 Power consumptions for file set #9. 

 

Figs. 10, 11, and 12 show the average bit rate of a TCP 

connection when the power management program was executed 

while feeding the dynamic load to the file sets #7, #8, and #9, 

respectively. As shown in the figures, the bit rate was greater 

than 10 Mb/s (which is the criterion for sufficiently good 

performance) in every time period. This implies that the number 

of server computers was correctly determined by the machine 

learning mechanism. 
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Fig. 10 Average bit rate of a connection versus time for file set #7. 
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Fig. 11 Average bit rate of a connection versus time for file set #8. 
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Fig. 12. Average bit rate of a connection versus time for file set #9. 

 

Additionally, the connection establishment time is always 

less than 1 s. Thus, the performance was also sufficiently good 

for this criterion. 

From the above result, it is concluded that the proposed 

method correctly determines the number of computers required 

for a sufficiently good performance and successfully reduces the 

power consumption of the server computers. 

If the number of computers to be turned on is determined by 

simply comparing a metric with a threshold, it is difficult to 

achieve effective power management as is the case with our 

proposed method. For example, consider the case where the 

management system determines the number of server computers 

to be turned on by comparing the bit rate with thresholds. In this 

case, it is essential to know the relationship between the bit rate 

and number of required server computers. Figs. 13, 14, and 15 

plot this relationship obtained from the training data for file sets 

#4, #5, and #6, respectively. These figures show that the 

characteristics are very different for the file sets. Let rs denote 

the maximum bit rate when the number of required server 

computers is s. Then, r1 is about 660 Mb/s for file set #4, 

whereas it is 370 Mb/s for file set #5. For file set #6, r1 is much 

smaller and is about 33 Mb/s. Thus, if the threshold is 

determined by the characteristics for file set #4, it will be too 
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large for file sets #5 and #6. This causes an underestimation of 

the number of computers and performance degradation if clients 

request mainly the data of file sets #5 and #6. Moreover, if the 

threshold is determined according to the characteristics for file 

set #6, it will be too small for file sets #4 and #5. Thus, the 

number of computers will be overestimated, and the power will 

not be adequately reduced for file sets #4 and #5. As shown by 

these characteristics, it is impossible to determine an optimal 

threshold that always provides good results for different file sets. 

In contrast, the proposed method offers a considerable 

reduction in the power consumption and a sufficiently good 

performance for different file sets. This confirms the need for 

and the advantage of the proposed method. 

 

0

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r 

O
f 

Se
rv

e
r 

C
o

m
p

u
te

rs

Bit Rate (Mb/s)
 

Fig. 13 Relationship between the bit rate and number of server computers to be 

turned on for file set #4. 
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Fig. 14 Relationship between the bit rate and number of server computers to be 

turned on for file set #5. 
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Fig. 15 Relationship between the bit rate and number of server computers to be 

turned on for file set #6. 

 

VII. CONCLUSION 

This paper proposed a power management method for server 

clusters, which provide, for example, the WWW service over 

the Internet. The proposed method employs a machine learning 

approach that extracts the information required for the on/off 

decision from passively measured traffic metrics. The proposed 

method is advantageous because it correctly performs the on/off 

decision for a wide range of requested service contents by 

discovering the shortages or excesses of resource consumptions 

from multiple traffic metrics. An additional feature of the 

proposed method is that the traffic metrics are measured 

passively. Thus, the method is nonintrusive to the server cluster 

computers and is independent of the hardware or software 

platform. This characteristic is advantageous from the 

perspective of robustness and compatibility. 

The paper clarified the method for estimating the number of 

server computers to be turned on based on the passively 

measured traffic metrics while using the machine learning 

technique. The power management program based on this 

concept was implemented on a PC with a Linux OS for a small 

cluster while assuming the WWW service. The feasibility and 

effectiveness of the proposed method was experimentally 

evaluated. The results show that for different types of page 

datasets, the method successfully reduces the power 

consumption without degrading the service performance. 
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