

7



Abstract—Network services are often provided by server

clusters. From the perspective of operational expenditure and the

global environment, the power consumption of server clusters

should be decreased. This is possible by operating the minimum

number of computers required to realize a sufficiently good

performance against changes in load. To do this, it is necessary to

accurately determine the number of computers that should be

turned on or off for the measured load metrics. This number

should be determined by estimating multiple load metrics because

a single metric does not adequately represent the statuses of

various bottlenecked resources. In addition, decision rules should

be appropriately updated if there are changes in the service

content or computer specifications. To satisfy these requirements,

this study proposes a machine learning approach as a method of

determining the number of server computers. Another technical

requirement for power management is that the load metrics should

be measured nonintrusively for the OS or hardware of the cluster

computers. From this viewpoint, we employ traffic parameters as

the metrics that reflect resource consumptions. These traffic

parameters are passively measured on a machine that is separate

from the server cluster.

This paper first explains the machine learning approach to

determine the number of computers. The implementation of the

approach is then presented. The effectiveness of the scheme is

confirmed experimentally.

Index Terms— machine learning; power management; server

cluster; measurement; traffic

I. INTRODUCTION

O satisfy a large number of requests, network services are

often provided by a server cluster constructed with multiple

computers. The power management of a server cluster [1] is

important from the viewpoint of reducing operational

expenditure and CO2 emissions. Because the amount of load

assigned to a cluster changes during the daytime, power

consumption can be reduced by turning off server computers

with light loads and turning on computers with heavy loads [2].

Manuscript received July 9, 2013.

Satoru Ohta is with the Department of Information Systems Engineering,

the Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa,

Imizu-shi, Toyama 939-0398, Japan (phone: +81-768-56-7500; fax:

+81-768-56-6172; e-mail: ohta@pu-toyama.ac.jp).

Takehito Hirota is with Hokuriku Tsushin Kogyo Co., 1-7-23, Aiden-machi,

Toyama-shi, Japan (e-mail: hirota1332@hokutsu.co.jp).

This is achieved by measuring the load on the cluster,

determining which computers should be turned on or turned off,

and finally, turning on/off computers.

The key to realizing the efficient power management of a

server cluster lies in determining which computers need to be

turned on and off on the basis of the measured load. In previous

studies, this on/off decision was made by comparing a single or

a few measured load metrics with fixed thresholds. For

example, the method discussed in [2] compares the utilization of

the CPU, disk interface, and network interface with thresholds.

However, an on/off decision based on a comparison between

load metrics and thresholds does not always provide accurate

results. This is because the optimal threshold depends on the

service content and machine specifications. For example, the

same value of CPU utilization leads to good performance for

some contents but bad performance for other contents. This

happens because the performance is affected by the

consumption of different resources depending on the service

content.

To achieve an adequate on/off decision, multiple metrics that

reflect the utilizations of various resources must be monitored.

With this approach, it is favorable that the metrics are measured

nonintrusively because of the robustness against excessive loads

or failure. Some utilization information is available through the

OS, which runs on a server computer. However, when the

computer performance is significantly degraded owing to

overload or failures, the utilization information may not be

successfully obtained through the OS. Another reason is the

compatibility of the software/hardware platform. The

application interface used to extract resource utilization will

differ based on the OS or hardware platform of a server

computer. Thus, different measurement software must be

developed for each OS or hardware. This increases the

development time and cost. Therefore, it is necessary to employ

the metrics, which can be measured independent of the

hardware/software platform of the server computers.

The relationship between the nonintrusively monitored

metrics and the on/off decision is not simple, and thus it is

necessary to develop a mechanism that automatically

determines this relationship. Machine learning technology is

very promising for this purpose.

Machine learning is an important tool that can be used to

discover a rule hidden in obtained data [3]. Machine learning

Power Management of Server Clusters via

Machine Learning and Passive Traffic

Measurement

Satoru Ohta and Takehito Hirota

T

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), July Edition, 2013

Volume 3, Issue 7

8

techniques has been successfully applied to various

network/system management applications, including attack

detection [4], spam mail filtering [5], and application

classification [6]. If a machine learning technique is used to

make the on/off decision, it is possible to find the decision rule

hidden in multiple monitored load metrics. In addition, a

decision rule can flexibly adapt to changes in service content or

machine specifications by re-learning for the new environment.

Thus, a machine learning approach is promising for determining

the on/off status of computers from multiple load metrics.

This paper proposes a power management method for server

clusters. The proposed method employs the traffic parameters

as the load metrics. These parameters can be nonintrusively

obtained from captured packets. The proposed method employs

a machine learning technique to make the on/off decision. For

the machine learning technique, a method based on the decision

tree model [3], [7] is examined. The paper explores the method

by which a machine learning framework is applied to the power

management of a server cluster. Load metrics and performance

criteria are also presented. The proposed method was

implemented and tested on an experimental server cluster.

Through experiments, it was shown that the proposed method

successfully reduces the power consumption of the server

cluster while offering a sufficiently good performance.

The rest of the paper is organized as follows. Section II

reviews the previous related work. In Section III, we explore the

problem addressed in this paper. Section IV proposes the

machine learning approach for determining the number of

computers required on the basis of the measured load metrics.

The implementation of the proposed method is described in

Section V. Section VI experimentally evaluates the feasibility

and effectiveness of the proposed method. Finally, Section VII

concludes the paper.

II. RELATED WORK

Power management techniques for server clusters have been

reported in [2], [8-10]. In [2], two implementations called

“power-aware cluster-based network server” and “power-aware

OS for clusters” are examined. Both implementations turn

computers in a cluster on and off on the basis of the load. The

load metrics are the utilizations of the CPU, disk interface, and

network interface. These metrics are measured on each cluster

node by means of the /proc files of the Linux OS. By setting

the threshold at 90% for these utilizations, the method

determines whether a computer should be turned on or off.

However, the accuracy of this decision procedure is insufficient

because the most appropriate threshold depends on the service

content or hardware specifications.

Another power management method for a server cluster is

examined in [8]. This method measures parameters including

the CPU utilization, request queue length, and TCP connection

rate, called “throughput.” Among these parameters, the

allotment of resources is determined by comparing the CPU

utilization with a target value. The target value is modified if the

request queue length exceeds its threshold. Using this

modification, the method can flexibly set the target value that

corresponds to the variations of the bottlenecked resources.

However, it is not easy to find the optimal threshold for the

queue length.

References [2] and [8] show the experimental results

performed on prototype systems, whereas [9] and [10] report

simulation studies. Of these, [9] formulates the power

management method as an optimization problem by assuming

the M/M/1 model for the response time. In the algorithm used in

[9], the on/off decision is executed by comparing the request

rate with a threshold, which is theoretically derived on the basis

of the M/M/1 assumption. However, it is very unlikely that the

relationship between the request rate and response time is

exactly modeled by the M/M/1 system. Another formulation is

found in [10], which minimizes the sum of the backlog cost,

power cost, and reconfiguration cost for the current job backlog,

thermal condition, and number of CPUs. To solve this problem,

they presented a heuristic that determines the number of CPUs.

However, the number of backlog jobs may not be an appropriate

metric of the response time for the variety of jobs whose

processing times are very different. It is also uncertain whether

the exact number of backlog jobs is measurable in a cluster.

III. PROBLEM DESCRIPTION

Most existing methods determine the computers that should

be turned on or off by comparing a single or a few load metrics

with predefined threshold values. However, this approach is

problematic in that the optimal threshold may change depending

on the requested service content. Thus, a unique threshold

cannot be guaranteed to always offer good performance for any

requested content. This is because the performance bottleneck

of the server computer significantly depends on the requested

service content. Therefore, even for the same load metric value,

the performance degrades for some service contents, whereas it

does not degrade for other service contents. Thus, it is

inadequate to determine the on/off status of server computers by

comparing the metrics and thresholds.

For example, let us assume that a web service is provided by a

cluster. Then, suppose that the page data includes a set of large

files and CGI scripts that require heavy computation. For this

situation, consider that CPU utilization is used as the load

metric. Then, the performance degradation will be accurately

found by measuring the CPU utilization if most requests are

directed to the CGI scripts. However, if the requests are directed

to the large files, the performance will be degraded to a much

smaller CPU utilization value. This happens because the

bottlenecked resource is different in these cases. In the case of

CGI scripts, CPU utilization may be an adequate metric because

the computing power of the CPU is the bottleneck. Meanwhile,

because the bottleneck is the read speed of the hard disk for

large files, the performance when obtaining large files degrades

for smaller CPU utilization. Therefore, it is difficult to

determine the need to add/remove a computer by comparing the

9

CPU utilization to a threshold.

The above problem is better understood by analyzing the

result of the following experiment that was performed on two

PCs, with the Linux OS, connected by a 1 Gb/s Ethernet. The

apache Web server was running on one PC, whereas

httperf [11] was executed as a client program on the other

PC. The server PC provides three file sets: 100 HTML files of

size 1 KB, 100 HTML files of size 1 MB, and a PHP script that

computes prime numbers and returns the result in a table format.

For this configuration, the requests were generated for each file

set on the client PC. From the output of httperf, the average

time to establish a TCP connection and the average bit rate on

the network interface were obtained. At the same time, the CPU

utilization on the server PC was recorded by the top command

performed in the batch mode. The PCs have a Celeron 3.06 GHz

processor and 512 KB of memory.

Fig. 1 shows the relationship between the connection

establishment time and CPU utilization. From the figure, it is

observed that the performance degrades at a very different value

of CPU utilization, depending on the file set. For the PHP script,

the connection establishment time quickly increases when the

CPU utilization increases to 92%. On the other hand, the

connection establishment time increases for a much smaller

utilization of 44% for the 1 KB file set. For the 1 MB file set, the

utilization at which the degradation occurs is smaller and is 6%.

This result suggests that it is impossible to determine the

appropriate threshold of CPU utilization that is effective for

every file set; the threshold optimized for the PHP script is very

large for 1 MB files, whereas that optimized for the 1 MB files is

very small for the script.

0

50

100

150

200

250

300

0 20 40 60 80 100

C
o

n
n

e
ct

io
n

 E
st

ab
lis

h
m

e
n

t
Ti

m
e

 (
m

s)

CPU Utilization (%)

1 KB Files

1 MB Files

PHP Script

Fig. 1. Server performance versus CPU utilization.

In Fig. 2, the connection establishment time is plotted against

the bit rate of the network interface. As shown in the figure, the

bit rate at which the connection establishment time increases

differs greatly with the file set. Therefore, it is also difficult to

decide appropriate thresholds for bit rates. Suppose that the

thresholds for the CPU utilization and network interface bit rate

are optimized for the PHP script and the 1 MB files,

respectively. Then, these thresholds may work well for the PHP

script and 1 MB files. However, the thresholds are not effective

if most requests are directed to the 1 KB files, because neither of

the thresholds is optimal for the 1 KB files. Therefore, it is

inadequate to individually set thresholds for multiple metrics.

0

50

100

150

200

250

300

0.1 1 10 100 1000

C
o

n
n

ec
ti

o
n

 E
st

ab
lis

h
m

en
t

Ti
m

e
(m

s)

Bit Rate (Mb/s)

1 KB Files
1 MB Files
PHP Script

Fig. 2. Server performance versus the bit rate on the network interface.

The above results were obtained because the consumptions of

different resources cause performance degradation. Fig. 1

implies that the consumption of CPU utilization limits the

performance for the PHP script. Moreover, Fig. 2 suggests that

the capacity of the network interface determines the

performance for the 1 MB files. For the 1 KB files, it is likely

that the performance is affected by the consumption of some

resource other than the CPU or network interface. There are

various resources that may affect the performance. These

include the CPU, network interface, bus, disks, memory, buffers

for TCP/IP, and request queue buffer for TCP. In addition,

server software settings, for example, the maximum number of

concurrently served clients (MaxClients in apache), may also

affect the performance. Thus, for an accurate on/off decision, it

is necessary to monitor multiple load metrics that reflect the

consumptions of those various resources.

If multiple metrics are used, it becomes necessary to consider

the complicated relationships among the metrics for the on/off

decision. Using the measured metric values, the method must

systematically find the computers that should be turned on or off.

In addition, the mapping rule between the metric values and

on/off decision must be updated against the changes in the

service content and computer specifications, and it is necessary

to develop an algorithm that can perform this update.

To satisfy these requirements, the machine learning approach

is considered promising. Using this approach, the mapping

among multiple metrics and the number of required servers is

algorithmically discovered from training data. Thus, it is

expected that the on/off state of the computers will be accurately

determined by utilizing multiple metrics, each of which is

associated with a different server bottleneck. Moreover, even if

the server specifications or service content change, it is easy to

update the decision rule by relearning the data created for the

new environment.

10

IV. PROPOSED METHOD

This section explores the machine learning approach to

determine the on/off state of computers by measuring multiple

load metrics.

For simplicity, this study assumes that the specifications of

each computer in the cluster are identical. It is also assumed that

the same volume of traffic is uniformly distributed to every

computer. Strictly speaking, the power consumed on a computer

depends on the load. However, the power variation caused by

the load is small in comparison with that caused by turning the

computer on or off. Thus, it is assumed that power consumption

is determined by the number of computers currently turned on.

Based on these assumptions, the on/off decision for the

computers is reduced to the problem of determining how many

computers should be turned on.

Hereafter, this paper considers the case where the cluster

provides the World Wide Web (WWW) service. However, the

proposed method is also applicable to other services.

A. Machine Learning Approach

Suppose that a system takes one of the n states s1, …, sn. We

can observe m attributes a1, …, am, which provide some

information about the unknown current state. The value of each

attribute is determined according to some probability

distribution, which depends on the current state. Then, the

purpose of machine learning is to build a classifier that

estimates the unknown current state from the measured attribute

values. Assume that we have training data that include the

vectors of the actually occurred state and the attribute values

measured under that state. For this situation, there exists a

machine learning algorithm that builds a classifier from the

training data.

This study applies the above machine learning framework to

determine the optimal number of computers that should be

turned on. For this application, the states are the optimal number

of computers needed for a sufficiently good performance,

whereas the attributes are the load metric values. By employing

this technique, it becomes possible to decide the exact number

of computers by considering the relationship among the load

metrics. It is also possible to easily update the classifier against

changes in machine specifications or service content by

relearning.

There are several machine learning approaches, such as the

artificial neural network, the naïve Bayes, and the Bayesian

network. Among these approaches, this study examines the

method based on a decision tree, which is often used in this field

[3], [7]. For the program that generates the decision tree

classifier, c4.5 [7] is employed. Program c4.5 has been

examined in various studies in the network management field

[4], [12], [13] and therefore is considered to be sufficiently

reliable. It is also reported that the decision tree based method is

advantageous because of its low computational cost [14]. This

advantage is very important for the real time/online power

management of clusters.

B. Server Load Metrics

Previous studies regarding the power management of server

clusters often used a metric measured on each server computer.

However, this study employs traffic parameters that are

passively monitored on a computer that is separate from the

server cluster. This scheme considerably simplifies the

implementation because it is not necessary for the node to

gather the metrics obtained at the computers in the cluster by

means of polling. Another advantage is that the scheme requires

neither processing on the server computers nor communication

between the computers. Therefore, the measurement is robust

even if the load on the server or network is excessive. Moreover,

the traffic attributes are independent of the software or hardware

platform used in the server cluster. This decreases the time and

cost of developing the measurement software for different types

of platforms.

The employed traffic attributes are as follows:

- Byte rate of the traffic sent to and received from the server

cluster, RB.

- Packet rate of the traffic sent to and received from the server

cluster, RP.

- TCP connection establishment rate, RC.

- TCP SYN loss rate, RS.

- Number of flows, NF

Among the above metrics, the TCP SYN loss rate RS is

defined as follows. Let NS be the number of TCP SYN messages

sent to the server cluster during the measurement period.

Moreover, let NA be the number of SYN ACK messages sent

from the server cluster, then

A

AS
S

N

NN
R


 (1)

Metric Rs is considered to be effective for estimating the

server condition [15].

The number of flows is defined as the number of TCP

connections existing in the last t s. The method of counting

flows is explored in [16]. In this study, t is set to 1 s and the

average value over a specified time period is used.

The above metrics are relevant to the resource usage and

performance. The byte (or bit) rate obviously represents the

utilization of a network interface. Moreover, the number of

packets that can be processed by the interface is often limited

for short packets. Thus, the packet rate provides useful

information that reflects the network interface performance. It is

also clear that the establishment of a TCP connection consumes

some of the resources of a server computer. This implies that the

connection rate is related to the resource utilization. Another

resource that significantly affects the performance is the TCP

request queue buffer. The TCP SYN is lost when the TCP

request queue buffer has overflowed. This significantly

increases the response time [17]. Thus, the TCP SYN loss rate is

a reliable metric that indicates the TCP request queue buffer.

Finally, the number of flows is also important because an

excessive number of flows causes a decreased throughput of

each TCP connection.

11

C. Performance Criteria

The purpose of applying machine learning is to determine the

optimal number of server computers required to achieve a

sufficiently good performance. For this purpose, it is necessary

to clarify the criteria required for a sufficiently good

performance. In this study, the server performance is considered

to be sufficiently good if both of the following conditions are

satisfied from the viewpoint of the WWW application:

- The average time of the TCP connection establishment is

less than 1 s.

- The average bit rate achieved on the application layer from

the server to a client is greater than 10 Mb/s.

These criteria were determined because of the following

reasons. If the first condition is satisfied, the connection will be

established much faster than the time required by a user to

accept the Web page response. The satisfaction of the second

condition means that the bit rate is sufficiently large to perform,

for example, movie streaming with DVD quality. Thus, it is

believed that the conditions are rational as performance criteria

to serve a Web page that includes a movie.

In the experiment, the satisfaction of the above conditions is

determined by the output of the measurement tool (httperf)

performed on the client PC. The tool estimates the average time

of the TCP connection establishment. Thus, the first condition

can be examined directly from its output. The tool also shows

the average download time. Thus, the bit rate of the application

layer is easily calculated by the ratio of the page data size and

the download time.

V. IMPLEMENTATION

A power management system for a small cluster was

implemented to experimentally confirm the feasibility and

effectiveness of the proposed approach. The functions of the

system are as follows:

- Measurement of the load metrics.

- Feeding the metrics values to the c4.5 decision tree

classifier.

- Counting the number of server computers to be turned off

or on.

- Modification of the on/off status.

Fig. 3 illustrates the system.

Client PC

1Gb/s Ethernet

Load-Balancing PC

Server PCs
(Server Cluster)

httperf

Power Management
Program

apache

Power Measurement PC

xxxx W

AC 100V

Power
Meter

USB Cable

1Gb/s Ethernet

Fig. 3. Experimental configuration of the proposed method.

As shown in Fig. 3, the system consists of a load balancing

PC and a server cluster. The power management program is

performed on the load balancing PC. The program is

implemented on the Linux OS using C language. The load is

shared among server computers by setting the Destination

Network Address Translation (DNAT) [18] on the load

balancing machine.

The power management program executes the following

procedure repeatedly:

(1) Measure the load metrics RB, RP, RC, RS, and NF for a

specified time Tm. This measurement is performed by

capturing TCP/HTTP packets through the pcap library [19].

The metrics RB and RP are computed by the size and number

of the packets captured during Tm. By counting the number

of SYN ACK messages among the captured packets, RC is

obtained. Similarly, RS is calculated from the numbers of

TCP SYN and SYN ACK messages included in the captured

packets. The average flow number NF is computed from the

flow identifier shown in the packet header and the packet

arrival time every 1 s. Then, it is averaged over the period Tm.

Thus, these metrics are obtained for the packets captured by

the pcap library.

(2) Obtain the number of server computers, s, by inputting the

load metrics RB, RP, RC, RS, NF into the c4.5 decision tree.

(3) Let t denote the number of server computers that are

currently turned on. If t < s, execute (4). If t > s, execute (5).

Otherwise, return to (1).

(4) Turn on s – t server computers that are currently sleeping.

This is performed using the Wake-On-LAN mechanism. By

executing ping, check whether the computers have been

successfully turned on. After confirming the operation,

modify the DNAT setting and distribute traffic to the newly

added computers.

(5) Modify the DNAT setting and shut down the traffic to t – s

server computers that are currently on. Remotely log into

these computers using ssh and set the hibernate

command to be executed after Tw seconds. The time Tw is set

to a sufficiently large value to avoid turning off the computer

that holds the TCP connections.

The structure and flow of the power control program is

depicted in Fig. 4.

12

Initialization

Traffic measurement

Power Management Program

Decision of optimal
computer number

Decision Tree
(c4.5)

wakeonlan
ssh + hibernate

iptables

C
ap

tu
re

d
 P

ac
ke

ts

Pcap Library

Power control
Turn on
Turn off
Modification of DNAT

External Programs

1Gb/s Ethernet

Fig. 4. Structure of the power management program.

VI. EVALUATION

A. Experiment Configuration

By using the power management program, experiments were

performed for a small server cluster. As shown in Fig. 3, the

experimental network is configured with four server PCs, a load

balancing PC, a client PC, and a power measurement PC. A

WWW server program (apache) runs on each server PC. On

the load balancing PC, the traffic from the client is distributed to

the server PCs by DNAT and the power control program is

executed. The requests for page data are generated on the client

PC by performing httperf. The output of httperf is used

to estimate two performance parameters: the average TCP

connection establishment time and the average bit rate from the

server to the client. The power consumption of the server PCs is

monitored by a power meter. The result is sent to the power

measurement PC through the USB interface. The Linux OS runs

on the PCs, with the exception of the power measurement PC on

which Microsoft Windows XP is used. The server PCs have an

Intel Core2Duo 2.2 GHz CPU and 2 GB of memory.

The server PCs provide six sets of page data files, as shown in

Table 1. The purpose of employing different file sizes is to make

various resources (e.g., hard disks and network interfaces) the

performance bottlenecks. By adding the PHP script that needs

extensive computations, it becomes possible to test the situation

where the computational power of the CPU is the bottleneck.

The training data is generated for these very different file sets

with the aim being that the system will support a broad range of

service requests.

TABLE 1.

FILE SETS PROVIDED BY THE SERVERS FOR TRAINING DATA.

File Sets Content

#1 100 HTML files, size of each file: 10 KB

#2 100 HTML files, size of each file: 100 KB

#3 100 HTML files, size of each file: 1 MB

#4 100 HTML files, size of each file: 10 MB

#5 100 HTML files, size of each file: 100 MB

#6

PHP script that sends an html document with

randomly selected 500000 words: each word

consists of 2 characters

B. Training Data

The training data were obtained as follows. Requests for the

page data are generated for each file set by executing httperf

with the connection rate Ri (200  i). The measured load

metrics and the outputs of httperf are written to files. This

procedure is repeated while changing the number of server

computers from 1 to 4. For each number of server computers,

the output of httperf is checked to see whether the

performance criteria described in Section 4.C are satisfied. Let s

denote the optimal number of server computers for the pair of a

file set and a connection rate. Then, s is obtained as the

minimum number of computers that satisfies the criteria. Let x1,

x2, x3, and x4 be the sets of the observed load metrics when the

number of server computers is 1, 2, 3, and 4, respectively. Then,

an instance of the training data is defined as the vector of (xs, s).

The connection rate Ri was determined as follows. First, the

maximum connection rate that satisfies the criteria is found for

each file set by turning on all four server computers. Let RM be

the maximum connection rate discovered with this procedure.

Then, the rate Ri is defined as follows:

 M0 1.0 RR  (2)

 20/)(0M0 RRiRRi  (3)

By setting the connection rate as above, there always exists an

optimal number of computers that satisfy the performance

criteria. Simultaneously, it becomes possible to examine the

characteristics of the system for a considerably wide range of

connection rates.

The performance of the server cluster is influenced by the

connection rate and the probability distribution of the

connection interval. The distribution of the connection interval

is set to the exponential distribution.

The period for generating the requests is set to 10 min for the

file sets. This period is determined by considering the time

needed by the system to be in a stationary state. The load metrics

are computed from the captured packets within 60 s. Thus, ten

sets of load metrics are obtained during the request generation

period. From these load metric sets, four sets obtained during

the stationary state are used for the training data. The employed

measurement program is identical to the load measurement part

of the power management program described in Section V.

By generating the data as above, 480 data instances were

obtained from six file sets, 20 connection rates, and four load

metric sets. In addition to these data instances, 20 instances for

no traffic load are included in the training data. This additional

instance represents the condition where the number of

computers should be one if there is no traffic load. Thus, the

training data includes a total of 500 data instances. By inputting

this training data to the c4.5 program, a decision tree classifier is

constructed.

C. Experimental Results

The performance of the service and electrical power

consumed by the server cluster were measured by operating the

13

power management program. From the result, we checked

whether power savings were realized while satisfying the

performance criteria.

The experiments were executed while offering page requests

for the file sets shown in Table 2. To confirm the robustness of

the proposed method against the unlearned page requests, we

used the file sets that were not used for the training data.

TABLE 2.

FILE SETS PROVIDED BY THE SERVERS FOR DYNAMIC LOAD.

File Sets Content

#7 100 HTML files, size of each file: 30 MB

#8 100 HTML files, size of each file: 3 MB

#9

PHP script that sends an html document with

randomly selected 10000 words: each word

consists of 100 characters

For each file set shown in Table 2, the maximum rate RM was

first determined using the same procedure as that for obtaining

the training data. The dynamic load was generated by executing

httperf on the client PC while altering the connection rate as

follows. Initially, httperf was started with a connection rate

of 0.09RM. Then, httperf was launched every 24 min while

increasing the connection rate by 0.09RM on each occasion. The

maximum connection rate was 0.9RM. After the connection rate

reached the maximum, httperf was started every 24 min

while decreasing the connection rate by 0.09RM each time.

Fig. 5 shows the characteristics of the load generated using this

procedure.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

C
o

n
n

ec
ti

o
n

 R
at

e/
R

M

Time (h)

Fig. 5. Characteristics of the dynamic load.

In the experiment, the parameters Tm and Tw were set to 600 s

and 120 s, respectively.

While generating the load shown in Fig. 5 to the server cluster

controlled by the proposed method, the performance was

measured. As a result, the performance notably degraded for the

period when the load increased. This happened because of the

delay associated with the measurement period Tm. That is, when

the classifier estimates the number of computers, the actual

current load becomes larger than that measured during the

previous Tm. Thus, the number of computers is underestimated

for the next period.

To prevent the above-mentioned problem, the power control

program was slightly modified. Let s denote the number of

computers estimated by the classifier, and let n be the total

number of available server computers. Then, if s < n, s + 1

instead of s is used as the number of computers to be turned on.

Because this modification provides a margin for the server

capacity, it is expected that the performance degradation will be

avoided.

Fig. 6 plots the number of server computers against the time

for which the modified power management program was used.

The figure shows the case when the connection request was

given to file set #7. Fig. 6 shows that the number of computers is

small for the light load period and large for the heavy load

period. Thus, the figure implies that an adequate number of

computers was turned on or off depending on the changes to the

offered load.

Obviously, this control reduces the power consumption

compared with the case where the power management is not

performed. This is clearly shown in Figs. 7–9, which compare

the power consumption with the proposed method and that

obtained by turning on all four server computers. Figs. 7, 8, and

9 show the characteristics for file sets #7, #8, and #9,

respectively. The average power consumption with the

proposed method is about 64%–70% in the cases when all four

server computers are turned on. This confirms that a

considerable power reduction is obtainable by employing the

proposed method.

0

1

2

3

4

5

0 2 4 6 8

N
u

m
b

e
r

O
f

O
p

e
ra

ti
n

g
Se

rv
e

r
C

o
m

p
u

te
rs

Time (h)

Fig. 6. Number of operating computers versus time for file set #7.

0

50

100

150

200

250

300

0 2 4 6 8

P
o

w
e

r
[W

]

Time (h)

Without Power Management

Proposed Method

Fig. 7 Power consumptions for file set #7.

14

0

50

100

150

200

250

300

0 2 4 6 8

P
o

w
e

r
[W

]

Time (h)

Without Power Management

Proposed Method

Fig. 8 Power consumptions for file set #8.

0

50

100

150

200

250

300

0 2 4 6 8

P
o

w
e

r
[W

]

Time (h)

Without Power Management

Proposed Method

Fig. 9 Power consumptions for file set #9.

Figs. 10, 11, and 12 show the average bit rate of a TCP

connection when the power management program was executed

while feeding the dynamic load to the file sets #7, #8, and #9,

respectively. As shown in the figures, the bit rate was greater

than 10 Mb/s (which is the criterion for sufficiently good

performance) in every time period. This implies that the number

of server computers was correctly determined by the machine

learning mechanism.

1

10

100

1000

0 2 4 6 8

B
it

 R
at

e
 F

o
r

a
C

o
n

n
e

ct
io

n
 (

M
b

/s
)

Time (h)

Fig. 10 Average bit rate of a connection versus time for file set #7.

1

10

100

1000

0 2 4 6 8

B
it

 R
at

e
 F

o
r

a
C

o
n

n
e

ct
io

n
 (

M
b

/s
)

Time (h)

Fig. 11 Average bit rate of a connection versus time for file set #8.

1

10

100

1000

0 2 4 6 8

B
it

 R
at

e
 F

o
r

a
C

o
n

n
e

ct
io

n
 (

M
b

/s
)

Time (h)

Fig. 12. Average bit rate of a connection versus time for file set #9.

Additionally, the connection establishment time is always

less than 1 s. Thus, the performance was also sufficiently good

for this criterion.

From the above result, it is concluded that the proposed

method correctly determines the number of computers required

for a sufficiently good performance and successfully reduces the

power consumption of the server computers.

If the number of computers to be turned on is determined by

simply comparing a metric with a threshold, it is difficult to

achieve effective power management as is the case with our

proposed method. For example, consider the case where the

management system determines the number of server computers

to be turned on by comparing the bit rate with thresholds. In this

case, it is essential to know the relationship between the bit rate

and number of required server computers. Figs. 13, 14, and 15

plot this relationship obtained from the training data for file sets

#4, #5, and #6, respectively. These figures show that the

characteristics are very different for the file sets. Let rs denote

the maximum bit rate when the number of required server

computers is s. Then, r1 is about 660 Mb/s for file set #4,

whereas it is 370 Mb/s for file set #5. For file set #6, r1 is much

smaller and is about 33 Mb/s. Thus, if the threshold is

determined by the characteristics for file set #4, it will be too

15

large for file sets #5 and #6. This causes an underestimation of

the number of computers and performance degradation if clients

request mainly the data of file sets #5 and #6. Moreover, if the

threshold is determined according to the characteristics for file

set #6, it will be too small for file sets #4 and #5. Thus, the

number of computers will be overestimated, and the power will

not be adequately reduced for file sets #4 and #5. As shown by

these characteristics, it is impossible to determine an optimal

threshold that always provides good results for different file sets.

In contrast, the proposed method offers a considerable

reduction in the power consumption and a sufficiently good

performance for different file sets. This confirms the need for

and the advantage of the proposed method.

0

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r

O
f

Se
rv

e
r

C
o

m
p

u
te

rs

Bit Rate (Mb/s)

Fig. 13 Relationship between the bit rate and number of server computers to be

turned on for file set #4.

0

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r

O
f

Se
rv

e
r

C
o

m
p

u
te

rs

Bit Rate (Mb/s)

Fig. 14 Relationship between the bit rate and number of server computers to be

turned on for file set #5.

0

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r

O
f

Se
rv

e
r

C
o

m
p

u
te

rs

Bit Rate (Mb/s)

Fig. 15 Relationship between the bit rate and number of server computers to be

turned on for file set #6.

VII. CONCLUSION

This paper proposed a power management method for server

clusters, which provide, for example, the WWW service over

the Internet. The proposed method employs a machine learning

approach that extracts the information required for the on/off

decision from passively measured traffic metrics. The proposed

method is advantageous because it correctly performs the on/off

decision for a wide range of requested service contents by

discovering the shortages or excesses of resource consumptions

from multiple traffic metrics. An additional feature of the

proposed method is that the traffic metrics are measured

passively. Thus, the method is nonintrusive to the server cluster

computers and is independent of the hardware or software

platform. This characteristic is advantageous from the

perspective of robustness and compatibility.

The paper clarified the method for estimating the number of

server computers to be turned on based on the passively

measured traffic metrics while using the machine learning

technique. The power management program based on this

concept was implemented on a PC with a Linux OS for a small

cluster while assuming the WWW service. The feasibility and

effectiveness of the proposed method was experimentally

evaluated. The results show that for different types of page

datasets, the method successfully reduces the power

consumption without degrading the service performance.

REFERENCES

[1] R. Bianchini and R. Rajamony, “Power and energy management for

server systems,” Computer, 37, 11, Nov. 2004, pp. 68-74.

[2] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load balancing

and unbalancing for power and performance in cluster-based systems,” in

Proc. Workshop on Compilers and Operating Systems for Low Power,

Barcelona, Spain, 2001.

[3] I. H. Witten, E. Frank, and M. A. Hall, Data mining: practical machine

learning tools and techniques - 3rd edition. Burlington, MA: Morgan

Kaufmann, 2011.

[4] S. Ohta, R. Kurebayashi, and K. Kobayashi, “Minimizing false positives

of a decision tree classifier for intrusion detection on the Internet,”

Journal of Network and Systems Management, 16, 4, Aug. 2008, pp.

399-419.

16

[5] H. Drucker, D. Wu, and V. N. Vapnik, “Support vector machines for

spam categorization,” IEEE Transactions on Neural Networks, 10, 5, Sep.

1999, pp. 1048-1054.

[6] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification

and application identification using machine learning,” in Proc. LCN'05,

Sydney, 2005, pp. 250-257.

[7] J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann,

1993.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,

“Managing energy and server resources in hosting centers,” in Proc. 18th

Symposium on Operating Systems Principles, Banff, Canada, 2001, pp.

103-116.

[9] L. Wang and Y. Lu, “Efficient power management of heterogeneous soft

real-time clusters,” in Proc. 2008 Real-Time Systems Symposium,

Barcelona, Spain, 2008, pp. 323-332.

[10] L. Mastroleon, N. Bambos, C. Kozyrakis, and D. Economou, “Autonomic

power management schemes for internet servers and data centers,” in

Proc. IEEE Globecom 2005, St. Louis, MO, USA, 2005, pp. 943-947.

[11] D. Mosberger and T. Jin, “httperf – A tool for measuring web server

performance,” ACM SIGMETRICS Performance Evaluation Review, 26,

3, Dec. 1998, pp. 31-37.

[12] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive Bayes vs decision trees

in intrusion detection systems,” in Proc. SAC '04, Nicosia, Cyprus, 2004,

pp. 420-424.

[13] W. Li and A. W. Moore, “A machine learning approach for efficient

traffic classification,” in Proc. MASCOTS'07, Istanbul, Turkey, 2007, pp.

310-317.

[14] S. Marsland, Machine Learning – An Algorithmic Perspective, CRC

Press, 2009.

[15] S. Ohta and R. Andou, “WWW server load balancing technique

employing passive measurement of server performance,” ECTI Trans.

EEC, 8, 1, Feb. 2010, pp. 59-66.

[16] S. Zhu and S. Ohta, “Real-time flow counting in IP networks: strict

analysis and design issues,” Cyber Journals: Multidisciplinary Journals

in Science and Technology, Journal of Selected Areas in

Telecommunications (JSAT), 3, 2, Feb. 2012, pp. 7-17.

[17] C.-H. Tsai, K. G. Shin, J. Reumann, and S. Singhal, “Online web cluster

capacity estimation and its application to energy conservation,” IEEE

Trans. on Parallel and Distributed Systems, 18, 7, July 2007, pp.

932-945.

[18] R. Russell. (2002, January). Linux 2.4 NAT HOWTO, Available:

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

[19] TCPDUMP/LIBPCAP Repository, Available: http://www.tcpdump.org/

Satoru Ohta received the B.E., M.E., and Dr. Eng. degrees from the Tokyo

Institute of Technology, Tokyo, Japan, in 1981, 1983, and 1996, respectively.

In 1983, he joined NTT, where he worked on the research and development

of cross-connect systems, broadband ISDN, network management, and

telecommunication network planning. Since 2006, he has been a professor in

the Department of Information Systems at Toyama Prefectural University,

Imizu, Japan. His current research interests are network performance

evaluation, power management of network systems, algorithms for sensor

networks, and management of virtual machines.

Dr. Ohta is a member of the IEEE, IEICE, and ECTI. He received the

Excellent Paper Award in 1991 from IEICE.

Takehito Hirota received the B.E. and M.E. degrees from Toyama Prefectural

University, Toyama, Japan, in 2009 and 2011. He joined Hokuriku Tsushin

Kogyo Co. in 2011. While he was with Toyama Prefectural University, he was

engaged in the study on the power management of server clusters.

