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Abstract—This paper proposes new adaptive tree search 

detection with variable path expansion based on Gram-Schmidt 

(GS) orthogonalization (GSO) in MIMO systems. We adopt the 

GSO procedure to reduce the channel matrix instead of the 

QR-decomposition in the conventional QRM-MLD. This detection 

scheme combined the GSO reduction with the M-algorithm, what 

we call GSM-MLD, can achieve near-ML performance as the 

conventional QRM-MLD. The proposed detection method is a 

breadth-first algorithm and performs the adaptive tree search with 

variable path expansion in the GSM-MLD. In this paper, we 

introduce a path metric ratio function to evaluate the reliability for 

all the survived branches. The survived but lower reliable 

branches adopt parts of the constellation points as the candidates 

into the next detection layer. The proposed detection algorithm 

reduces the complexity by adaptively decreasing the computation 

of the path metric for the low reliable candidates. The numerical 

results exhibit that the proposed scheme achieves near-ML 

performance with relatively lower complexity compared to the 

conventional QRM-MLD. 

Index Terms—Adaptive signal processing; Gram-Schmidt (GS) 

orthogonalization (GSO); QRM-MLD; MIMO; tree search.  

I. INTRODUCTION 

ultiple-input multiple-output (MIMO) technology has 

attracted attention in wireless communications, since it 

provides significant increases in data throughput and the high 

spectral efficiency [1]-[3]. MIMO systems employs multiply 

antennas at both ends of the wireless link, and hence can 

increase the data rate by transmitting multiple data streams. To 

exploit the potential gains offered by MIMO, signal processing 

involved in a MIMO receiver requires a large computational 

complexity in order to achieve the optimal performance. The 

maximum likelihood (ML) detection (MLD) is known as the 

optimal receiver in terms of minimizing bit error rate (BER). 

However, the complexity of MLD obstructs its practical 

implementation. The common linear detection such as zero 
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forcing (ZF) or minimum mean squared error (MMSE) with the 

lattice-reduction (LR) technology can offer a remarkable 

complexity reduction with performance loss [4]-[7]. Numerous 

suboptimal detection techniques have been investigated to 

approximately approach the ML performance with relatively 

lower complexity, such as the sphere detection (SD) and the 

MLD with QR Decomposition and M-algorithm (QRM-MLD) 

[8]-[16]. To looking for the suboptimal detection algorithm with 

the near optimal performance and the affordable complexity 

costs for MIMO gains faces a major challenge. 

The conventional QRM-MLD is one solution to relatively 

reduce the complexity while retaining the ML performance. The 

number of M in the QRM-MLD is defined as the number of the 

survived branches in each detection layer of the tree search, 

which is a tradeoff between the complexity and the performance. 

Furthermore, the value of M should be large enough to ensure 

that the correct symbols exist in the survived branches under the 

ill-conditioned channel, in particular for the large size MIMO 

and the high modulation order. Hence, the conventional 

QRM-MLD still requires high complexity in the high Eb/N0 

region [10]. To overcome this drawback, numerous methods 

with adaptively controlling the survived branch M have been 

proposed in [11]-[13]. These schemes still have the problem that 

needs to accurately and dynamically measure SNR for optimal 

setting of the number of survived branch in each layer.  

In this paper, we first present a detection scheme combined 

the Gram-Schmidt (GS) orthogonalization (GSO) reduction 

with the M-algorithm, which we call the GSM-MLD. This 

scheme has such features that it achieves near-ML BER 

performance like the QRM-MLD with lower computational 

complexity. The channel matrix is reduced using the GSO 

procedure, and meanwhile a transform matrix is created. In 

contrast to the QR decomposition of the channel matrix in the 

QRM-MLD, which R retains the property of the channel matrix, 

the column vectors of the GS-reduced channel matrix are purely 

orthogonal for the GSM-MLD.  The GS-reduced channel matrix 

spans the same subspace as the columns of the original channel 

matrix. The transform matrix is an upper triangular matrix with 

unity diagonal entries.  

Based on the GSM-MLD, we propose novel adaptive tree 

search detection with variable path expansion based on GSO in 

the MIMO systems. The proposed algorithm retains the same 

breadth of the tree search as the GSM-MLD to achieve the 
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near-ML performance, and however the number of the possible 

branches is adaptively controlled. The adaptive scheme avoids a 

large amount of the path metric evaluations and sorting to 

reduce the computational complexity. We also analyze the 

complexity of the proposed detection. The proposed detection 

can considerably decrease the complexity in the high Eb/N0 

region. 

The remainder of this paper is organized as follows. Section II 

presents the system model and the conventional QRM-MLD 

algorithm. Section III explains the GSM-MLD algorithm. In 

Section IV, we propose an adaptive tree search scheme to the 

GSM-MLD in MIMO systems. Section V gives numerical 

results and discussions. Finally, we summarize and conclude the 

paper in Section VI. 

Notations: Matrices and vectors are denoted by bold-face 

letters. A
T, A

1 and †
A  are used to denote the transpose, 

inverse, and pseudo-inverse of a matrix A, respectively. The 

real and imaginary parts are denoted as Re[·] and Im[·]. The 

operator [·] is the quantization. ||·|| represents the Frobenius 

norm. ai,j denotes the entry at the i-th row and the j-th column of 

A. 

II. SYSTEM MODEL AND CONVENTIONAL QRM-MLD 

Consider a multiple antenna system with Nt transmit and Nr 

(NrNt) receive antennas. The signals are transmitted over a 

rich scattering flat fading channel. Assume that the receiver has 

perfect knowledge of the channel state information (CSI). The 

received signal vector c c c T
1[ , , ]Nr

y yy Nr1 is expressed as 

c c c c y H s z                            (1) 

where c
iy is the received signal at the i-th receive antenna. The 

transmitted signal vector is denoted as c c c T
1[ , , ]Nt

s ss ΩNt1, 

where each symbol c
js  at the j-th transmit antenna is chosen 

from a finite subset of the complex-valued integer set Ω. Let 
c c c

1[ , , ]Nt
H h h  denote the NrNt channel matrix. We assume 

that the entries of c
H  are of the i.i.d. complex Gaussian process 

with zero mean and unity variance. The noise vector 
c c c T

1[ , , ]Nr
z zz Nr1 is the additive white Gaussian noise 

(AWGN) vector, of which each entry is assumed to be zero 

mean and variance of N0, the one-sided noise power spectral 

density. 

As the system model in (1) is complex-valued, treating the 

real and imaginary parts separately, the system model can be 

rewritten as 

 y Hs z                                     (2) 

with the real-valued channel matrix and the real-valued vectors 

c c

c c

Re( ) Im( )

Im( ) Re( )

n m
 

  
  

H H
H

H H
                   (3) 

c c c

c c c

Re( ) Re( ) Re( )
,  ,

Im( ) Im( ) Im( )

     
       
          

s y z
s y z

s y z
            (4) 

Letting n2Nr and m2Nt, we define the dimension of the 

real-valued channel matrix H to be nm. The dimensions of the 

vectors in (4) are given as yn, zn and sm, where  

denotes the finite set of the real-valued transmitted signals. This 

set is given by { 1, 3,..., ( 1)}K     for K-QAM 

(Quadrature Amplitude Modulation). Given y and the channel 

matrix H, the ZF soft estimate of the transmitted signals is 

expressed as 

(ZF) † T 1 T( ) s H y H H H y                                 (5) 

The concept of the QRM-MLD is to apply a tree search to 

detect the symbols in a sequential manner [10]. The channel 

matrix H applies the QR decomposition as HQR, where Q is a 

unitary matrix: i.e., QT
QIm, and R is an mm upper triangular 

matrix. The QR decomposition is executed by the modified GS 

algorithm (MGS) in [17]. The R retains the property of the 

channel matrix H. Then, we pre-multiply both the hand sides of 

(2) by QT as 

T T ( )    y Q y Q QRs z Rs z                (6) 

with expressing R as 

11 12 1,

22 2,

,

m

m

m m

r r r

r r

r

 
 
 
 
 
  

R

O

                         (7) 

where Tz Q z . The ML detector searches over the whole set 

of transmitted signals sm, and decides the transmitted signal 
(ML)

ŝ  in terms of the minimum Euclidean distance (ED) to the 

received vector y. The ML detection can be formulated as 

2 2(ML)

2
1 ,

ˆ arg min arg min

arg min | |

m m

m

m m
i j ii i j jy r s

 

 



   

    

s s

s

s y Hs y Rs

         (8) 

where 2
,| |m

j ii i i j jy r s    denotes the branch metric in the 

i-th layer. The accumulated branch metric m
j ii j   is 

defined as the path metric from the m-th layer down to the i-th 

layer. For each detection layer of the tree search in the 

QRM-MLD, there are three major operations: 

 Candidate Expansion: Expand the children nodes from 

each survived branch. The candidates for the children 

nodes consist of all the constellation points. 



 

3 

 

 Path metric evaluations: There are M K  possible 

branches for K-QAM in each layer. Calculate the path 

metric for all the possible branches. 

 Sorting and retaining: Sort the path metric and retain M 

branches with the smallest path metric from M K  

possible branches. The rest of branches discard. 

Let Λi
(l) denote the l-th smallest path metric of the survived 

path i
(l)  after the operations of sorting and retaining, where 

l[1,M] and Λi
(1)Λi

(2) ... Λi
(M). Correspondingly, the partial 

transmitted signal ŝi
(l) based Λi

(l) is expressed as ŝi
(l)[ŝi

 (l),…, 

ŝm
(l)]T . The same operations are executed until the first layer. 

The output of the QRM-MLD is ŝ1
(1)[ŝ1

(1),…, ŝm
(1)]T as the 

final estimate of transmitted signal. 

Although the exhaustive tree search of the QRM-MLD 

should visit M K  nodes in each detection layer instead of 
1( )m qK    nodes in the i-th layer for the full MLD. The 

conventional QRM-MLD reduces the exponentially growing 

complexity to a linear growing complexity while retaining the 

ML performance. However, the conventional QRM-MLD still 

requires high complexity in the high Eb/N0 region. 

III. GSM-MLD 

Based on Fujino et al.’s previous work of the GSO based 

lattice-reduction aided detection in MIMO systems [4,5], we 

introduce the GSM-MLD algorithm. The column vectors of 

channel matrix H are first sorted in ascending order in length. 

Then, they are weakly reduced using the GSO procedure shown 

in Table I. This algorithm transforms the channel matrix H to 

create the GS-reduced channel matrix Ĥ  and the transform 

matrix T̂ . The column vectors of Ĥ  are mutually orthogonal, 

and the transform matrix T̂  is an upper triangular matrix with 

unity diagonal entries and det{ T̂ }. Note that this algorithm 

in Table I is computationally-simple since it weakly reduces the 

column vectors of H without the size reduction in the LLL 

algorithm [4].  

TABLE I.  GRAM-SCHMIDT ORTHOGONALIZATION 

(1) Begin Input 1 1[ ,..., ], : [ ,..., ]m m m  H h h T I t t . 

          Set ˆ , [1, ].p p p m h h   

(2)   for p:2 to m 

(3)     for q:p1 down to 1 

(4)        

T

, 2

ˆ ˆ

ˆ|| ||

q p

p q

q

 
h h

h
 

(5)        , ,
ˆ ˆ ˆ ˆ ˆ ˆ: , :p p p q q p p p q q    h h h t t t  

(6)     end 

(7)   end 

(8) End 

 

The upper triangular matrix T̂  with unity diagonal entries 

is invertible. The column vectors of the matrix ˆ ˆH HT  are 

orthogonal and span the same subspace as the columns of the 

original matrix H. Using the GS-reduced channel matrix Ĥ  

and T̂ , we have  

1ˆ ˆ ˆ( )( )     y Hs z HT T s z Hv z                (9) 

where ˆ ˆH HT and 1ˆ v T s  with expressing 1ˆ 
T  as 

 

12 13 1,

23 2,
1

1,

1

1

ˆ

1

1

m

m

m m

  

 







 
 
 
 
 
 
  

T

O

                   (10) 

  With the orthogonal column vectors of Ĥ , the soft estimate 

of v is derived as 

1 2

2 2 2

1 2

1 (ZF) † T 1 T

T
ˆˆ ˆ

ˆ ˆ ˆ|| || || || || ||

ˆ ˆ ˆ ˆ ˆ( )

, , , m

m

   

 
  
  

hh h

h h h

v T s H y H H H y

y
               (11) 

or   T 2ˆ ˆ|| || , [1, ]i i iv i m h h y                              (12) 

  Then, the soft estimate of ŝ is obtained by performing the 

following recursion as 

 
1 ,

[ ] :
ˆ

ˆ[ ] : 1,...,1

i

i m
j ii i j j

v i m
s

v s i m 


 

  

                (13) 

A. Definition of Metric in GSM-MLD 

The GSM-MLD applies a fixed number of M in each 

detection layer as the QRM-MLD, starting from the last entry 

of s. Since 1ˆ 
T  is an upper triangular matrix, the entry si 

depends on the decided estimates ŝj’s where j[i1,m]. We 

define the branch metric i : i[1,m] in GSM-MLD as  

2 2 2 2

2 2 2 2
1 ,

ˆ ˆˆ ˆ|| || | | || || | | ,

ˆ ˆˆ ˆ ˆ|| || | | || || | | ,

i i i i i i

i
m
j ii i i i j j i i i

v s s s i m

v s s s s i m


 

    
 

    

h h

h h
 (14) 

where m ms v  and 1 ,
ˆm

j ii i i j js v s   for i=m1,…,1. The 

path metric Λi: i[1,m] is the accumulated branch metric, which 

is defined as 

2 2

1

ˆ ˆ|| || | |

,

,

m m
j i j ii j j i i

i

i i

s s

i m

i m







 



    


 

 

h

                  (15) 

The Λi is the partial Euclidean distance (PED). In the 

GSM-MLD, Λi
(l) still denotes the l-th smallest path metric. 

Correspondingly, the partial transmitted signal ŝi
(l) based on 
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Λi
(l) should be expressed as [ŝi

(l),…, ŝm
(l)]T. Three major 

operations are the same as the conventional QRM-MLD. The 

output of the GSM-MLD is ŝ1
(1)[ŝ1

(1),…, ŝm
(1)]T as the final 

estimate of transmitted signal. 

B. Computational Complexity 

We here use the floating point operations (flops) for the 

measure of the complexity, which defines one addition, one 

subtraction, one multiplication, and one division for real-valued 

number to take one flop. For the m-th layer, expanding K  

branches, m in (14) requires two multiplications and one 

subtraction, and it consumes 3 flops expressed by ( ) 3m  . 

For the (m1)-th layer down to the first layer, M branches are 

retained from M K possible branches in the i-th layer, where 

i[1,m1]. For a survived branch, is  in (14) requires (mi) 

multiplications and (mi) subtractions. Hence, the complexity 

for the computing of is  is expressed as ( ) 2( )is m i  . For a 

possible branch, Λi in (15) requires one addition, which we 

express the complexity as ( ) 1i  . ( , ) ( )i i i     

( ) 4i  denotes the total complexity for the computations 

of the branch metric i in (14) and the path metric Λi in (15).  

The complexity of the GSM-MLD GSM-MLD  which 

excludes the complexity of the GSO reduction and the 

computation of v  in (11) can be derived as 

1
1GSM-MLD

-th layer Survived Branches Path Expansion

1
1

2

( ) [ ( ) ( , )]

3 2( ) 4

3 ( ) 4 ( 1)

m
im i i i

m

m
i

K M s M K

K M m i M K

K M m m M K m

 





      

        

    

(16) 

IV. PROPOSED ADAPTIVE TREE SEARCH SCHEME IN 

GSM-MLD 

In this section, we propose an adaptive tree search scheme in 

the GSM-MLD. The proposed algorithm retains the same 

breadth of the tree search as the GSM-MLD to achieve the 

near-ML performance. On the other hand, we perform adaptive 

tree search scheme to reduce the complexity, and to overcome 

the drawback which the fixed number of tree search algorithm 

requires high complexity in the high Eb/N0 region. In the 

adaptive tree search scheme, we introduce a path metric ratio 

without the necessary to accurately and dynamically measure 

SNR. According to the reliability of each survived branch, 

assign a suitable candidates expansion from a parent node. To 

decrease the number of lower reliable possible branch, thereby 

avoid a large amount of the path metric evaluations and sorting.  

A. Reliability Evaluation 

In this subsection, we derive the reliability evaluation (RE) 

for all the survived branches in each layer. As above mentioned, 

the estimate of entry si depends on the decided estimates ŝj’s 

where j[i1,m]. Hence, the wrong estimate existing in the 

decided estimates may cause more wrong estimates of the 

transmitted signal in the following recursion detection. 

According to MLD, the final estimate of transmitted signal is 

determined by the path with the smallest path metric. To a 

certain degree, we can apply the PED to evaluate the reliability 

of all the survived paths in a detection layer of the tree search. 

In that sense, we introduce a ratio function among the path 

metrics in the i-th layer, where i[1,m], defined as 

 
( )

(1)
( ) , 1,

l
i

i

i

l l M


 


                          (17) 

where Λi
(1) denotes the smallest path metric after sorting the 

survived branch in the i-th layer. Note that the layer number i is 

decreased such that i:m down to 1 successively. In general, the 

survived path i
(1) with the high probability should be the 

correct path if the channel is better-conditioned. Hence, we 

assume that the survived path i
(1) has the most possible to be 

correct path. In terms of the path metric ratio i(l) in (17), 

indirectly evaluate the reliability of the l-th branch in the i-th 

layer. That is, if Λi
(l) is much larger than Λi

(1) and thus i(l) is 

larger, it illustrates that the correct path with lower reliability is 

the l-th path.  

The ratio function i(l) can be the measure of evaluating the 

reliability for the l-th branch. In order to adaptively control the 

candidates expansion according to i(l), we assume that the 

number of the candidates should be a integer between 1 and 

K  in the (i1)-th layer. That means the number of candidates 

from a parent node is determined by the path metric ratio in the 

previous layer. We define the number of the candidates as 

i1(l) for the l-th survived branch in the (i1)-th layer. In order 

to find a proper rule to adaptively assign the candidates for a 

survived branch, we consider a decision function of the i-th 

layer as 

 ( ) , 1,
i

i C i m
m

                         (18) 

where C is a constant to be predetermined, which is the tradeoff 

between the BER performance and the computational 

complexity. The parameter (i) is depended on the detection 

layer i. Since the tree search starts with the last entry of s, the 

path metric at first in the larger numbered layer is insufficient to 

reflect the whole channel condition. To retain the correct path, 

the parameter (i) is defined to be proportional to the value of 

the detection layer i. Using the variable decision function, the 

value (m) is maximum as C. Correspondingly, the value (1) 

is minimum as C/m. The decision value becomes strict as the 

detected layers increase. The various decision based on the 

layer number significantly reduces the number of candidates in 

the smaller numbered layer seen in the Section V. 

For K-QAM, the number of the finite set for the real-valued 

transmitted signals is K .We compare i(l) with {(i), 2 

(i), ... , ( 1)K  · (i)}. Then we have 
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Fig. 1  The CDF of the minimum path metric at Eb/N010dB for 16QAM. 

 

Fig. 2  The CDF of the minimum path metric at Eb/N015dB for 64QAM. 

1

        for ( ) [0, ( )]

( )   for ( ) ( ( ), ( 1) ( )]

1             for ( ) ( 1) ( )

i

i i

i

K l i

l K x l x i x i

l K i

 

   

 



 


     


  

   (19) 

where i[2,m] and x[1, 2K ]. Let (i) denote the basic 

unit to divide i(l) into K  regions. Then, according to i(l) in 

which region resolves the number of candidates i1(l). 

Ranking the constellation points with the nearest distance to 
( )

1
l

is   obtained in (14), the candidates in the (i1)-th layer 

consist of the nearest constellation point up to the i1(l)-th 

nearest constellation point. In the case of 16QAM, if 
( )

1
l

is  2.5, 

the order of candidates is {3,1,1,3}. If i1(l)2, the 

candidate selection from the constellation points is {3, 1}. 

Due to the definitions of the branch metric and the path 

metric in the GSM-MLD, the ED can be expressed as 

 
2 2 2

1
ˆ ˆ|| | || || | |m

i i i is s
     

y Hs | h                          (20) 

The maximum likelihood detection is very simple to implement 

since the decision criterion depends on the ED. This detection 

scheme minimizes the probability of bit error when the 

transmitted messages are equally likely. Since the proposed 

detection expects to achieve the near-ML performance as 

GSM-MLD, we first investigate the cumulative distribution 

function (CDF) of the minimum path metric. In Figs. 1 and 2, 

we plot the CDF of the minimum path metric compared the 

GSM-MLD with the proposed detection with C{2, 4, 8} for 

16QAM and 64QAM, respectively. The results illustrate that 

the CDF curve of the proposed detection closely approaches the 

that of GSM-MLD as the value of constant C increases. The 

constant C4 is almost optimal value between the BER 

performance and the complexity. 

B. Proposed Detection Scheme 

As an example, Fig. 3 illustrates an adaptive tree search 

scheme from the i-th layer to the (i1)-th layer. In the (i1)-th 

layer, first perform the path expansion from M survived 

branches in the i-th layer. Since the adaptive tree search scheme 

is executed, the branch metric and the path metric can be 

expressed as  
(1, (1)) (2, (2)) ( , ( ))(1,1) (2,1) ( ,1)1 1 1

1 1 1 1 1 1, , , , , , , ,
M MMi i i

i i i i i i
  

       
     

and 
(1, (1)) (2, (2)) ( , ( ))(1,1) (2,1) ( ,1)1 1 1

1 1 1 1 1 1, , , , , , , ,
M MMi i i

i i i i i i
    

           ,

respectively. Note that 
( , )

11 : [1, ( )]
l k

ii k l     represents the 

branch metric expanded from the l-th branch in the (i1)-th 

layer. We calculate the path metric for the possible branches as 
( , ) ( , ) ( )

1 1
l k l k l

ii i    . Hence, 1 1( )M
l i l   denotes the total 

number of all the children nodes in the (i1)-th layer, which 

should be equal to or less than M K . Next, sort 1 1( )M
l i l   

path metrics and select M with the smallest path metric. Based 

on the sorted 
( )

1
l

i , calculate the number of candidates 

expansion i2(l), l[1,M], for the next layer. The proposed 

adaptive tree search scheme is summarized as follows: 

Step 1: Set a fixed value of M. For K-QAM, if K <M, define 

a layer number q such that 1( )m qK    should be equal 

to or more than M in order to select M branches with the 

smallest path metric among all of the possible branches. 

Then, the candidates from the m-th layer down to the 

q-th layer are all the constellation points. 

Step 2: Start the adaptive candidate selection scheme from the 

q-th layer. According to q(l) and (q), the number of 

the candidates q1(l) for the l-th survived branch in the 

(q1)-th layer is obtained in (19). Hence, the number of 

the possible branches in the (q1)-th layer is from M to 

M K . 

Step 3: Proceed to the next stage of the (q1)-th layer. Rank the 

constellation points for the l-th survived branches with 

the nearest distance to 
( )

1
l

qs   in (14). According to q1(l), 

we select the candidates from the constellation points 

and calculate the path metric for the possible branches. 

M branches are retained with the smallest path metric to 

the next layer. The same operations are executed until 

the first layer. 

Step 4: Obtain the detection result of the estimate   

        ŝ1
(1) =[ŝ1

(1),…, ŝm
(1)]T. 

C. Complexity Analysis 

The proposed detection reduces the complexity of the path 

metric evaluations with less possible branches. The additional 

 

GSM-MLD (M16) 

Proposed Detection (M16, C2) 

Proposed Detection (M16, C4) 

Proposed Detection (M16, C8) 
 

 

GSM-MLD (M64) 

Proposed Detection (M64, C2) 

Proposed Detection (M64, C4) 

Proposed Detection (M64, C8) 
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complexity A  is the computations for the path metric ratio in 

(17), which require a complexity of (M1)(q1) flops. If we fix 

the value of the constant C, (i) in (18) is predetermined. Hence, 

the computational complexity of (i) is neglect. The complexity 

of the proposed detection consists of three parts: the fixed 

complexity from the m-th layer down to the q-th layer, the 

various complexity from the (q1)-th layer down to the first 

layer, and the above additional complexity. The fixed 

complexity of the proposed detection F  can be derived as  

1
F 1

11

( ) ( )
( )

( ) ( , )

3 2( ) ( ) 4 ( )

m i
im

i qm m i
i i

m i m im
i q

K s
K

K

K m i K K







  

  


 
    

    

        

 (21) 

The various complexity of the proposed detection V  is 

varied with the number of the children nodes, derived as 

 1
1V 1

1
11

( ) ( ) ( , )

2 ( ) 4 ( )

q M
li i i ii

q M
l ii

M s l

M m i l

 









       

      

         (22) 

where 1 ( )M
l i l  denotes the total number of the children nodes 

in the i-th layer. 

As a result, the complexity of the proposed detection Prop.  

which excludes the complexity of the GSO reduction and the 

computation of v  in (11) can be derived as 

Prop. A V F

1
11

11

( 1)( 1) 2 ( ) 4 ( )

3 2( ) ( ) 4 ( )

q M
l ii

m i m im
i q

M q M m i l

K m i K K




  


  

         

        

 (23) 

V. NUMERICAL RESULTS 

The computer simulations were carried out for 16QAM and 

64QAM in the 44 MIMO system, respectively. We assume the 

channel is the typical flat Rayleigh fading. The performances  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the different detection algorithms are measured by the BER 

characteristics and the complexity. The complexity of the tree 

search detection is determined by the amount of the path metric 

evaluations. 

A. BER with Perfect CSI 

  Figs. 4 and 5 show the BER characteristics versus Eb/N0 using 

the full MLD, the conventional QRM-MLD, the GSM-MLD 

and the proposed detection, respectively. The value of M in the 

proposed detection is the same as that in the QRM-MLD and 

the GSM-MLD, i.e. M16 for 16QAM and M64 for 64QAM, 

respectively. The constant C in the decision function is 

assigned as C{2, 4, 8}. 

As seen in Fig. 4, we chose M16, which is large enough for 

the 16QAM in the 44 MIMO system, and hence the BER 

curves of the GSM-MLD and the QRM-MLD totally achieve 

the ML performance. For the proposed detection, the BER 

curve with C8 is almost equivalent to the BER characteristics 

of the GSM-MLD or the QRM-MLD. The proposed detection 

with C2 has less possible branches in each layer, and hence 

the BER curve is about 1dB worse than the BER of the 

QRM-MLD at a BER of 10-5. 

The BER curves of the QRM-MLD and the GSM-MLD with 

M64 for 64QAM are equivalent to the BER characteristics of 

the full MLD in Fig. 5. For the proposed detection, the BER 

curves with C achieve a near-ML performance. The 

proposed detection with C2 remarkably reduces the possible 

branches in each layer, and hence the BER curve is about 0.5dB 

worse than that of the QRM-MLD at a BER of 10-5. 

B. Computational Complexity 

We evaluated the average number of possible branches in 

each layer for the proposed detection with C{2, 4, 8}, seen in 

Figs. 6 and 7. For the QRM-MLD or GSM-MLD, the number 

of the possible branches in each layer is fixed to 64 if M16 for 

16QAM and 512 if M64 for 64QAM, respectively. In Fig. 6, 

the average number of the possible branches in the adaptive 

stage is varied within a certain range from 16 to 64 for 16QAM. 

In particular, for the curve with C2 in Fig. 6(a), the average   

 i-th layer                        
(1)
i                                       (2)

i                                                                  ( )M
i               

                            
(1,1)
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i

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1

i
i


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(1) ( )

1 1
M
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Fig. 3  Example of the adaptive tree search scheme from the i-th layer to the (i1)-th layer. 
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Fig. 4  The Eb/N0 vs. BER characteristics: 16QAM and mn8. 

          

           

       

  

 

Fig. 6  The average number of possible branches in each layer in tree search at 

various Eb/N0: 16QAM. 

 

Fig. 5  The Eb/N0 vs. BER characteristics: 64QAM and mn8. 

   

        

       

 

  

Fig. 7  The average number of possible branches in each layer in tree search at 

various Eb/N0: 64QAM. 

(b) Proposed Detection (M16 and C4) 

(c) Proposed Detection (M16 and C8) 

 

(a) Proposed Detection (M16 and C2) 

(b) Proposed Detection (M64 and C4) 

(c) Proposed Detection (M64 and C8) 

Proposed Detection at Eb/N011dB with BER101 

Proposed Detection at Eb/N017dB with BER102 

Proposed Detection at Eb/N021dB with BER103 

Proposed Detection at Eb/N023dB with BER104 

Proposed Detection at Eb/N026dB with BER105  

(a) Proposed Detection (M64 and C2) 
 

 

Full MLD 

QRM-MLD (M16) 

GSM-MLD (M16) 

Proposed Detection (M16, C2) 

Proposed Detection (M16, C4) 

Proposed Detection (M16, C8) 
 

 

Full MLD 

QRM-MLD (M64) 

GSM-MLD (M64) 

Proposed Detection (M64, C2) 

Proposed Detection (M64, C4) 

Proposed Detection (M64, C8) 
 

Proposed Detection at Eb/N07dB with BER101 

Proposed Detection at Eb/N012dB with BER102 

Proposed Detection at Eb/N016dB with BER103 

Proposed Detection at Eb/N018dB with BER104 

Proposed Detection at Eb/N021dB with BER105  
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Fig. 8  The average complexity comparison for three detection schemes: 

16QAM and mn8 

number of the possible branches is close to 16 if the BER 

characteristics are less than 102. Furthermore, the BER curve 

of the proposed detection with C2 is about 1dB worse than 

that of the full MLD at a BER of 105. It should be noticed that 

the number of the low reliable possible branches in the 

proposed detection with C4 in Fig. 6 (b) is halved or more 

reduced, compared to the fixed number of 64. The BER curve 

of the proposed detection with C4 is about 0.2dB worse than 

that of the full MLD at a BER of 105. In addition, the BER of 

the proposed detection with C8 shown in Fig. 4 can retain the 

near-ML performance. The number of the possible branches 

can remarkably reduce in the high Eb/N0 region.  

Fig. 7 shows the average number of possible branches in 

each layer for the proposed detection for 64QAM. The average 

number of the possible branches in the adaptive stage is varied 

within a certain range from 64 to 512. Similar to 16QAM, the 

curves with C2 in Fig. 7(a) are close to 64 if the BER 

characteristics are less than 102, and correspondingly the BER 

curve with C2 in Fig. 5 has about 0.5dB performance loss 

compared to the full MLD at a BER of 105. If the channel is 

better-conditioned, the average numbers of the possible 

branches with C in the adaptive stage are in the range 

from 64 to 128, which is much smaller than the fixed number of 

512. Meanwhile, the BER curves with C achieve a 

near-ML performance. From Figs. 6 and 7, the adaptive 

decision threshold in each detection layer is determined by the 

constant C. 

According to the average number of possible branches, we 

present the computational complexity of the proposed detection 

in Figs. 8 and 9 for 16QAM and 64QAM, respectively. Due to 

M16 for 16QAM and M64 for 64QAM, the layer number q 

in (21)-(23) is set as qm1. We calculate the complexity of 

QRM-MLD excluding the complexity of QR-decomposition 

and the computation of Q
T
y in (5) [10]. From the numerical 

results, the GSM-MLD has the same complexity with the 

conventional QRM-MLD. Since the GSO reduction is 

computationally-simple and the transform matrix is with unity 

 

Fig. 9  The average complexity comparison for three detection schemes: 

64QAM and mn8. 

diagonal entries, the soft estimate of s  is directly obtained in 

(14) with no division operation. It is convenient to rank the 

constellation points according to s  in the adaptive stage. The 

adaptive tree search scheme is performed using the path metric 

ratio function, and thus the number of the possible branches in 

each layer of adaptive stage is remarkably reduced. Hence, the 

computational complexity of the proposed detection is much 

lower than the conventional QRM-MLD, especially in the high 

Eb/N0 region. From Figs. 8 and 9, the complexity of the 

proposed detection at a BER of 10-5 is about 40% and 64% 

smaller than that of the QRM-MLD for 16QAM and 64QAM, 

respectively.   

VI. CONCLUSIONS 

In this paper, introducing the Gram-Schmidt Orthogonaliza- 
tion procedure to reduce the channel matrix, we proposed a 
MIMO detection scheme using the adaptive tree search with 
variable path expansion in the GSM-MLD algorithm. The 
adaptive tree search scheme is to adaptively control the 
candidates for each survived branch in the tree search. We 
adopted a path metric ratio function to evaluate the reliability for 
all the survived branches. To decrease the number of the low 
reliable candidates in each layer, a large amount of the 
computation for the path metric is avoided. Hence, the 
complexity of the proposed detection should be reduced. In 
particular in the high Eb/N0 region, the complexity of the 
proposed detection is about 60% and 36% of that of the 
QRM-MLD for 16QAM and 64QAM, respectively. The 
proposed detection can provide the near-ML performance with 
relatively lower complexity. As a result, it is worthy for 
applying even to the high modulation order.   
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