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 

Abstract— With the development of network technology, 

growth of large amount of data increases over networks and a 

failure mainly affects data loss. As a result, the survivable system 

is developed as a mechanism to ensure that the data loss can be 

minimized as possible. A potential of disjoint path routing 

technique uses to enhance the data loss problem over the 

communication networks. Therefore, k disjoint paths in multi-cost 

networks, which each network arc may be given k different arc 

costs, is purposed in this paper.  This scheme, called the k penalty 

scheme with initial arc cost matrix (KPI), penalizes the use of 

conflicting arcs found in previously set paths and increases the 

costs of these arcs in accordance with the initially given arc cost 

matrix. The KPI scheme provides updating the conflicting arcs 

costs appropriately to avoid overlapping used paths. With our 

purposed simulations, the results showed that the KPI scheme was 

able to find k disjoint paths faster than the conventional scheme 

that uses the incrementally updated auxiliary arc cost matrix to 

increases the cost of conflicting arcs. Moreover, the KPI scheme 

yields k disjoint paths with lower total cost than the conventional 

scheme. 

 
Index Terms— k disjoint paths, multi-cost network, network 

survivability. 

I. INTRODUCTION 

HERE is enormous data transfer over a network. A break in 

a fiber span or node failures can cause a huge damage to 

users in the network. Therefore, network providers should 

design survivable networks so that the communication loss can 

be minimized. Disjoint path routing enhances the survivability 

of a network [1]-[3]. Disjoint paths, paths that do not sharing the 

same links or nodes, must be set between source and destination 

nodes to minimize the damage created by network failure. If k 

disjoint paths are set between source and destination nodes, at 

least one path is protected against k-1 simultaneous failures. It 

means that a backup path will be used when a working path fails. 

To utilize efficient resources, the shared backup path protection 

is applied. 
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The problem of finding disjoint paths in a single-cost network 

has been widely studied [4]-[8]. In a single-cost network, the 

cost of each network arc is the same for all k paths. Several 

algorithms have been introduced to find k disjoint paths. The 

active path first approach (APF) presented in [4] finds the first 

shortest path by using a shortest path algorithm such as 

Dijkstra’s algorithm [5]. Then, it finds the next shortest path 

after removing the previously found paths. This procedure is 

repeated until the required number of disjoint paths is obtained. 

Suurballe's algorithm [6], or its modification, Bhandari's 

algorithm [7], finds disjoint paths and the total cost of all paths 

is minimized. The problem of finding such disjoint paths is 

called the Min-Sum problem. 

In [9], J. Rak proposed the k-penalty algorithm to find 

k-disjoint paths in a multi-cost network. In a multi-cost network, 

each network arc can have a different cost for all k paths. Its 

applications usually lie in the field of shared backup path 

protection [10], [11]. In this case, the cost of an arc for a backup 

path is often a fraction of that for a working path. The Min-Sum 

problem in a multi-cost network is NP-Complete (NPC) [4], [7], 

[12]. The k-penalty algorithm finds the shortest path as the first 

path. The arcs on the shortest path and those connected to the 

transit nodes on this path are considered as forbidden arcs for 

the next disjoint path to be found. Although the APF algorithm 

assigns the forbidden arcs infinitely high cost, the k-penalty 

algorithm gives them finite costs to avoid the trap problem [9]. 

That is, the next path must pay a penalty for using a forbidden 

arc. Forbidden arc cost is increased by the path cost of the 

previously found path. Arc costs are incrementally updated and 

kept in an auxiliary arc cost matrix. If any conflict, i.e. the 

current path is not disjoint with all previously found paths, 

occurs, all found paths are deleted. Before starting the process 

of finding k disjoint paths again, the costs of conflicting arcs are 

incrementally increased by the cost of the last found path in the 

previous iteration. The path cost is computed using the auxiliary 

arc cost matrix. Thus, in this paper, we call this algorithm KPA, 

or k-penalty by using the auxiliary arc cost matrix to compute 

the path cost. This procedure, including the deletion of found 

paths, is iterated until k disjoint paths are found, or the number 

of iterations reaches a number specified to avoid infinite loops. 

We found that KPA sometimes fails even with a large number 

of iterations, even though disjoint paths actually exist. With 

every iteration, or conflict, the arc costs in the auxiliary arc cost 

matrix are increased. In order to avoid traversing arcs with large 

costs, the algorithm may find a path that overlaps already used 
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paths, including forbidden arcs from the previous paths. This 

path overlapping causes the deletion of found paths and restarts 

the process. It takes time to find k disjoint paths or sometimes 

they cannot be found at all. This problem must be solved to find 

k disjoint paths in an efficient manner. 

This paper proposes k disjoint paths scheme based on the 

KPA scheme that eliminates the KPA problem. The proposed 

scheme uses the same penalty process but the cost increases are 

determined from the initially given arc cost matrix. Thus, this 

scheme is called KPI: k-penalty with the initial arc cost matrix. 

This paper extends the previous work in [13]. The performances 

of the KPI scheme are investigated in detail with various 

network topologies and numbers of required disjoint paths of a 

demand. Moreover, the mathematical formulation of finding k 

disjoint path is described. The computational time complexities 

of the KPA and KPI schemes are discussed in KPI section. 

Numerical results show that the KPI scheme is able to find k 

disjoint paths faster than the KPA scheme. Moreover, KPI 

yields disjoint paths with lower average total cost than the KPA 

scheme.  

The remainder of this paper is organized as follows.  Section 

II shows the formulation of minimizing summation of k disjoint 

paths costs. Section III describes the KPA scheme. Section IV 

presents the KPI scheme. Section V compares the performance 

of the KPI scheme to that of the KPA scheme. Section VI 

summarizes this paper. 

II. PROBLEM FORMULATION 

We consider a graph of directed network G(V,A), where V is a 

set of network nodes and A is a set of network arcs. Let P be a set 

of required disjoint paths. An arc from node u  V to node v  V 

is denoted as (u,v)   A. 
p

uvd is the cost of arc from node u to 

node v on the pth path, where p  P. 
p

uvx is equal to 1, if the pth 

path transverses on arc from node u to node v and equal to 0, 

otherwise. The problem is to find k disjoint paths from source 

node, s, to destination node, t so that the summation of disjoint 

path costs can be minimized. This problem is formulated as an 

ILP problem in the following. 

 


  Pp Vu Vv

p

uv

p

uvdxmin                                                       (1a) 










 tusu

su
xx

Vv

p

vu

Vv

p

uv
,,0

,1
tosubject                      (1b) 

 

                 suxxx p

ukukuk p
 ,121

21
                 (1c) 

                 Vkkku p  ,,,, 21   

                 tuxxx p

ukukuk p
 ,121

21
                 (1d) 

                 Vkkku p  ,,,, 21   

                   VvuPpx p

uv  ,,1,0                (1e) 

 

The decision variable is 
p

uvx and the given parameter is
p

uvd . 

The objective function in Eq. (1a) minimizes the summation of k 

disjoint path costs. Eq. (1b) is a constraint for flow 

conservation. To ensure that the paths of each connection do not 

traverse the common transit nodes, the node disjoint constraints 

are needed, as shown in Eqs. (1c) and (1d). Eq. (1e) is the binary 

constraint for the ILP formulation. 

Since the problem of finding optimal set of k disjoint paths is 

NP-complete [4], [7], [12], a heuristic algorithm was provided 

to solve the problem in [9]. This paper proposes another 

heuristic algorithm to solve the problem efficiently. 

III. KPA: K-PENALTY WITH AUXILIARY ARC COSTS MATRIX 

This section presents the KPA scheme and its weakness. 

A.  Terminology and Description 

The terminology used in this paper is shown below. 

 

dr Demand to find a set of end-to-end k disjoint paths 

between a pair of nodes (sr tr,) 

sr Source node of demand dr 

tr Destination node of demand dr 

imax Maximum allowable number of conflicts 

p Index of path 1,..,k   

p pth path 

ah hth arc, where h is denoted as (u,v)  A 

h Cost of each arc ah 

 h
 p
 Cost of arc ah of the pth path  

 p
 Cost of pth path that is a sum of  h

 p
  over 

traversed ah , shown as Eq (2) 

h
 aux,p

 Auxiliary cost of arc ah of the pth path 

 p
 Initial matrix of arc cost  h

 p
  

 aux
 Auxiliary matrix of arc cost  h

 aux
 

 aux,p
 Auxiliary matrix of arc cost  h

 aux,p
 

ic Conflict counter 

 

The KPA scheme is shown in Fig.1. Demand dr to find k 

disjoint paths from source node sr to destination node tr, the arc 

cost matrices for each disjoint path, and the maximum allowable 

number of conflicts, imax, are initially given. The arc cost matrix 

consists of the costs of network arcs for each disjoint path, 

where each arc from node u to node v is denoted as (u,v) is in the 

set of network arcs, A. The KPA scheme outputs the set of k 

disjoint paths and the total costs of the k disjoint paths. KPA 

uses the shortest-path-based algorithm. At Step 1, the conflict 

counter, ic, is set to 1 and the initial cost matrix of the pth path,  

p
, is copied to the auxiliary cost matrix of the pth path,  aux,p

, for 

all paths, p=1,…,k.  p
 is kept to compute the total path cost 

using Eq. (2) after finding k disjoint paths. At Step 2, set j=1 to 

find the first path. In Step 3,  aux,p
 is copied to h

 aux
 . Step 4 is 

skipped if j=1. To find the next paths j (j≠1), path j has to pay 

a penalty for using one of the forbidden arcs, i.e. links traversed 

by previously found paths j (link disjoint), or links connected 

to transit nodes used by previously found paths (node disjoint).  

The costs of the forbidden arcs are increased by the costs of all 

j-1 previously found paths at Step 4. At Step 5, j is found as the 

shortest path on the network with auxiliary cost matrix  aux
. At 
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Step 6, if j is disjoint with the (j-1) previously found paths, the 

index number of path, j, is increased by one and the process goes 

to Step 7 to check if the required number of k disjoint paths has 

been obtained. The process terminates if the number of found 

disjoint paths has reached the required number, k. Otherwise, 

the process will find the next path by reentering Step 3. If j is 

not disjoint (link or node) with the   j-1 previously found paths, a 

conflict is called and the costs   h
aux,1

 ,…, h
aux,k

 of  each 

conflicting arc ah, the link shared between the previously found 

j-1 paths and path j, or the link connected to the node shared 

between previously found  j-1  paths and path j, is increased by 

the path cost  aux
 of j, which is computed from auxiliary costs 

matrix  aux
 (Step 6a) as shown in Eq. (5). After increasing each 

conflicting arc ah, all found paths are deleted and conflict 

counter, ic, is increased by one. If ic is greater than the maximum 

allowable number of conflicts, imax, the process is terminated. If 

ic is less than imax the process reenters Step 2. 

B. Example of KPA Scheme 

Figures 2 (a1), (a2) and (a3) are multi-cost network that has 

three sets of arc costs; one for the first path, h
1
: the second path: 

h
2
; and the third path: h

3
. The KPA scheme is demonstrated 

with an example in Fig. 3. The example shows how to find the k 

node-disjoint paths in a multi-cost network with k = 3 for the 

demand between node 1 to 7. The scheme starts by setting the 

auxiliary cost matrix as  aux,p
 =  p

 for p = 1, 2, 3 and ic = 1. The 

scheme then considers at the first path j=1 and sets the auxiliary 

cost matrix  aux
 =  aux,j

. The first path 1 (1-4-7) is found as the 

shortest path, shown as Fig. 3 (a1). The costs, h
 aux,1

, for arcs 

incident to transit nodes of path 1 of the set of arc costs h
 aux,2

 

are increased by path cost  aux,1
, which is a penalty and equal to 

14 in the example, of path 1 as shown in Fig. 3 (a2). Then, path 

INPUT: Demand dr to find the set of k-disjoint paths between a pair of nodes (sr tr,). The initial arc costs matrices  

 1
,  2

,...,  k
 (one matrix for each path) of a demand. The maximum allowable number of conflicts, imax. 

 

OUTPUT: The set of k-disjoint paths 1, 2,..., k - all between a given pair of demand source and destination nodes (sr tr,). 

The total path cost of k-disjoint paths is 

                                                                



k

p pathona

p

h

total

ph1 

                      (2)   

PROCESS  

Step 1 Set ic = 1and  aux,p
 =  p

 for p = 1,…, k 

Step 2 Set j=1. 

Step 3 Set  aux
 =  aux,j

. 

Step 4 Consider each path i from the set of previously found j-1 paths and for each arc ah if ah is a *forbidden arc of 

the path i, then increase the arc cost h
 aux

 by path cost h
 aux,i

 of i on the network with costs matrix  aux,i
. 

Set                                                         iauxaux

h

aux

h

,                            (3)   

The path cost is defined by 

                                                1,,1,,   jifor
ih pathona

iaux

h

iaux 


           (4)   

Step 5 Find the shortest path j on the network with costs matrix  aux
. 

Step 6 If j is disjoint with the previously found j-1   paths  

then set j=j+1 and go to Step 7. 

else 

    6a) Increase the costs h
 aux,1

,..., h
 aux,k

 of each **conflicting arc ah of j by path cost h
 aux

 of j on the 

network with cost matrix  aux
. 

    Set                                              auxpaux

h

paux

h   ,,                          (5)   

where path cost  aux
 is defined by 

                                                              
jh pathona

aux

h

aux



                             (6)   

then delete the found paths and set ic = ic +1. 

     6b) If ic > imax then terminate and reject the demand, else go to Step 2. 

Step 7 If j>k then terminate and return the found set of paths, else go to Step 3. 

 *Forbidden arcs are links traversed by previously found paths j (link disjoint), or links connected to transit nodes used by previously found 

paths (node disjoint). 

 **Conflicting arcs are links on path j that are not disjoint with the   j-1 previously found paths (link disjoint), or links incident to common 

transit node jointly by j and by other of previous the   j-1 previously found paths (node disjoint). 

 

 

Fig. 1. KPA scheme for finding k disjoint paths given demand (sr tr,). 
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2 (1-3-5-7) is found. To find the third path, the costs of 

forbidden arcs of paths 1 and 2 on the network are increased 

by path cost  aux,1
 of path 1 and path cost  aux,2

 of path 2. 

However, 3 (1-4-7), which is not disjoint with 1 is found, as 

6
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Fig. 2 Multi-cost network with demand dr = (1, 7) and k = 3. 
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Fig. 3. Example of KPA scheme for multi-cost network with demand dr = (1, 7) and k = 3. 
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shown in Fig. 3 (a3). Costs h
 aux,p

 of arcs incident to node 4 on 

3  for all paths, p=1,…,k, are increased by path cost  aux
, as 

shown in Eq. (5). The path cost  aux
 is defined by Eq. (6), which 

is equal to 36 in the example, as shown in Fig.3 (b1).  Next, all 

found paths are deleted and ic is increased by one. The KPA 

scheme starts finding k disjoint paths from the beginning again, 

as shown in Fig. 3 (b1).  However, the scheme takes time to find 

the required set of k node-disjoint paths because it avoids the 

paths with high cost and this situation leads to overlap with used 

paths, as shown in Fig. 3 (c3), (d3), (e3), (f3) and (g3).  Finally, 

this scheme finds a set of k=3 node-disjoint paths, which are 1 

(1-3-6-7), 2 (1-2-5-7), and 3 (1-4-7), at ic = 8, as shown in Fig. 

3 (h3).  

 

IV. KPI: K-PENALTY WITH INITIAL ARC COSTS MATRIX 

The KPI scheme is an extension of the KPA scheme. The KPI 

scheme uses the same penalty process as the KPA scheme, only 

the policy of updating h
 aux,p

 is different from the KPA scheme 

(Step 6a). The KPI scheme increases the costs   h
 aux,1

 ,…, h
 aux,k

  

of each conflicting arc ah of j by path cost   j
 of j using initial 

costs matrix  j
. The Step 6a of the KPA scheme is replaced by 

the Step 6a of the KPI scheme, which is as follows. 

6a) Increase the cost h
 aux,1

 ,…, h
 aux,k

 of each conflicting arc 

ah of j by path cost  j
 of j on the network with cost matrix  j

.  

        Set  jpaux

h

paux

h   ,,  when kp ,,1             (7) 

where path cost  j
  is defined by 

                           
jh pathona

j

h

j



                                     (8) 

and then delete the found paths and set ic = ic+1. 

 

The KPA and KPI schemes use Dijkstra’s algorithm to 

examine each of k paths of a demand, which requires O(N
2
) 

time, where N is the number of network nodes. Since the 

conflicts are considered in these schemes, the computational 

time complexities of KPA and KPI schemes are equal to 

O(MN
2
), where M is the maximum allowable number of 

conflicts.  

A. Example of KPI Scheme 

We reuse the example in demonstrating the KPI scheme, see 

Fig. 4. The algorithm starts finding the first path 1 (1-4-7) by 

using the shortest-path-based algorithm, Fig. 4 (a1). Before 

finding path 2, the cost h
aux

 of arcs incident to transit nodes of 

path 1 are increased by the total cost  
aux,1

 of path 1, which is 

equal to 14 in the example, Fig. 4 (a2). After that path 2 

(1-3-5-7) is found. The cost, h
aux

, of arcs incident to transit 

nodes of paths 1 and 2 are increased by path cost  
aux,1

 of path 

1 and path cost  
aux,1

 of path 2, respectively. However, 3 

(1-4-7), which is not disjoint with 1 and has a common transit 

node, node 4, is found as shown in Fig. 4 (a3). Cost h
aux,p

 of arcs 

incident to node 4 for all paths, p=1,...,k, are increased by path 

cost 3
 computed from the initial arc costs of 3 defined by Eq. 

(8), which is equal to 8 in Fig. 4 (b1). Next, all the found paths 

are deleted and ic is increased by one. The algorithm starts from 

the beginning, as shown in Fig. 4 (b1). Finally, the scheme finds 

a set of k=3 node-disjoint paths, which are 1 (1-2-5-7), 2 

(1-4-7), and 3 (1-3-6-7), as shown in Fig. 4 (c3). Since the KPI 

scheme is more careful in increasing the costs of conflicting 

arcs, it can find a set of k=3 node-disjoint paths at the conflict 

counter ic value of 3 in the same way as the KPA scheme. This 

example shows that the KPI scheme can find a set of k 

node-disjoint paths faster than the KPA scheme. 

V. PERFORMANCE EVALUATION 

We compare the performance of KPI scheme to that of the 

KPA scheme using computer simulations of various network 

topologies, see Fig. 5. The node-disjoint paths are considered in 

this evaluation. The required number of disjoint paths is 

denoted by k. k is set to two and three for the PAN European 

network, the Italian network and the U.S. long-distance 

6

6+186+18

7+8 4+8

6
4+18

8+18

2+18

(c2)

6+25

6+256+12

15 12

6
4+12

8+25

2+12+25

6

66

7+14 4+14

6
4

8

2

(b2)

7

88

9+8 5+8

75

10

2

(c1)

7

88+12

17 13

7
5+12

10

2+12

7

88

9 5

7
5

10

2

(b1)

4

55

5+8 3+8

4
3

6

1

(c3)

4+25

5+255+12

13 11

4
3+12

6+25

1+12+25

4

5+145+14

5+14 3+14

4
3+14

6+14

1+14

(b3)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

71

2

3

4

5

6

7 1

2

3

4

5

6

7

1

2

3

4

5

6

7 1

2

3

4

5

6

7

1

2

3

4

5

6

71

2

3

4

5

6

7

path1 path3path2

(a2)(a1) (a3)

 
 

Fig .4. Example of KPI scheme for multi-cost network with demand dr = (1, 7) and k = 3. 
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network. Therefore, additional links, shown as dashed lines in 

three networks, are needed to keep the degree of each node 

greater than or equal to three. The arc cost matrices of the 

multi-cost networks are set to three for taking account into 

finding k=2 and k=3 disjoint paths. Since the degree of each 

node in the COST239 network is greater than or equal to four, k 

is set to two, three and four paths and the cost matrices of the 

multi-cost networks are set to four. 100 arc cost matrices for 

each corresponding disjoint path were generated uniformly in a 

random manner in the range of 0 < h   1, where h is the cost of 

arc ah. For both KPI and KPA schemes, we examine the average 

probability that k disjoint paths are successfully found within a 

specified maximum allowable number of conflicts, imax, over all 

source and destination node pairs for all generated cost 

matrices. The probability is defined as the success ratio of 

finding k disjoint paths. 

 

Figures 6 (a), (b) and (c) show the successful ratio that the 

KPI and KPA schemes find k disjoint paths successfully within 

each number of conflicts on the PAN European network, the 

Italian network and the U.S. long-distance network, 

respectively. The results show how many cases each scheme is 

able to find k disjoint paths successfully within assigned imax 

compared to all the cases at imax = 30. KPI is able to find a pair of 

disjoint paths, k = 2, successfully, in the same way as the KPA 

scheme. Regardless of imax, KPI has a higher success ratio than 

KPA in case of finding k = 3 disjoint paths. In k = 3 case, the 

KPI scheme yields success ratios of more than 99% with imax 

=10 for all networks, while the KPA scheme does not reach 99% 

when imax becomes large for the Italian network and U.S. 

long-distance network. Since the average node degree of the 

PAN European network is equal to four but the degree of each 

node is greater than or equal to three, the difference of the 

performance of KPI and KPA for finding k = 3 disjoint paths on 

the PAN European network is small. The successful ratio of the 

KPI and KPA schemes on the COST239 network, which has the 

degree of each node greater than four, is investigated. The 

required number of disjoint paths, k =2, k=3 and k=4 are 

considered on this network topology as shown in Fig.7. The 

successful ratio of the KPI scheme has the same trend as the 

previous three networks. The successful ratio of KPI is the same 

as that of KPA in cases of finding k =2 and k=3 disjoint paths 

but case of k=4, the successful ratio of KPI is higher than that of 

KPA. In the KPA scheme, the conflict path cost defined in Eq. 

(6) is set at too large a value, the conflicting arcs are always 
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Fig. 6. Successful ratio of finding k=2 and k=3 disjoint paths (%) within 

specified maximum allowable number of conflicts, imax on (a) PAN European 

network (b) Italian network and (c) U.S. long-distance network. 
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avoided. On the other hand, as the KPI scheme defines the 

conflict path cost according to Eq. (8), the conflicting arcs are 

appropriately utilized. Thus, the k disjoint paths are successfully 

found faster by KPI scheme when k is close to the value of 

degree of each node on each network. 

The total cost of k disjoint paths, which is defined in Eq. (2), 

is lower with the KPI scheme than with the KPA scheme. 

According to the difference of the successful ratio for finding k 

disjoint paths on the PAN European network, the Italian 

network and the U.S. long-distance network are shown clearly 

with k=3,  the normalized total costs of k=3 disjoint paths on 

these three networks are compared in this evaluation. Figure 8 

shows comparison of the normalized total costs of k=3 disjoint 

paths, normalized by the total path cost of k disjoint paths by 

Bhandari's scheme. We used Bhandari's scheme, which is a 

scheme for finding k disjoint paths in single-cost network, to 

find k disjoint paths using only the arc cost matrix for the first 

path. After k disjoint paths are found by Bhandari's scheme, the 

total path cost in a multi-cost network is calculated by using Eq. 

(2) with three arc costs matrices. The normalized costs for 

Bhandari's, KPA, and KPI are taken as average values over all 

source and destination node pairs for all generated cost 

matrices. The results indicate that the KPI scheme yields lower 

total path cost of than KPA or Bhandari's scheme for the PAN 

European, the Italian and the U.S. long-distance multi-cost 

networks, as shown in Fig. 8. Bhandari's scheme yields the 

highest path cost among the three schemes, as it considers only 

the arc cost matrix for the first path to find k disjoint paths. 

Since, in the KPI scheme, the conflicting path cost is suitably 

estimated and the conflicting arcs are appropriately utilized, it 

returns the lowest total path costs. 

VI. CONCLUSION 

This paper proposed KPI, k-penalty with initial arc costs 

matrix, to find k disjoint paths in a multi-cost network. The KPI 

scheme uses an initial arc cost matrix in estimating the 

conflicting path cost. Since the process of updating cost 

provides given penalty considering with initial arc costs matrix, 

selecting path that overlaps used paths is avoided. According to 

the numerical results, the KPI scheme is able to successfully 

find k disjoint paths faster and with lower total path cost than the 

KPA scheme. The successful ratio of finding k disjoint paths of 

KPI scheme reaches more than 99% at maximum allowable 

number of conflicts is equal to ten for all networks with the 

required number of disjoint paths are close to degree of each 

node on each network. The KPI is an efficient scheme to find 

disjoint paths. The deviation from the KPI scheme is not large, 

but the impact on overall performance is significant.  
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Fig. 8.  Normalized summation of k=3 disjoint paths costs on PAN European 

network, Italian network and U.S. long-distance network using Bhandari’s, 

KPA and KPI schemes. 
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