

 1

Abstract— Magnetic Induction Tomography (MIT) is a new

contactless imaging method for reconstructing the conductivity of

objects. In MIT, one of main challenges is image reconstruction

computation time, and the use of parallel processing is an

effective means of reducing image reconstruction times to

practical levels for monitoring applications. In this paper, we

evaluated the comparative computational performance of three

parallel processing accelerator options for MIT, namely (i)

Graphics Processing Unit (GPU), (ii) Clearspeed AdvanceTM

accelerator card, and (iii) multi-core processor PC, and discuss

their advantages/disadvantages for application in MIT image

reconstruction. The paper concentrates on parallelizing the finite

difference (FD) algorithm, which is the most computationally

demanding part of the forward model, and computation times for

the implementation of this algorithm on each of the accelerators

are given. The results show that the Clearspeed and quad-core

accelerators provided similar performance displaying speed-up of

3.5 - 4 in comparison to a single processor implementation. The

GPU accelerator however provided a substantially greater

maximum speed-up of 70 using the same criteria. Given the high

speed-up rates achieved, their relatively low cost and the

availability of free development software tools, GPUs appear to

be best suitable for acceleration of MIT imaging and monitoring.

Index Terms— Parallel processing, GPU, Clearspeed, multi-

core processors, Magnetic Induction Tomography.

I. INTRODUCTION

AGNETIC Induction Tomography (MIT) is a

contactless and non-invasive method for the imaging of

the passive electrical properties, such as the conductivity

distribution, within objects [1]. A set of excitation and

detection coils is arranged around a sample (Fig. 1). The

excitation coils are used to produce an alternating magnetic

field, which then induces eddy currents within the sample. The

detection coils detect the perturbation of the primary magnetic

Manuscript received January 9, 2011. This study was mainly funded by

The Engineering and Physical Sciences Research Council (EPSRC) grant

EP/f011059/1 under “HPC software development” call.

Y. Maimaitijiang is with Systems and Computer Engineering, Carleton

University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

(E-mail: mamatjan@sce.carleton.ca).

M.A. Roula, S. Watson, G. Meriadec, K. Sobaihi and R.J. William are

with the Faculty of Advanced Technology, University of Glamorgan,

Pontypridd, CF37 1DL, Wales, UK

field produced by those eddy currents and the detected signal

perturbations are then used to estimate the distribution of the

samples electrical properties by solving an inverse image

reconstruction problem. Potential medical and industrial

applications of MIT include the detection and monitoring of

cerebral strokes and the imaging of multi-phase flows such as

process water in oil and gas pipelines [1,2].

The MIT forward model used for image reconstruction

involves the solution of Maxwell’s equations in three

dimensions [3]. Typically, the solution must be iterated to

address the non-linearity of MIT image reconstruction and the

process is consequently very time-consuming. Furthermore, for

medical applications the models employed require a high level

of discretization which also results in long computation times.

For instance, it takes typically over 10 minutes on a single

processor workstation to carry out a single step reconstruction

for an 80*80*80 voxel image in a 16-channel MIT system.

However, for biomedical applications, such as cerebral stroke

detection and monitoring, prompt image reconstruction is

essential [2, 4]. It is therefore of paramount importance to

reduce single-step computation times as much as possible to

allow good quality images to be reconstructed in practical

times. The Finite Difference (FD) algorithm we employ

constitutes the most computationally intensive part of the

forward model and contributes up to 90% of the total image

reconstruction time. Accelerating the FD algorithm is therefore

essential to achieve image reconstruction in practical time

scales and parallel implementation of the FD computation is an

obvious solution for addressing the computational limitation.

Various High Performance Computing (HPC) systems based

on Multiple Instruction Multiple Data (MIMD) architectures

have been applied in a broad range of medical applications

including HPC assisted medical image analysis in surgery, 3D

medical imaging and registration of medical imaging data

[5,6]. In the related technique to MIT, Electrical Impedance

Tomography (EIT), GRID computing has been applied to

reduce image reconstruction times [7]. Accelerator techniques

based on Single Instruction Multiple Data (SIMD) architecture

have also increasingly been used in many imaging applications

to reach a cost-effective solution, especially for those with

medium computation requirements [8,9]. For example, in [9]

3D high resolution imaging for CT was accelerated with

Evaluation of Parallel Accelerators for High

Performance Image Reconstruction for

Magnetic Induction Tomography

Y. Maimaitijiang, M.A. Roula, S. Watson, G. Meriadec, K. Sobaihi and R.J. Williams

M

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Software Engineering (JSSE), January Edition, 2011

 2

computation times reduced from weeks on a normal PC to

hours using a system comprised of several GPUs.

Significant improvements in computation time have

previously been achieved by our group through parallel

implementation of the MIT forward model on an IBM SP

supercomputer [10]. Large clusters and supercomputers

however are expensive, and require very significant in-

vestments as regards space, power and maintenance. Another

problem is queuing since such HPC resources are typically

allocated among many HPC users due to their expense. This

may not be appropriate for many medical and industrial

applications which require dedicated resources and a prompt

response.

Recent developments in parallel accelerator hardware have

made it feasible to build HPC systems with computational

performances comparable to clusters and supercomputers, but

allowing small physical size, low power and low maintenance

implementations. Previously, finite difference algorithms were

demonstrated which took advantage of fast on-chip Graphics

Processing Unit (GPU) shared memory to improve effective

memory bandwidth and thereby increased performance [17,

18].

This paper presents the comparative performance results for

implementation of a MIT FD algorithm on two currently

available accelerator platforms, (i) an NVIDIA GPU and (ii) a

Clearspeed Advance
TM

 accelerator card, and compares these

with an implementation of the algorithm on (iii) an Intel multi-

core PC.

The paper is organized as follows: first the FD algorithm will

be described, details of the parallel implementation for the

three proposed platforms will be given, test methodology will

then be described and results given and discussed. The

ultimate aim of this work is to produce a fast, discrete and cost

effective iterative image reconstruction system for MIT.

II. METHODOLOGY

A. MIT systems

An MIT system is comprised of an array of excitation and

detection coils. The coils are placed on coil formers which

may be rigidly attached to a chassis or metal screen as shown

in Fig. 1.

An image of electrical conductivity within a conductive sample

is reconstructed by combining the measurement data from the

MIT system with a sensitivity matrix S. The MIT forward

problem is described by

 Sσσσσ = b (1)

where σσσσ is the conductivity distribution vector and b is the
measurement vector. Equation 1 is solved for the unknown σσσσ.

The sensitivity matrix describes the sensitivity of the received

signal within each detection coil to variations in the value of

the conductivity within each voxel (a 3d pixel at positions (x,

y, z)). S is computed using an electromagnetic model termed

the forward model. The MIT forward model employed in this

study is a quasi-static FD algorithm described in its single

processor form in [3].

B. MIT Image reconstruction (FD algorithm)

The general procedure for creating the sensitivity matrix is

shown below. Algorithmic details can be found in [10].

1) An analytically derived relation is used to compute the

magnetic vector potential (A) produced by each

excitation and detection coil (Fig. 1).

2) A finite-difference algorithm is then employed to

calculate the electric scalar potential Ф using

Kirchhoff’s current law.

3) The induced eddy currents within the volume are then

computed.

4) The sensitivity for each voxel and excitation/detection

coil combination is then computed using modified

reciprocity theorem [13] using (2).

(2)

where S is the sensitivity matrix (also known as Jacobian),

kjiE ,,
J and

kjiD ,,
J are respectively the current density induced

by the excitation and detection coils within voxel i,j,k, kji ,,
σ is

the conductivity of voxel i,j,k, and L, M, N are the total number

of voxels along each direction.

The MIT forward model employed in this study is a quasi-

static FD algorithm modified from [10]. The FD algorithm

involves discretizing a volume into a finite cubic grid and

approximating the derivatives [11]. The Jacobi method was

used here to calculate the FD. The convergence rate of the

Jacobi method is typically inferior to that obtained using for

instance Successive Over-Relaxation, but has been adopted

here due to the ease of its implementation for large 3D

domains.

Kirchhoff’s current law states that the sum of the six branch

currents in voxel i,j,k results to zero. Scalar potentials Фi,j,k

(Fig. 2) can be computed using the Jacobi method as follows,

Fig. 1: A block diagram of the Glamorgan University MIT system

kji

DE
NML

kji

DE

kji

kjikji

kji

kjikji

,,

,,

,,

,,

,,,,

,,

,,,,
..

σσ

JJJJ
S ∑ +










=

 3

(3)

where Y(i,j,k) is the impedance of the voxel, Φ(i,j,k) is the

scalar potential and e(i,j,k) is the magnetically-induced electric

field strength modeled as a vector voltage generator, Φ
η+1

 is

the newly calculated scalar potential in current iterations, Φ
η
is

the scalar potential from pervious iterations and η is the
iteration step. The Jacobi algorithm runs on the distributed

data iteratively using the old Φ
η
 to update with the new Φ

η+1
 in

the memory after each iteration. The sequential FD algorithm

can be written as a simple loop as shown in Fig. 3, where the

first loop is the number of FD iterations.

for (iteration=0;iteration<nb_iteration; iteration++)

{

 for (k = 1; k < Z_SIZE-1; k++)

 for (j = 1; j < Y_SIZE-1; j++)

 for (i = 1; i < X_SIZE-1; i++)

 {

 Run (Eq. 3);

 }

 }

Fig. 3: Serial FD algorithm in C language.

C. Hardware specifications

1) Multi-core PC

Two multi-core PC’s were employed utilizing a dual Xeon

processor operating at 2.80 GHz with 3GB memory, and a

quad-core Q9300 processor operating at 2.49GHz (6MB of

L2Cache, S775 1333MHz) with 3GB memory.

2) GPU and CUDA

The GPU employed in this study was an Nvidia GeForce

8800 GTX Graphics card which was installed in a Dual Xeon

PC. This card has 768 MB of onboard memory and 128 stream

processors operating at 575 MHz clock speed and a memory

bandwidth of up to 86.4 GB/s. More detailed specification of

the GPU architecture can be found from [12]. For this study,

the version 2.01 of NVIDA® CUDA
TM

 [12] was used.

3) Clearspeed

The Clearspeed Advance board consists of two CSX600

processors. As shown in Fig. 4, the CSX600 consists of a

mono execution unit (control unit), a poly execution unit with

96 processing elements (PE) and I/O units [13]. This

architecture is based on Clearspeed’s multi-threaded array

processor (MTAP) core which is of Single Instruction Multiple

Data (SIMD) type. The accelerator includes 1 GB of DRAM

which mainly serves as a buffer for transferring data to and

from a host PC. In CSX600, each PE has a very limited local

memory of only 6 KB and a limited bandwidth of 3.2 Gb/s.

Fig. 4: An overview of the CSX600 processor architecture.

D. Parallel FD implementation

1) Parallel implementation of FD algorithm on Multi-core PC

OpenMP is a set of compiler directives that are used to instruct

the compiler to produce programs that run in parallel on the

shared memory processors of the individual nodes. Shared

memory parallelization is achieved by inserting OpenMP

directives which splits the Z loop range into parallel threads,

allocated to one core each (Fig. 5).

The C++ code was compiled with a C++ compiler in

Microsoft Visual Studio 2008 to run on the Multi-core PC.

The number of shared processors was fixed (1 to N) before the

test. Parallelization of shared memory systems is easier than

for distributed machines due to the globally addressable space

that multiple processors can access and share the same data.

However, shared memory parallelization with OpenMP is a

fork-join model of computation, which implies a

synchronization point at each join operation. This leads to

limited scalability of the system due to the heavy

synchronization in the fork-join model [19]. A hybrid

parallelization approach was therefore implemented by

Fig. 2: Diagram showing electric scalar potential at each of, and the
admittances Y and electromotive forces between, the centre of the cubic
voxel element (i,j,k) and the centers of the 6 neighboring voxels.

)(

)()()(

)(

)()()(

)1,,()1,,(),1,(),1,(),,1(),,1(

)1,,()1,,()1,,()1,,()1,,()1,,(),1,(),1,(),1,(

)1,,()1,,(),1,(),1,(),,1(),,1(

),1,(),1,(),1,(),,1(),,1(),,1(),,1(),,1(),,1(1

),,(

+−+−+−

++−−−−+++

+−+−+−

−−−+++−−−+

+++++

−+++−

+
+++++

++−++
=

kjikjikjikjikjikji

kjikjikjikjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikjikjikjikji

kji

YYYYYY

eYeYeY

YYYYYY

eYeYeY

ηηη

ηηη

η

φφφ

φφφ
φ

 4

combining Message Passing Interface (MPI) and OpenMP

allowed using a huge number of processors, whilst improving

the performance of FD computation on an IBM SP

supercomputer [10].

for (iteration=0;iteration<nb_iteration; iteration++)

{

 #pragma omp parallel num_threads(nthreads) private(i, j)

 {

 #pragma omp for

 for (k = 1; k < Z_SIZE-1; k++)

 for (j = 1; j < Y_SIZE-1; j++)

 for (i = 1; i < X_SIZE-1; i++)

 {

 Run (Eq. 3);

 }

 }

}

Fig. 5: Pseudo code of FD implementation in multicore (#pragma stands for
OpenMP directives).

2) Parallel implementation of FD algorithm on GPU

The GPU programming environment employed was

Compute Unified Device Architecture (CUDA), released by

NVIDIA [12]. CUDA is both a hardware and software

architecture for issuing and managing computations on the

GPU as a data-parallel computing device. CUDA provides an

extension to the C programming language, called kernels, for

source code development.

Copy (Admitance, Elecfield, Potetial)->GPU global memory

for (iteration=0;iteration<nb_iteration; iteration++)

{

 For each thread (Tx, Ty, Tz) and Block (Blckx, Blcky)

 Run

 {

 Potential = 0

 Bx = Blckx

 By = Blcky *Modulo (NB_BLOCKS_Z)

 Bz = Blcky / NB_BLOCKS_Z

 i = Tx + Bx * BLOCK_SIZE_X

 j = Ty + By * BLOCK_SIZE_Y

 k = Tz + Bz * BLOCK_SIZE_Z

 Run (Eq. 3);

 }

 Syncthreads

}

Copy (Potential)-> Host

Fig. 6: Pseudo code of FD implementation in GPU.

At the computation level, data are represented as a grid

which is split according to 2D indexed blocks, each allocated

to one multiprocessor. Each block is then divided into 3D or

2D parallel threads (Fig. 7).

The physical domain containing electric field vectors,

admittances and scalar potentials for each voxel is divided into

indexed blocks and allocated to each multi-processor within

the GPU. The scalar potential value for each voxel is then

computed on a separate thread. The result is gathered as a 2D

grid and saved into the global memory. Fig. 6 shows the

pseudo-code of the parallelization. CUDA handles most of the

hardware details with the exception of the data mapping

against block and thread indexes.

The result of our calculation is a 2D grid saved into the global

memory. This grid is decomposed into 3D blocks of 8 voxels

per dimension (so equal to the maximum size of 512 allowed),

which are computed by each multiprocessor. Each

multiprocessor run in parallel and whenever a new

multiprocessor finish the process of the data, a new block of

data is automatically computed by it.

3) Parallel implementation of FD algorithm on Clearspeed

Since the Clearspeed Advance board provides two CSX600

processors, a two-level parallelization approach was

implemented based on MIT coils and physical domain to fully

utilize the hardware resources and improve the performance.

The first level of parallelization was achieved by dedicating

one CSX600 processor to the excitation coils and the other to

the detection coils. Excitation and detection coils are well

parallelizable since the forward model is a “nearly

embarrassingly parallel” problem when seen from the coil

computation loops.

The second level of parallelization is achieved by splitting

the domain between the 96 PEs on each CSX600 processor

using the domain split approach described below. The FD

algorithm was parallelized using Cn, a data-parallel extension

to the C language for programming the CSX architecture.

A distributed parallelization with domain decomposition is

a suitable approach on the Clearspeed accelerator. Here a

volume is sliced into sub-domains and each PE computes the

different sub-domains in parallel. In the domain decomposition

approach, 3D matrices (Y, e, Φ) are decomposed into small

sub-domains and distributed to all PEs to perform the FD

computation. However, the PEs’ have a limited autonomy

without any branching unit. The mono execution unit is

intended to control the program execution and to pass data to

the PEs. The 96 PEs perform arithmetic operations in a SIMD

manner. The FD algorithm based on the 3D domain

decomposition requires the communication between

neighboring nodes after each iteration to update the ghost

values of the old Φ
η
 with the newly calculated Φ

η+1
, but only

Fig. 7: Block-thread structure of GPU computational representation
[20].

 5

via the mono memory.

Copy (Admitance, Elecfield, Potetial)->GPU global memory

 //-- FD Iteration Loop --//

for (iteration=0;iteration<nb_iteration; iteration++)

{

 //--Copy and compute a subdomain in a round–robin manner--//

 PES= PE_NUM;

 memsetp(TMP_PE , 0, SIZE*sizeof(double));

 for (m = 0; m < USED_PES; m+= MAX_PES, PES+=MAX_PES)

 {

 if (PE_NUM < USED_PES-m)

 {

 //Copy data from a subdomain in card memory to PE memory

 for (j = 0; j < YPE_SIZE; j++)

 for (i = 0; i < XPE_SIZE; i++)

 {

ADMITANCE -> ADMITANCE_PE

ELECFIELD -> ELECFIELD_PE

PHI -> PHI_PE

ID -> ID_PE

 }

 //--Perform FD computation ---//

 for (k = 1; k < ZPE_SIZE-1; k++)

 for (j = 1; j < YPE_SIZE-1; j++)

 for (i = 1; i < XPE_SIZE-1; i++)

 Run (Eq. 3);

 //---Copy back the results (TMP_PE) to card memory---//

 for (j = 1; j < YPE_SIZE-1; j++)

 for (i = 1; i < XPE_SIZE-1; i++)

 TMP_PE -> PHI;

 }

 }

}

Copy (Potential) -> Host

Fig. 9: Parallel FD algorithm in Cn for Clearspeed.

CSAPI function calls were added to a C++ code on a host

PC and the following steps were performed for the FD

algorithm:

1. Moving the necessary data ((Y, e, Φ
η
), and indices of a

volume as shown in (2) from the host memory to the

mono memory.

2. Moving the decomposed sub-domains from the mono to

poly memory using the function memcpym2p.

3. Computing the FD algorithm in the poly memory.

4. Moving the newly calculated Φ
η+1

 from the poly to mono

memory to update old Φ
η
 using the Clearspeed function

memcpyp2m.

5. Repeating steps (ii), (iii) and (iv) until the convergence or

maximum iterations are met the predefined values.

6. Moving Φ
η+1

 from the mono memory to the host memory.

Fig. 8 shows an object consisting of 8×8 voxels which

includes predefined boundary voxels. The total number of

unknowns is 7×7=49. Sub-domains of size 3×3 are transferred

to the local memory of different PEs for parallel processing. In

addition, the FD calculation requires the neighboring voxels to

be transferred to the respective PEs, which results in allocating

a sub-domain of 5×5 voxels as shown in Fig. 8.

The dimension of the sub-domains which may be stored and

processed in the local PE memory is restricted by the size of

this memory which is only 6KB for the CSX600 processor.

The above approach can be extended to the 3D case in a

similar way. The corresponding sub-domains of the data (such

as (Y, e, Φ
η
)) have to be loaded into the PEs in a round-robin

manner in order to calculate the new Φ
η+1

 and the whole

process has to be repeated for each iteration. The pseudo-code

of the parallelization is shown in Fig. 9.

E. Simulation set-up and measurements

 For all simulations a cylindrical conductive volume was

discretized into cubic voxels varying in dimensions from

24*24*24 to 184*184*184 and the total computation times

were measured for each case.

The speed-up SPN for each accelerator method and domain

size was defined as

N

s

N
T

T
SP = (3)

where TS is the computation time for the algorithm on a

single core CPU and TN is the computation time for the

algorithm on the specified device.

For the GPU, computation times were measured for FD

computation within the GPU and data transfer time to and

from host using the cutCreateTimer function in CUDA. For

the multi-core workstation, computation time was measured

using the omp_get_wtime() directives. The GetTickCount

function was used for determining computation time for the

Clearspeed measurements.

III. RESULTS

In this paper, we aimed to evaluate the performance of three

parallel processing accelerators to select a suitable accelerator

option for imaging and monitoring applications in MIT.

Table 1 shows the timing results for the FD algorithm on Quad

Core PC (1 core), Dual Xeon (2 core), Quad Core PC (4

cores), Clearspeed and GPU with varying number of voxels.

In all cases the FD computation time increased with

increasing domain sizes. The increase in computation time was

not linear with the total number of voxels however since the

number of FD iterations to achieve the specified level of

Fig. 8: 2D Illustration of pixel processing distribution amongst PEs

 6

convergence also increased with domain size.

TABLE 1 FD computation times for varying number of voxels. (Time in

seconds).

No.

voxels

Quad Core

(1 CORE)

Dual

Xeon

(2 CORE)

Quad Core

(4 CORE)
Clearspeed GPU

243 0.06 0.02 0.015 0.04 0.01

403 0.8 0.4 0.3 0.46 0.04

643 9.6 6.9 3.6 3.3 0.23

803 32 23.5 12.1 9.3 0,61

1123 197 117 60 49 2.95

1203 331 195 100 85 4.97

1443 629 378 194 158 9.2

1603 919 572 286 227 12.9

1843 1749 1088 539 480 24.9

Table 2 shows the speedup factor obtained for 4 Core vs. 1

Core, ClearSpeed vs. 1 Core, GPU vs. Dual Xeon and GPU vs.

4 Core respectively for increasing number of voxels.

TABLE 2. Speedup factor for FD computation for varying number of voxels.

Speed up Speed up Speed up Speed up
No.

voxels (4 Core vs.

1Core)

(ClearSpeed vs.

1Core)

(GPU vs. Dual

Xeon)

(GPU vs. 4

Core)

243 4.2 1.7 4 1.5

403 2.7 1.9 10 7.8

643 2.6 2.9 30 16

803 2.6 3.4 38 20

1123 3.3 4.0 40 21

1203 3.3 3.9 39 20

1443 3.2 4.0 41 21

1603 3.2 4.0 44 22

1843 3.3 3.7 44 22

The speedup factors obtained for the 2 core and 4 core

implementations ranged from 1.6 – 3 and 3.2 – 4 respectively,

close to the theoretical maximum values. Optimal speed-up

was not achieved with this shared memory approach mainly

due a heavy synchronization among processors. The speedup

factors obtained for the Clearspeed were similar to the 2 and 4

core results ranging from 1.5 – 3.6 in comparison to a single

processor implementation of the most time consuming FD

algorithm.

The speedup obtained using the GPU was significantly

higher than the other implementations ranging from 6 to 70

when compared to single core, from to 4 to 44 when compared

to dual core and from 1.5 to 22 when compared to 4 core

implementation. The speedup generally increased with

increasing domain size.

IV. DISCUSSION AND CONCLUSION

In this paper, MIT image reconstruction was implemented on

three PC-based parallel processing platforms: GPU,

Clearspeed and PC with multicores. We have attempted to

select current, comparable and widely available models for this

study. The results described in this paper would invariably

change depending on the specific accelerator hardware used.

However, we perceive this is unlikely to challenge the main

conclusion given the significantly superior results obtained

with the GPU.

For the multi-core PC implementations, efficiency dropped

as the number of cores increased and optimal speedup was not

achieved due to heavy synchronization among cores for the FD

computation.

For the Clearspeed accelerator, the speed-up factor

achieved was small. The performance profile on this card

showed that the limitation on Clearspeed implementation was

mainly the large amount of data transfers between mono and

poly memories and the limited PE memory size (6KB), which

resulted in high communication overheads. The

communication time from the mono to poly memory took more

than 96 % of the total time. The results achieved appear to

agree with some previous published results [14, 15, 16] in that

the Clearspeed Advance
TM

 accelerator board appears to be

most suited, or perhaps only suitable, for operations primarily

involving matrix-matrix multiplications of large dense matrices

of dimensions m*n where both m and n are large. Although

multilevel parallel implementations, i.e. splitting the problem

by both coil and physical domain, can in principle achieve

higher speed up values, this requires the use of multiple

Clearspeed Advance
TM

 boards, which brings a very significant

increase in cost.

The GPU provided, by far, the highest speedup. Its

performance advantage over the Clearspeed is thought to be

related to (i) the larger number of threads available, 12,288

versus 192 (PEs) between the GPU and Clearspeed

respectively and (ii) the larger memory bandwidth available to

the GPU with a significant bottleneck between the poly and

mono memories existing in the Clearspeed (see Fig. 4).

The results showed that higher speedup was achieved for

larger domain sizes, with larger problems resulting in better

utilization ratios, and this is likely due to a decrease in idle

time. For large scale problems, such as brain imaging with

MIT for the detection of cerebral stroke, multi-level

parallelization utilizing multiple GPU’s should provide

significant further reductions in image reconstruction times.

 Based on the results obtained in this study, at present both

Clearspeed accelerator and current dual and quad-core

workstations appears to offer limited performance gains for the

parallel implementations of the FD algorithm in comparison to

the GPU implementation. The GPU implementation was also

very cost-effective since GPU’s are produced for mass

consumer markets and the cost of suitable devices is therefore

relatively modest (£100 - £500, 2010).

Given the high speed up rates achieved, the relatively low

cost of GPUs, the availability of free development software

tools, and the relative ease of development, GPU

implementations appear to be very well suitable for

acceleration of image reconstruction in MIT, and potentially in

EIT and other tomographic methods.

 7

ACKNOWLEDGMENT

This study was mainly funded by The Engineering and

Physical Sciences Research Council (EPSRC) grant

EP/f011059/1 under “HPC software development” call.

REFERENCES

[1] Griffiths H (2001) Magnetic induction tomography. Measurement

Science & Technology, 12: 1126-1131

[2] Zolgharni, M., P. Ledger, D.W. Armitage, H. Griffiths, and D.S. Holder.

"Detection of hemorrhagic cerebral stroke by magnetic induction

tomography: FE and TLM numerical modeling". 2008 Electrical

Impedance Tomography conference. 2008. Dartmouth, USA

[3] A. Morris, H. Griffiths, and W. Gough, "A numerical model for

magnetic induction tomographic measurements in biological tissues,"

Physiological Measurement, vol. 22, pp. 113-119, 2001.

[4] M. Soleimani, "Computational Aspects of Low Frequency Electrical and

Electromagnetic Tomography: A Review Study," Numerical Analysis

and Modeling, vol. 5, 2008.

[5] Y. Dewaraja, M. Ljungberg, A. Majumdar, A. Bose, and K. F. Koral, "A

Parallel Monte Carlo Code for Planar and SPECT Imaging:

Implementation, Verification and Applications in I-131 SPECT,"

Journal of Computer Methods and Programs in Biomedicine, vol. 67,

pp. 115-124, 2002.

[6] C. d. Alfonso, I. Blanquer, and V. Hernández, "HPC 3D Medical

Imaging on Distributed Systems," Universidad Politécnica de Valencia

(UPV), High Performance and Computing Group (GRyCAP) Dept. de

Sistemas Informáticos y Computación (DSIC), Spain, 2003.

[7] J. Fritschy, L. Horesh, D.S. Holder, and R. H. Bayford, "Using the

GRID to improve the computation speed of Electrical Impedance

Tomography (EIT) reconstruction algorithms," Institute of Physics, vol.

26, pp. 209-262, 2005.

[8] K. Fatahalian, J. Sugerman, and P. Hanrahan, "Understanding the

Effciency of GPU Algorithms for Matrix-Matrix Multiplication,"

Graphics Hardware, 2004.

[9] "Belgian researchers develop desktop supercomputer," The ASTRA

research group, the University of Antwerp.

[10] Y. Maimaitijiang, M.A. Roula, S. Watson, R. Patz, R.J. Williams, H.

Griffiths “Parallelization Methods for Implementation of Magnetic

Induction Tomography Forward Models in Symmetric Multiprocessor

Systems,” Journal of Parallel Computing 34 pp. 497-507, 2008.

[11] Y. Maimaitijiang, S. Watson, M.A. Roula, M. Zolgharni, H. Griffiths,

R.J. Williams, “An Iterative Absolute Image Reconstruction Algorithm

for Magnetic Induction Tomography”, Proceedings of 2008 Electrical

Impedance Tomography Conference, Dartmouth, USA, June 2008.

[12] NVIDIA CUDA Homepage. Available at:

http://developer.nvidia.com/object/cuda.html

[13] Clearspeed: Introduction to Clearspeed Acceleration. Clearspeed

Technology Plc, 2008.

[14] V. Heuveline and J. P. Weib, “A Parallel Implementation of a Lattice

Boltzmann Method on the Clearspeed Advance Accelerator Board,”

University of Karlsruhe, 2003.

[15] Y. Yamamoto, T. Fukata, T. Uneyama, M. Takata, K. Kimura, M.

Iwasaki, and Y. Nakamura, “Accelerating the Singular Value

Decomposition of Rectangular Matrices with the CSX600 and the

Integrable SVD,” Parallel Computing Technologies, 4671, 340-345,

2007.

[16] J. Bovay, B. Henderson, H. Lin, and K. Wadleigh, "Accelerators For

High Performance Computing Investigation," High Performance

Computing Division, Hewlett-Packard Company, 2007.

[17] P. Micikevicius. 2009. "3d Finite Difference Computation on GPUs

Using CUDA," GPGPU- 2: Proceedings of 2nd Workshop on General

Purpose Processing on Graphics Processing Units (New York, NY,

USA), ACM, 2009, pp. 79-84.

[18] G. Meriadec, Y. Maimaitijiang, M. A. Roula, S. Watson, R. J. Williams

“Acceleration of Finite Difference Algorithm on GPU for Application in

Magnetic Induction Tomography,” EIT2009, Manchester, UK, 2009.

[19] G. Jost, H. Jin, D. a. Mey, and F. Hatay, "Comparing the OpenMP, MPI,

and Hybrid Programming Paradigms on an SMP Cluster," NAS

Technical Report NAS-03-019, 2003.

[20] CUDA Programming Guide, 2.1, NVIDIA.

http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/N

VIDIA_CUDA_Programming_Guide_2.1.pdf

[21] R. Amorim, G. Haase, M. Liebmann, and R. W. dos Santos. Comparing

CUDA and OpenGL implementations for a Jacobi iteration. Technical

Report SFB-Report No. 2008-025, Universität Graz, Graz, Austria,

December 2008.

