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Abstract— Magnetic Induction Tomography (MIT) is a new 

contactless imaging method for reconstructing the conductivity of 

objects. In MIT, one of main challenges is image reconstruction 

computation time, and the use of parallel processing is an 

effective means of reducing image reconstruction times to 

practical levels for monitoring applications. In this paper, we 

evaluated the comparative computational performance of three 

parallel processing accelerator options for MIT, namely (i) 

Graphics Processing Unit (GPU), (ii) Clearspeed AdvanceTM 

accelerator card, and (iii) multi-core processor PC, and discuss 

their advantages/disadvantages for application in MIT image 

reconstruction. The paper concentrates on parallelizing the finite 

difference (FD) algorithm, which is the most computationally 

demanding part of the forward model, and computation times for 

the implementation of this algorithm on each of the accelerators 

are given. The results show that the Clearspeed and quad-core 

accelerators provided similar performance displaying speed-up of 

3.5 - 4 in comparison to a single processor implementation. The 

GPU accelerator however provided a substantially greater 

maximum speed-up of 70 using the same criteria. Given the high 

speed-up rates achieved, their relatively low cost and the 

availability of free development software tools, GPUs appear to 

be best suitable for acceleration of MIT imaging and monitoring. 

 
Index Terms— Parallel processing, GPU, Clearspeed, multi-

core processors, Magnetic Induction Tomography. 

 

I. INTRODUCTION 

AGNETIC Induction Tomography (MIT) is a 

contactless and non-invasive method for the imaging of 

the passive electrical properties, such as the conductivity 

distribution, within objects [1]. A set of excitation and 

detection coils is arranged around a sample (Fig. 1). The 

excitation coils are used to produce an alternating magnetic 

field, which then induces eddy currents within the sample. The 

detection coils detect the perturbation of the primary magnetic 
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field produced by those eddy currents and the detected signal 

perturbations are then used to estimate the distribution of the 

samples electrical properties by solving an inverse image 

reconstruction problem. Potential medical and industrial 

applications of MIT include the detection and monitoring of 

cerebral strokes and the imaging of multi-phase flows such as 

process water in oil and gas pipelines [1,2]. 

The MIT forward model used for image reconstruction 

involves the solution of Maxwell’s equations in three 

dimensions [3]. Typically, the solution must be iterated to 

address the non-linearity of MIT image reconstruction and the 

process is consequently very time-consuming. Furthermore, for 

medical applications the models employed require a high level 

of discretization which also results in long computation times. 

For instance, it takes typically over 10 minutes on a single 

processor workstation to carry out a single step reconstruction 

for an 80*80*80 voxel image in a 16-channel MIT system. 

However, for biomedical applications, such as cerebral stroke 

detection and monitoring, prompt image reconstruction is 

essential [2, 4]. It is therefore of paramount importance to 

reduce single-step computation times as much as possible to 

allow good quality images to be reconstructed in practical 

times. The Finite Difference (FD) algorithm we employ 

constitutes the most computationally intensive part of the 

forward model and contributes up to 90% of the total image 

reconstruction time. Accelerating the FD algorithm is therefore 

essential to achieve image reconstruction in practical time 

scales and parallel implementation of the FD computation is an 

obvious solution for addressing the computational limitation. 

Various High Performance Computing (HPC) systems based 

on Multiple Instruction Multiple Data (MIMD) architectures 

have been applied in a broad range of medical applications 

including HPC assisted medical image analysis in surgery, 3D 

medical imaging and registration of medical imaging data 

[5,6]. In the related technique to MIT, Electrical Impedance 

Tomography (EIT), GRID computing has been applied to 

reduce image reconstruction times [7]. Accelerator techniques 

based on Single Instruction Multiple Data (SIMD) architecture 

have also increasingly been used in many imaging applications 

to reach a cost-effective solution, especially for those with 

medium computation requirements [8,9]. For example, in [9] 

3D high resolution imaging for CT was accelerated with 
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computation times reduced from weeks on a normal PC to 

hours using a system comprised of several GPUs.  

Significant improvements in computation time have 

previously been achieved by our group through parallel 

implementation of the MIT forward model on an IBM SP 

supercomputer [10]. Large clusters and supercomputers 

however are expensive, and require very significant in-

vestments as regards space, power and maintenance. Another 

problem is queuing since such HPC resources are typically 

allocated among many HPC users due to their expense. This 

may not be appropriate for many medical and industrial 

applications which require dedicated resources and a prompt 

response.  

Recent developments in parallel accelerator hardware have 

made it feasible to build HPC systems with computational 

performances comparable to clusters and supercomputers, but 

allowing small physical size, low power and low maintenance 

implementations. Previously, finite difference algorithms were 

demonstrated which took advantage of fast on-chip Graphics 

Processing Unit (GPU) shared memory to improve effective 

memory bandwidth and thereby increased performance [17, 

18]. 

This paper presents the comparative performance results for 

implementation of a MIT FD algorithm on two currently 

available accelerator platforms, (i) an NVIDIA GPU and (ii) a 

Clearspeed Advance
TM

 accelerator card, and compares these 

with an implementation of the algorithm on (iii) an Intel multi-

core PC.  

The paper is organized as follows: first the FD algorithm will 

be described, details of the parallel implementation for the 

three proposed platforms will be given, test methodology will 

then be described and results given and discussed. The 

ultimate aim of this work is to produce a fast, discrete and cost 

effective iterative image reconstruction system for MIT.  

 

II. METHODOLOGY 

A. MIT systems 

An MIT system is comprised of an array of excitation and 

detection coils. The coils are placed on coil formers which 

may be rigidly attached to a chassis or metal screen as shown 

in Fig. 1.  

An image of electrical conductivity within a conductive sample 

is reconstructed by combining the measurement data from the 

MIT system with a sensitivity matrix S. The MIT forward 

problem is described by 

 

                                        Sσσσσ = b (1) 

 

where σσσσ is the conductivity distribution vector and b is the 
measurement vector. Equation 1 is solved for the unknown σσσσ. 
 

 

The sensitivity matrix describes the sensitivity of the received 

signal within each detection coil to variations in the value of 

the conductivity within each voxel (a 3d pixel at positions (x, 

y, z)). S is computed using an electromagnetic model termed 

the forward model. The MIT forward model employed in this 

study is a quasi-static FD algorithm described in its single 

processor form in [3]. 

B. MIT Image reconstruction (FD algorithm) 

The general procedure for creating the sensitivity matrix is 

shown below. Algorithmic details can be found in [10]. 

1) An analytically derived relation is used to compute the 

magnetic vector potential (A) produced by each 

excitation and detection coil (Fig. 1).  

2) A finite-difference algorithm is then employed to 

calculate the electric scalar potential Ф using 

Kirchhoff’s current law.  

3) The induced eddy currents within the volume are then 

computed. 

4) The sensitivity for each voxel and excitation/detection 

coil combination is then computed using modified 

reciprocity theorem [13] using (2). 

 

 

 

(2) 

   

 

 

where S  is the sensitivity matrix (also known as Jacobian), 

kjiE ,,
J and 

kjiD ,,
J  are respectively the current density induced 

by the excitation and detection coils within voxel i,j,k, kji ,,
σ  is 

the conductivity of voxel i,j,k, and L, M, N are the total number 

of voxels along each direction. 

The MIT forward model employed in this study is a quasi-

static FD algorithm modified from [10]. The FD algorithm 

involves discretizing a volume into a finite cubic grid and 

approximating the derivatives [11]. The Jacobi method was 

used here to calculate the FD. The convergence rate of the 

Jacobi method is typically inferior to that obtained using for 

instance Successive Over-Relaxation, but has been adopted 

here due to the ease of its implementation for large 3D 

domains.  

Kirchhoff’s current law states that the sum of the six branch 

currents in voxel i,j,k results to zero. Scalar potentials Фi,j,k 

(Fig. 2) can be computed using the Jacobi method as follows, 

 

Fig. 1: A block diagram of the Glamorgan University MIT system 
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(3) 

 

where Y(i,j,k) is the impedance of the voxel, Φ(i,j,k) is the 

scalar potential and e(i,j,k) is the magnetically-induced electric 

field strength modeled as a vector voltage generator, Φ
η+1

 is 

the newly calculated scalar potential in current iterations, Φ
η 
is 

the scalar potential from pervious iterations and η is the 
iteration step. The Jacobi algorithm runs on the distributed 

data iteratively using the old Φ
η
 to update with the new Φ

η+1
 in 

the memory after each iteration. The sequential FD algorithm 

can be written as a simple loop as shown in Fig. 3, where the 

first loop is the number of FD iterations. 

 
for (iteration=0;iteration<nb_iteration; iteration++) 

{ 

 for (k = 1; k < Z_SIZE-1; k++) 

 for (j = 1; j < Y_SIZE-1; j++) 

 for (i = 1; i < X_SIZE-1; i++) 

         { 

              Run  (Eq. 3); 

         } 

 }  

Fig. 3: Serial FD algorithm in C language. 

 

C. Hardware specifications 

1) Multi-core PC 

Two multi-core PC’s were employed utilizing a dual Xeon 

processor operating at 2.80 GHz with 3GB memory, and a 

quad-core Q9300 processor operating at 2.49GHz (6MB of 

L2Cache, S775 1333MHz) with 3GB memory.  

 

2) GPU and CUDA 

The GPU employed in this study was an Nvidia GeForce 

8800 GTX Graphics card which was installed in a Dual Xeon 

PC. This card has 768 MB of onboard memory and 128 stream 

processors operating at 575 MHz clock speed and a memory 

bandwidth of up to 86.4 GB/s. More detailed specification of 

the GPU architecture can be found from [12]. For this study, 

the version 2.01 of NVIDA® CUDA
TM

 [12] was used. 

 

3) Clearspeed 

The Clearspeed Advance board consists of two CSX600 

processors. As shown in Fig. 4, the CSX600 consists of a 

mono execution unit (control unit), a poly execution unit with 

96 processing elements (PE) and I/O units [13]. This 

architecture is based on Clearspeed’s multi-threaded array 

processor (MTAP) core which is of Single Instruction Multiple 

Data (SIMD) type.  The accelerator includes 1 GB of DRAM 

which mainly serves as a buffer for transferring data to and 

from a host PC. In CSX600, each PE has a very limited local 

memory of only 6 KB and a limited bandwidth of 3.2 Gb/s.  

 

 

Fig. 4: An overview of the CSX600 processor architecture. 

 

D. Parallel FD implementation 

1) Parallel implementation of FD algorithm on Multi-core PC 

OpenMP is a set of compiler directives that are used to instruct 

the compiler to produce programs that run in parallel on the 

shared memory processors of the individual nodes. Shared 

memory parallelization is achieved by inserting OpenMP 

directives which splits the Z loop range  into parallel threads, 

allocated to one core each (Fig. 5).  

 

The C++ code was compiled with a C++ compiler in 

Microsoft Visual Studio 2008 to run on the Multi-core PC. 

The number of shared processors was fixed (1 to N) before the 

test. Parallelization of shared memory systems is easier than 

for distributed machines due to the globally addressable space 

that multiple processors can access and share the same data. 

However, shared memory parallelization with OpenMP is a 

fork-join model of computation, which implies a 

synchronization point at each join operation. This leads to 

limited scalability of the system due to the heavy 

synchronization in the fork-join model [19]. A hybrid 

parallelization approach was therefore implemented by 

 

 

Fig. 2: Diagram showing electric scalar potential at each of, and the 
admittances Y and electromotive forces between, the centre of the cubic 
voxel element (i,j,k) and the centers of the 6 neighboring voxels. 
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combining Message Passing Interface (MPI) and OpenMP 

allowed using a huge number of processors, whilst improving 

the performance of FD computation on an IBM SP 

supercomputer [10]. 

 
for (iteration=0;iteration<nb_iteration; iteration++) 

{ 

       #pragma omp parallel num_threads(nthreads) private(i,  j)    

       { 

          #pragma omp for  

          for (k = 1; k < Z_SIZE-1; k++) 

          for (j = 1; j < Y_SIZE-1; j++) 

           for (i = 1; i < X_SIZE-1; i++) 

             { 

              Run  (Eq. 3); 

              } 

       } 

} 

Fig. 5: Pseudo code of FD implementation in multicore (#pragma stands for 
OpenMP directives). 

2) Parallel implementation of FD algorithm on GPU 

The GPU programming environment employed was 

Compute Unified Device Architecture (CUDA), released by 

NVIDIA [12]. CUDA is both a hardware and software 

architecture for issuing and managing computations on the 

GPU as a data-parallel computing device. CUDA provides an 

extension to the C programming language, called kernels, for 

source code development. 

 
Copy (Admitance, Elecfield, Potetial)->GPU global memory 

for (iteration=0;iteration<nb_iteration; iteration++) 

{ 

 For each thread (Tx, Ty, Tz) and Block (Blckx, Blcky)  

  Run  

  { 

  Potential  = 0 

      Bx = Blckx 

      By = Blcky *Modulo (NB_BLOCKS_Z) 

      Bz = Blcky / NB_BLOCKS_Z 

  

     i = Tx + Bx * BLOCK_SIZE_X 

      j = Ty + By * BLOCK_SIZE_Y 

      k = Tz + Bz * BLOCK_SIZE_Z 

                Run  (Eq. 3); 

                   } 

 Syncthreads 

} 

Copy (Potential)-> Host 
 

Fig. 6: Pseudo code of FD implementation in GPU. 

 

At the computation level, data are represented as a grid 

which is split according to 2D indexed blocks, each allocated 

to one multiprocessor. Each block is then divided into 3D or 

2D parallel threads (Fig. 7).  

The physical domain containing electric field vectors, 

admittances and scalar potentials for each voxel is divided into 

indexed blocks and allocated to each multi-processor within 

the GPU. The scalar potential value for each voxel is then 

computed on a separate thread. The result is gathered as a 2D 

grid and saved into the global memory. Fig. 6 shows the 

pseudo-code of the parallelization. CUDA handles most of the 

hardware details with the exception of the data mapping 

against block and thread indexes. 

The result of our calculation is a 2D grid saved into the global 

memory. This grid is decomposed into 3D blocks of 8 voxels 

per dimension (so equal to the maximum size of 512 allowed), 

which are computed by each multiprocessor. Each 

multiprocessor run in parallel and whenever a new 

multiprocessor finish the process of the data, a new block of 

data is automatically computed by it. 
 
3) Parallel implementation of FD algorithm on Clearspeed 

Since the Clearspeed Advance board provides two CSX600 

processors, a two-level parallelization approach was 

implemented based on MIT coils and physical domain to fully 

utilize the hardware resources and improve the performance. 

The first level of parallelization was achieved by dedicating 

one CSX600 processor to the excitation coils and the other to 

the detection coils. Excitation and detection coils are well 

parallelizable since the forward model is a “nearly 

embarrassingly parallel” problem when seen from the coil 

computation loops. 

The second level of parallelization is achieved by splitting 

the domain between the 96 PEs on each CSX600 processor 

using the domain split approach described below. The FD 

algorithm was parallelized using Cn, a data-parallel extension 

to the C language for programming the CSX architecture.  

A distributed parallelization with domain decomposition is 

a suitable approach on the Clearspeed accelerator. Here a 

volume is sliced into sub-domains and each PE computes the 

different sub-domains in parallel. In the domain decomposition 

approach, 3D matrices (Y, e, Φ) are decomposed into small 

sub-domains and distributed to all PEs to perform the FD 

computation. However, the PEs’ have a limited autonomy 

without any branching unit. The mono execution unit is 

intended to control the program execution and to pass data to 

the PEs. The 96 PEs perform arithmetic operations in a SIMD 

manner. The FD algorithm based on the 3D domain 

decomposition requires the communication between 

neighboring nodes after each iteration to update the ghost 

values of the old Φ
η
 with the newly calculated Φ

η+1
, but only 

 

Fig. 7: Block-thread structure of GPU computational representation 
[20]. 
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via the mono memory.  

 
Copy (Admitance, Elecfield, Potetial)->GPU global memory 

 

    //-- FD Iteration Loop --//  

for (iteration=0;iteration<nb_iteration; iteration++) 

{ 

   //--Copy and compute a subdomain in a round–robin manner--//     

   PES= PE_NUM; 

     memsetp(TMP_PE , 0, SIZE*sizeof(double)); 

     for (m = 0; m < USED_PES; m+= MAX_PES, PES+=MAX_PES) 

     { 

         if (PE_NUM < USED_PES-m) 

         { 

        //Copy data from a subdomain in card memory to PE memory 

           for (j = 0; j < YPE_SIZE; j++) 

           for (i = 0; i < XPE_SIZE; i++) 

                   { 

ADMITANCE -> ADMITANCE_PE 

ELECFIELD  -> ELECFIELD_PE  

PHI  -> PHI_PE 

ID  -> ID_PE 

                   } 

    //--Perform FD computation ---// 

  

      for (k = 1; k < ZPE_SIZE-1; k++) 

       for (j = 1; j < YPE_SIZE-1; j++) 

       for (i = 1; i < XPE_SIZE-1; i++) 

       Run  (Eq. 3); 

   //---Copy back the results (TMP_PE) to card memory---//  

        for (j = 1; j < YPE_SIZE-1; j++) 

        for (i = 1; i < XPE_SIZE-1; i++) 

 TMP_PE -> PHI; 

            } 

      }    

} 

Copy (Potential) -> Host 

 
Fig. 9: Parallel FD algorithm in Cn for Clearspeed. 

CSAPI function calls were added to a C++ code on a host 

PC and the following steps were performed for the FD 

algorithm: 

 

1. Moving the necessary data ((Y, e, Φ
η
), and indices of a 

volume as shown in (2) from the host memory to the 

mono memory. 

2. Moving the decomposed sub-domains from the mono to 

poly memory using the function memcpym2p.  

3. Computing the FD algorithm in the poly memory. 

4. Moving the newly calculated Φ
η+1

 from the poly to mono 

memory to update old Φ
η 
 using the Clearspeed function 

memcpyp2m. 

5. Repeating steps (ii), (iii) and (iv) until the convergence or 

maximum iterations are met the predefined values. 

6. Moving Φ
η+1

 from the mono memory to the host memory. 

 

Fig. 8 shows an object consisting of 8×8 voxels which 

includes predefined boundary voxels. The total number of 

unknowns is 7×7=49. Sub-domains of size 3×3 are transferred 

to the local memory of different PEs for parallel processing. In 

addition, the FD calculation requires the neighboring voxels to 

be transferred to the respective PEs, which results in allocating 

a sub-domain of 5×5 voxels as shown in Fig. 8.  

The dimension of the sub-domains which may be stored and 

processed in the local PE memory is restricted by the size of 

this memory which is only 6KB for the CSX600 processor. 

The above approach can be extended to the 3D case in a 

similar way. The corresponding sub-domains of the data (such 

as (Y, e, Φ
η
)) have to be loaded into the PEs in a round-robin 

manner in order to calculate the new Φ
η+1

 and the whole 

process has to be repeated for each iteration. The pseudo-code 

of the parallelization is shown in Fig. 9. 

 

E. Simulation set-up and measurements 

 For all simulations a cylindrical conductive volume was 

discretized into cubic voxels varying in dimensions from 

24*24*24 to 184*184*184 and the total computation times 

were measured for each case. 

The speed-up SPN for each accelerator method and domain 

size was defined as  

 

N

s

N
T

T
SP =          (3) 

 

where TS is the computation time for the algorithm on a 

single core CPU and TN is the computation time for the 

algorithm on the specified device.  

For the GPU, computation times were measured for FD 

computation within the GPU and data transfer time to and 

from host using the cutCreateTimer function in CUDA. For 

the multi-core workstation, computation time was measured 

using the omp_get_wtime() directives. The GetTickCount 

function was used for determining computation time for the 

Clearspeed measurements. 

 

III. RESULTS 

In this paper, we aimed to evaluate the performance of three 

parallel processing accelerators to select a suitable accelerator 

option for imaging and monitoring applications in MIT. 

Table 1 shows the timing results for the FD algorithm on Quad 

Core PC (1 core), Dual Xeon (2 core), Quad Core PC (4 

cores), Clearspeed and GPU with varying number of voxels. 

In all cases the FD computation time increased with 

increasing domain sizes. The increase in computation time was 

not linear with the total number of voxels however since the 

number of FD iterations to achieve the specified level of 

 

Fig. 8: 2D Illustration of pixel processing distribution amongst PEs 
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convergence also increased with domain size. 

TABLE 1 FD computation times for varying number of voxels. (Time in 

seconds). 

No. 

voxels 

Quad Core  

(1 CORE) 

Dual  

Xeon 

(2 CORE) 

Quad Core 

(4 CORE) 
Clearspeed GPU  

243 0.06 0.02 0.015 0.04 0.01 

403 0.8 0.4 0.3 0.46 0.04 

643 9.6 6.9 3.6 3.3 0.23 

803 32 23.5 12.1 9.3 0,61 

1123 197 117 60 49 2.95 

1203 331 195 100 85 4.97 

1443 629 378 194 158 9.2 

1603 919 572 286 227 12.9 

1843 1749 1088 539 480 24.9 

 
Table 2 shows the speedup factor obtained for 4 Core vs. 1 

Core, ClearSpeed vs. 1 Core, GPU vs. Dual Xeon and GPU vs. 

4 Core respectively for increasing number of voxels. 

TABLE 2. Speedup factor for FD computation for varying number of voxels. 

Speed up Speed up Speed up Speed up 
No.  

voxels (4 Core vs. 

1Core) 

(ClearSpeed vs. 

1Core) 

(GPU vs. Dual 

Xeon) 

(GPU vs. 4 

Core) 

243 4.2 1.7 4 1.5 

403 2.7 1.9 10 7.8 

643 2.6 2.9 30 16 

803 2.6 3.4 38 20 

1123 3.3 4.0 40 21 

1203 3.3 3.9 39 20 

1443 3.2 4.0 41 21 

1603 3.2 4.0 44 22 

1843 3.3 3.7 44 22 

 

The speedup factors obtained for the 2 core and 4 core 

implementations ranged from 1.6 – 3 and 3.2 – 4 respectively, 

close to the theoretical maximum values. Optimal speed-up 

was not achieved with this shared memory approach mainly 

due a heavy synchronization among processors. The speedup 

factors obtained for the Clearspeed were similar to the 2 and 4 

core results ranging from 1.5 – 3.6 in comparison to a single 

processor implementation of the most time consuming FD 

algorithm. 

The speedup obtained using the GPU was significantly 

higher than the other implementations ranging from 6 to 70 

when compared to single core, from to 4 to 44 when compared 

to dual core and from 1.5 to 22 when compared to 4 core 

implementation. The speedup generally increased with 

increasing domain size.  

 

IV. DISCUSSION AND CONCLUSION 

In this paper, MIT image reconstruction was implemented on 

three PC-based parallel processing platforms: GPU, 

Clearspeed and PC with multicores.  We have attempted to 

select current, comparable and widely available models for this 

study. The results described in this paper would invariably 

change depending on the specific accelerator hardware used. 

However, we perceive this is unlikely to challenge the main 

conclusion given the significantly superior results obtained 

with the GPU.  

For the multi-core PC implementations, efficiency dropped 

as the number of cores increased and optimal speedup was not 

achieved due to heavy synchronization among cores for the FD 

computation. 

For the Clearspeed accelerator, the speed-up factor 

achieved was small. The performance profile on this card 

showed that the limitation on Clearspeed implementation was 

mainly the large amount of data transfers between mono and 

poly memories and the limited PE memory size (6KB), which 

resulted in high communication overheads. The 

communication time from the mono to poly memory took more 

than 96 % of the total time. The results achieved appear to 

agree with some previous published results [14, 15, 16] in that 

the Clearspeed Advance
TM

 accelerator board appears to be 

most suited, or perhaps only suitable, for operations primarily 

involving matrix-matrix multiplications of large dense matrices 

of dimensions m*n where both m and n are large. Although 

multilevel parallel implementations, i.e. splitting the problem 

by both coil and physical domain, can in principle achieve 

higher speed up values, this requires the use of multiple 

Clearspeed Advance
TM

 boards, which brings a very significant 

increase in cost. 

The GPU provided, by far, the highest speedup. Its 

performance advantage over the Clearspeed is thought to be 

related to (i) the larger number of threads available, 12,288 

versus 192 (PEs) between the GPU and Clearspeed 

respectively and (ii) the larger memory bandwidth available to 

the GPU with a significant bottleneck between the poly and 

mono memories existing in the Clearspeed (see Fig. 4).  

The results showed that higher speedup was achieved for 

larger domain sizes, with larger problems resulting in better 

utilization ratios, and this is likely due to a decrease in idle 

time. For large scale problems, such as brain imaging with 

MIT for the detection of cerebral stroke, multi-level 

parallelization utilizing multiple GPU’s should provide 

significant further reductions in image reconstruction times.  

 Based on the results obtained in this study, at present  both 

Clearspeed accelerator and current dual and quad-core 

workstations appears to offer limited performance gains for the 

parallel implementations of the FD algorithm in comparison to 

the GPU implementation. The GPU implementation was also 

very cost-effective since GPU’s are produced for mass 

consumer markets and the cost of suitable devices is therefore 

relatively modest (£100 - £500, 2010).  

Given the high speed up rates achieved, the relatively low 

cost of GPUs, the availability of free development software 

tools, and the relative ease of development, GPU 

implementations appear to be very well suitable for 

acceleration of image reconstruction in MIT, and potentially in 

EIT and other tomographic methods. 
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