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Abstract—We propose a method to improve traditional
character-based PPM text compression algorithms. Consider a
text file as a sequence of alternating words and non-words,
the basic idea of our algorithm is to encode non-words and
prefixes of words using character-based context models and
encode suffixes of words using dictionary models. By using
dictionary models, the algorithm can encode multiple characters
as a whole, and thus enhance the compression efficiency. The
advantages of the proposed algorithm are: 1) it does not require
any text preprocessing; 2) it does not need any explicit codeword
to identify switch between context and dictionary models; 3) it
can be applied to any character-based PPM algorithms without
incurring much additional computational cost. Test results show
that significant improvements can be obtained over character-
based PPM, especially in low order cases.

Keywords-Text compression; Markov model; PPM; Dictionary
model.

I. INTRODUCTION

Prediction by partial matching (PPM) [2] has set a bench-
mark for text compression algorithms due to its high com-
pression efficiency. In PPM, texts are modeled as Markov
processes in which the occurrence of a character only depends
on its context, i.e., n preceding characters, where n is called
the context order and is a parameter of PPM. In each context,
probabilities of next character is maintained. When a new
character comes, its probability is estimated using context
models and is encoded by an arithmetic coder. During the
encoding/decoding process, the context models (probability
tables) are updated after a character is encoded/decoded. By
using such adaptive context models, PPM is able to predict
text as well as human do [3], and achieves higher compression
ratio than many other compression algorithms [4].

However, one limitation of PPM is that the prediction
is character-based, i.e., characters are encoded one by one
sequentially, which is not quite efficient. In [5], word-based
PPM is proposed in which every word is predicted by its
preceding words, but its performance is even worse than
character-based PPM [4], mainly because the alphabet size
of English words is so large that very long texts are re-
quired to collect sufficient statistical information for word-
based models. Similarly, Horspool [6] introduced an algorithm
that alternatively switches between word-based and character-
based PPM, but it needs to explicitly encode the length of
characters when character-based PPM is used, resulting in
unnecessary overhead. Recently, Skibinski [7] extended the
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alphabet of PPM to long repeated strings by pre-processing
the whole texts before encoding, which showed performance
improvement over traditional PPM.

In this paper, we propose an enhanced algorithm that com-
bines traditional character-based context models and dictionary
models. The basic idea is that, for most English words, given
the first a few characters (prefix) the rest of the word (suffix)
can be well predicted. Specifically, in addition to context
models for character prediction used in traditional PPM [2] we
introduce dictionary models that contain words with a common
prefix. By doing so, a word can be predicted and encoded
given its prefix, i.e., the first a few characters. Therefore,
different from traditional PPM [2] and its variations [8], [9],
[10], [11], proposed algorithm can achieve variable-length
prediction by partial matching (VLPPM). The remainder of
the paper is organized as follows. Section II describes the
dictionary model used for variable-length prediction and the
framework of proposed scheme. Section III details the encod-
ing and decoding algorithms. Test results and conclusions are
presented in Section IV and V, respectively.

II. VARIABLE-LENGTH PREDICTION
A. A Motivating Example

A simple example is given to show how variable-length
prediction can be achieved by using dictionary model. Suppose
we are encoding a sequence of texts like this: “...informa-
tion...”. The first 3 characters “inf” have been encoded and
characters to be encoded next are “ormation...”. If we use
order-3 PPM, characters are encoded one after another given
its context, i.e. 3 preceding characters, as shown in Fig. 1
(a). On the other hand, if we divide every word into two
parts: a fixed-length prefix and a variable-length suffix, and
suppose we have a dictionary that contains words with prefix
“inf” as shown in Fig. 1 (b). Instead of predicting characters
one by one, we can predict suffixes in this dictionary at
one time, provided that we know the prefix is “inf”. Since
the dictionary contains suffixes with different lengths, the
prediction is variable-length.

The advantage of using dictionary model is obvious. Let us
estimate in the above example how many bits are required to
encode “ormation”. For traditional order-3 PPM, assume 1.5
bits are needed on average for encoding one character, then we
need 1.5 x 8 = 12 bits to encode “ormation”. Notice that 1.5
bpc is a reasonable assumption because order-3 PPM usually
achieves more than 2 bpc for text compression [4], [8]. On the
other hand, as we can see from Fig. 1 (b), there are 8 possible
words that start with ”inf” in the dictionary and “information”
is one of them. Therefore, if we assign different indexes to
these 8 words, we can easily encode “ormation” with as few
as log, 8 = 3 bits, achieving 9 bits saving over order-3 PPM.
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Fig. 1: Comparison of encoding the word “information” given that the
first 3 characters ”inf” have been encoded. (a) order-3 PPM encoder
which processes characters one by one. (b) proposed variable-length
prediction using a dictionary model that estimates rest characters of
the word at once.

B. Dictionary Model For Variable-Length Prediction

Let C be the alphabet of all characters in the text to be
compressed. Consider the text as a sequence of alternating
words and non-words, and let M C C and N C C denote two
subsets of characters for words and non-words, respectively.
Note that MUN = C and M NN = . Express a word
with n characters as cicy--- ¢y, ¢; € M, and define prefix
as the first £ characters c; - - - ¢, and suffix as the remaining
n — k ones ci41 - --cy. In addition to traditional character-
based PPM context models, we introduce dictionary models
denoted by D. Each dictionary model includes three parts: a
common prefix P, a list of strings W; that are suffixes of words
with prefix P, and corresponding counts C;. For example, if
k = 3 then “infer” and “information” belong to the same
dictionary where P="“inf", Wi="er” and Wsy="ormation”.

Given a prefix, we can find the associated dictionary model
and then perform encoding/decoding. Different from context
models in character-based PPM in which contexts from order-
n to order-1 are used, we only maintain dictionary models
with fixed-length prefix (fixed context order k). If the prefix
is too short (k is too small), each dictionary will contain a lot
of words which is not good for efficient compression. On the
other hand, if the prefix is too long (k is too big), number of
characters that can be predicted by dictionary model will be
very small.

C. Combining Dictionary Model and Context Model

As we can see, the dictionary model works on word basis.
By word we mean a sequence of consecutive characters that
belong to the set M. We can always parse a text file into
a sequence of alternating words and non-words. For non-
words, they cannot be encoded by dictionary model, and
even for the prefix of a word we need to encode character
by character. Therefore, dictionary model is combined with
context model used in traditional character-based PPM to
estimate the probability of occurrence of character(s). For
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characters in non-words and prefixes of words, probabilities of
occurrence are estimated by context models on character basis.
Once prefix of a word is encoded, we find dictionary model
associated with this prefix and then estimate the probability
of occurrence of the suffix. Estimated probabilities are then
translated into binary sequences using algorithmic coding. At
the beginning of encoding/decoding, both context models and
dictionary models are empty. After a character is encoded, cor-
responding context model is updated. After a word is encoded,
corresponding dictionary model is updated. Detailed encoding
and decoding algorithms will be introduced in Section III.

Compared with the methods in [6] and [7], the above
framework has two advantages. First, no extra bits are required
to indicate the switch from context model to dictionary model,
because every time after the prefix of a word (k consecutive
characters belong to M) is encoded or decoded by context
model, encoder or decoder will automatically switch to dictio-
nary model. Moreover, since dictionary models are constructed
and updated during encoding/decoding, no pre-processing is
required to build initial dictionaries.

III. ALGORITHM DETAILS

A. Model Switching Using Finite State Machine (FSM)

Any compression algorithms using more than one model
face the problem of model switching [12]. For example, in
traditional PPM in which up to n 4+ 1 context models (order-
n to order-0) might be used when encoding a character,
escape code is sent as a signal to let decoder know switch
from current order to lower order. In our case, we need a
mechanism to control the switch between dictionary model
and context model. We use finite state machine (FSM), and
for both encoder and decoder there are 3 states: Sy, S1 and Ss.
The transition rules between states for encoding and decoding
are different, which will be described next.

B. Encoding Algorithm

The encoding process starts at Sy, and the state transition
rules are as follows:

o At Sp: Encode the next character ¢ using context models.
If ¢ € M, assign c to an empty string P and move to
S1; otherwise stay at Sj.

At S71: Encode the next character ¢ using context models.
If c ¢ M, go to Sy. If ¢ € M, append ¢ to P. If the
length of P is k, move to Ss.

At S5: Read consecutive characters that belong to M, i.e.
suffix of current word, denoted by W. If a dictionary D
associated with P is found and W exists in D, encode W
using dictionary model D. Otherwise, encode an escape
code using dictionary model D and characters in W using
context models. Move to Sy.

The encoding state transition diagram is depicted in Fig. 2.
Pseudo code of the algorithm is provided below. On line 15,
length(P) is a function that returns the number of characters
in P. Due to limited space, the “default” clause is omitted.



Fig. 2: Encoding algorithm using FSM. “1” and *“0” denote the
condition that next character to be encoded is in M or not. Prefix

encode by dictionary model

encode by context model

length £ is set to 3 in this example.

Algorithm 1: VLPPM-Encoder

1 state < Sp;
2 while ¢ # EOF do

encode next character c using context model;
switch state do

case Sy
if ¢ € M then
P «— ¢
state «— Si;
break;
case S
if ¢ € M then
P+~ P+c¢;
else
state «— Sp;
if length(P) = k then
state < Sa;
break;
case S
read suffix W;
if find dictionary D with prefix P then
if find W in D then
encode W using D;
else
encode escape code using D;
encode W using context model;
else
encode W using context model;
update dictionary model;
state «— Sg;
break;

At state So, the probability of escape code is calculated by

1
Pr =
(escape) 1+ 3 wen Ci

and the probability for suffix W, is given by

C;

P )=
r(:) L+ ZWJGD Cj

C. Decoding Algorithm

Similar to the encoding algorithm, the decoding algorithm
also uses FSM with 3 states and starts at Sy, but with different

state transition rules:

decode by dictionary model

prefix yes |dictionary|escape

Fig. 3: Decoding algorithm using FSM. “1” and “0” denote the
condition that next character to be encoded is in M or not. Prefix
length k is set to 3 in this example.

o At Sp: Decode the next character using context model.
If it belongs to M, assign it to an empty string P and
move to S7; otherwise stay at Sj.

o At S7: Decode the next character using context model.
If it belongs to M, append it to string P; otherwise, go
back to Sp. If the length of P reaches k, decode using
dictionary model. If a string of characters are decoded,
move to Sy; if an escape code is decoded, move to Ss.

e At Sy: Decode characters one by one using context model
until a character that does not belong to M is decoded.
Move to Sy.

Algorithm 2: VLPPM-Decoder

1 state < Sp;

2 while ¢ # EOF do

3 decode c using context model;

4 switch state do

5 case Sy

6 if c € M then

7 P ¢

3 state «— Sq;

9 break;

10 case S

11 if c € M then

12 P« P+g

13 else

14 state «+— Sp;

15 if length(P) = k then

16 if find dictionary D with prefix P then
17 decode W using D;

18 if W is escape code then
19 state < So;

20 else

21 update dictionary model;
22 else

23 state < So;

24 break;

25 case Sy

26 decode c using context model;

27 if c € M then

28 state < Sp;

29 break;
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D. Exclusion

As we can see from the decoding algorithm, decoder au-
tomatically switches from context model to dictionary model
once k consecutive characters belonging to M are decoded. By
doing so, we don’t need to waste any bits to indicate switches
between dictionary model and context model. However, this
leads to another problem: if a prefix in the dictionary is a
word of length k (e.g., when £k = 3 “let” can be either a word
or a prefix of “lettuce”), then every time this word occurs
extra bits will be used by the dictionary model to encode an
escape code, resulting in performance degradation. To resolve
this problem, we introduce an exclusion mechanism: after a
word is encoded/decoded, if it is a prefix of a dictionary, this
dictionary is discarded and this prefix is put in a “blacklist”
for future reference. During encoding/decoding, if a prefix is
in “blacklist”, encoder/decoder skip dictionary model and use
context model directly.

IV. PERFORMANCE EVALUATION
A. Compression Efficiency

In order to show the compression efficiency of the pro-
posed algorithm, VLPPM encoder/decoder are implemented
and tested on a large set of texts. Specifically, we implemented
PPMC encoder/decoder as described in [8], and further de-
veloped VLPPM based on PPMC. One important parameter
for the proposed VLPPM algorithm is the prefix length k. It
needs to be set before compression and shared by encoder and
decoder. If the prefix is too short, each dictionary will contain
a lot of words which is not good for efficient compression. On
the other hand, if the prefix is too long, number of characters
that can be predicted by dictionary model will be very small.
In our experiments, we found that setting k to 3 or 4 yields
the best performance in terms of compression efficiency. The
following results are obtained by algorithm with prefix length
k=3.

Text files from two popular data compression corpora,
Calgary corpus [4] and Canterbury corpus [13], are chosen as
the data to be compressed. Compression ratio of VLPPM is
presented in Table I in terms of bits per character (bpc), and
is compared with traditional PPM (PPMC). As we can see,
using proposed VLPPM algorithm leads to considerable per-
formance improvements: 16.3% and 6.3% gains are achieved
over traditional PPM for order-2 and order-3, respectively.
Moreover, although VLPPM implemented here is based on
PPMC, it is applicable to any other character-based predictive
compression schemes, such as all the variations of PPM [8],
[91, (101, [11].

In traditional PPM, characters are encoded one by one
sequentially. As a result, the number of bits required to
encode a word increases almost linearly with the word length.
However, from the information theoretic point of view this is
not the case because longer word doesn’t necessarily contain
more information. VLPPM, on the other hand, predicts several
characters at once, achieving higher compression efficiency.
This is illustrated in Fig. 4, in which the average number of
bits required to encode words with different length is depicted
for both PPM and VLPPM. As we can see, the number of bits
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TABLE I: Compression Ratio Comparison of PPM and VLPPM

order-2 order-3
File PPM VLPPM Gain PPM VLPPM Gain
bib 266 225 182% | 212 199 6.5%
book1l 292 257 13.6% | 248 236 5.1%
book2 2.890 234 235% | 227 207 97%
news 326 287 13.6% | 265 252 52%
paperl 294 260 13.1% | 250 240 4.2%
paper?2 2.80 252 147% | 247 236 47%
progc 291 271 7.4% 252 247 2.0%
progl 240 213 12.7% 192 186 32%
progp 229 205 11.7% 1.86 1.81 2.8%
trans 238 208 144% 1.78  1.69 53%
alice29.txt 272 241 129% | 231 223 3.6%
asyoulik.txt 2.81 2.58 8.9% 2.53 247 2.4%
lcetl0.txt 276 215 284% | 219 197 112%
plrabnl2.txt | 2.83 251 12.7% | 244 233 47%
cp.html 273 255 71% 238 234 1.7%
fields.c 244 233 4% 218 215 1.4%
grammar.lsp 272 260 4.6% 2.51 247 1.6%
xargs.l 331 317 44% 3.08 3.05 1.0%
Average 286 246 163% | 236 222 63%
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Fig. 4: Average number of bits per word when lcet10.txt is

compressed by order-2 PPM and VLPPM.

increases almost linearly with word length when PPM is used,
in accordance with our analysis above. Compared with PPM,
VLPPM requires similar number of bits when word length is
short, but much fewer bits when word length is long, and the
longer the word is, the more bits can be saved.

B. Computational Complexity

Since VLPPM is based on PPM, it is natural to compare
its complexity with that of PPM. Table II compares the time
and memory consumption of VLPPM and PPM encoders for
order-2 and order-3. In both cases, the results of VLPPM are
presented in terms of fraction of time and memory compared
with PPM. As we can see, the speed of VLPPM is comparable
to PPM, and it is even faster than PPM at order-2, due to
the variable-length prediction ability. Furthermore, although



TABLE II: Computational Complexity of PPM and VLPPM

order-2 order-3
PPM VLPPM | PPM  VLPPM
Time 100% 98% 100% 108%
Memory | 100% 113% 100% 108%

VLPPM uses dictionary models in addition to context models,
the memory consumption only increases by a small percent-
age: 13% and 8% for order-2 and order-3, respectively. This is
because VLPPM only maintains dictionaries with fixed-length
prefix, i.e. prefix with length 3, which means only those words
longer than 3 will be stored. Moreover, using the exclusion
mechanism introduced in the Section III-D excludes certain
words from being stored into dictionary which further reduces
memory use.

V. CONCLUSION

We have presented a text compression algorithm using
variable-length prediction by partial matching (VLPPM). By
introducing dictionary model which contains words with
common prefix and combing it with context model used in
traditional character-based PPM, the proposed method can
predict one or more characters at once, further improving
the compression efficiency without increasing computational
complexity a lot. Moreover, the proposed method does not
require any text preprocessing and can be applied to any other
character-based predictive compression algorithms without in-
creasing much computational complexity.
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