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Abstract—Real-time flow counting is significant for Internet 

Protocol (IP)network management because it enables operators 

to take appropriate action against anomalies or performance 

degradation. Most flow counting methods proposed in the 

literature are based on the linear counting algorithm, which was 

originally developed for database system applications. 

This paper first strictly analyzes the statistical nature of the 

linear counting algorithm. The correctness of the analysis is 

confirmed through a computer simulation. The strict analysis is 

also compared with an approximate analysis reported in a 

previous study. The result clarifies the conditions where the 

previous approximate analysis did not provide good accuracy. 

The linear counting algorithm is based on a hash function 

and a vector. To apply this algorithm to flow counting, two 

design issues arise. One is the method that handles the case of 

exhausting all vector elements, while the other is the 

appropriate vector size. The paper presents a simple and 

effective method for the former. For the latter issue, the upper 

bound for the flow number is derived as a basis for determining 

the vector size. 

The algorithm is examined for two distinct measurement 

scenarios: the “active flow scenario” and the “open socket 

scenario.” For each scenario, the estimated accuracy is assessed 

using real-world network data. As a result, it is shown that the 

accurate measurement is more difficult for the open socket 

scenario than for the active flow scenario. 

 
Index Terms—IP networks, network management, 

performance measurement, traffic 

 

I. INTRODUCTION 

Flow measurement in Internet Protocol(IP) networks has 

been studied using various metrics such as flow byte volume, 

flow packet volume, flow duration, flow timeout, and 

heavy-hitter flows[1]−[3]. Among these metrics, the number 

of flows is significant in several useful applications, 

including port scan detection, denial-of-service attack 

detection, general measurement in traffic analysis, and the 

estimation of a TCP connection’s throughput[4]−[8]. 

In IP networks, a flow is identified by a flow identifier, 

which is defined as a set of fields in the packet header [4], [7]. 

Flow counting is defined as a procedure that determines how 

many different flow identifiers exist in a packet stream. The 

number of flows is measurable in a real-time, online manner, 

whereas some other flow metrics [1]−[3]must be analyzed  
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offline. Their real-time nature makes the number of flows a 

particularly useful performance metric.  

Flow counting is essential to determine the number of 

unique values in a large data set. This is efficiently achieved 

by an algorithm called linear counting, which was 

comprehensively studied from the viewpoint of database 

applications [9]. The flow counting methods reported in the 

literature [4]-[7] are based on this algorithm. 

The linear counting algorithm is based on a vector and a 

hash function. To successfully apply the algorithm to an 

actual problem, the vector size must be appropriately 

determined by considering the statistical nature of the 

algorithm. Several formulas that show the statistical nature of 

the linear counting algorithm have been presented [9]. 

However, the formulas are derived using approximation, and 

thus, are not strictly exact. There have been no studies that 

assess the accuracy of the approximation sufficiently. 

Therefore, it is necessary and interesting to evaluate the 

formulas using a strict analysis. In addition, the algorithm 

was developed for a database application. Thus, for the flow 

counting application, the practical design issues of the 

algorithm must be addressed to satisfy the requirements 

inherent to IP networks. It is also necessary to evaluate the 

performance of the algorithm for flow counting in IP 

networks. 

This study investigates the above issues using the flow 

counting method based on the linear counting algorithm. The 

first purpose of this study is to strictly analyze the linear 

counting algorithm and assess the accuracy of the previous 

approximate formulas. Secondly, the study also focuses on 

the problems inherent to the flow counting application. 

For the first purpose, the paper strictly analyzes the 

statistical nature of the linear counting algorithm. The 

analysis is done in a completely different way from the 

previous study. The accuracy of the analysis is confirmed 

through a computer simulation. It is also shown that the 

previous approximate formulas are not always exact 

depending on conditions such as the problem size. Using 

strict analysis, it is possible to design the vector size, exactly 

and independently, for the condition. 

To accomplish the second purpose, the paper proposes a 

new method to deal with the case when the elements of the 

vector used in the algorithm are exhausted during the 

counting process. It is confirmed that the proposed method 

provides an accurate estimation with a simple computational 

procedure. The paper assesses the upper bound for the 

number of measured flows. This bound is essential to design 

the vector size. The flow counting method based on the linear 

counting algorithm is also tested for real-world network data. 

Additionally, the paper evaluates the effectiveness of the 
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accuracy improvement techniques reported in the literature 

[7], [10][12]. By employing these results, it becomes 

possible to design the algorithm optimally for the flow 

counting application. 

This paper is organized as follows. First, the studies related 

to this paper are reviewed in Section II. Section III strictly 

analyzes the statistical nature of the linear counting algorithm.  

The proposed strict analysis is compared with the 

approximate formulas of the previous study in Section IV. 

Section V discusses the design issues when the linear 

counting algorithm is applied to the flow counting. In Section 

VI, the flow counting based on the linear counting algorithm 

is examined for real network data. Finally, Section VII states 

the conclusion. 

 

II. RELATED WORK 

A. Flow-Related Measurement  

In IP networks, a flow is identified by a flow identifier, 

which is defined as a set of packet header fields [4], [7]. This 

paper defines a flow identifier as a quintuple of source 

address, destination address,  protocol, source port, and 

destination port, as commonly found in the literature[2], [7]. 

This definition means that a flow is associated with an open 

TCP or UDP socket across the monitored link. 

Since a flow is a basic unit of communication between 

application processes, it is important to measure the 

characteristics of flows for management purposes. Therefore, 

various flow measurement techniques have been studied 

[1]−[7]. Reference [1] investigated several flow 

characteristics including the flow volume and duration. In 

addition, [1] introduced the concept of an active flow; that is, 

a flow which is active as long as the packets observed are 

separated in time by less than a specified timeout value. 

Reference [2] investigates the relationship between the flow 

characteristics and its applications. In [3], the method of 

identifying heavy-hitter flows, which issue many packets, is 

investigated to find the dominant traffic from sampled data.  

References [4]−[7] report the flow counting techniques, 

which estimate the number of flows during a specified time 

period. While the studies of [1]−[3] present offline 

approaches, these flow counting techniques are able to 

provide real-time, online measurements. Because of the 

real-time nature, the flow counting techniques are important 

for network operators to take immediate action against 

anomalies or degradation. In [4], [5], flow counting 

algorithms based on a bit vector are explored. A similar 

technique is used in the traffic measurement system 

described in [6]. Meanwhile, Reference [7] suggests that the 

method of [4] uses a discrete measurement interval and 

underestimates the number of flows. To avoid this 

underestimation, a method called the timestamp vector 

algorithm is proposed in [7].  

It is inadequate to say that the method of [4] 

underestimates the flow number because the class of counted 

flows is different between the methods presented in [4] and 

[7]. The method of [4] exactly estimates the number of active 

flows, which conforms to the definition found in [1]. By 

contrast, the method of [7] tries to count all existing flows, 

which include inactive flows in addition to active flows. 

Because of this difference, it is trivial to estimate that the 

method of [4] is smaller than the method of [7]. Therefore, we 

should not easily conclude that the method of [4] is inferior to 

that of [7]. This paper strictly distinguishes this difference in 

the flow class. 

B. Linear Counting Technique 

The flow counting problem is equivalent to counting the 

number of unique values found in a data set. A practical 

algorithm for doing this is called the “linear counting 

algorithm,” which is comprehensively analyzed in [9]. 

The linear counting algorithm is described as follows. The 

algorithm employs a bit vector of size m. First, all elements of 

the bit vector are initialized to 0. Each data value is then 

inputted to a hash function, which maps the input value to an 

integer from 0 to m – 1. The bit vector element whose index 

is the hash output is turned to 1. Therefore, the value 0 means 

that the element was untouched during the hash computations.  

After all data values are processed, the number of unique 

values is estimated from the number of untouched elements. 

Reference [9] derives the following important results by 

analyzing the linear counting algorithm.  

Assume that there are n unique values in the data set. Let 

Un be the number of untouched bit vector elements for n 

unique values. Un is a random variable. The expected value of 

Un, denoted by E(Un), is  

E(Un) ≅ me
 – n/m 

for m >> 1. (1) 

Let n̂  be the expected number of the unique values. Then, 

from (1),  

m

U
mn n

elogˆ −= . (2) 

We can estimate the number of unique values by n̂ . Since Un 

is a random variable, n̂ varies for a fixed value of n and 

includes an error. 

Reference [9] also derived the variance of Un as follows: 

{ }mnmn
n emnmeU // )/1(1)(Var −− +−≅ . (3) 

Based on (3), the standard error of the ratio nn /ˆ  is estimated 

as follows: 

n

mnem

n

n mn 2/1/ )1/(ˆ
StdError

−−
≅








, (4) 

where the standard error is defined as the square root of the 

variance. 

The linear count algorithm does not work if all of the 

vector elements are filled up by 1. If this happens, since 

Un = 0,the right side of (2) does not have a valid value. Thus, 

it becomes impossible to estimate n. For the avoidance of this 

problem, it is essential to considerably decrease the 

probability that all the elements are filled up by 1. Reference 

[9] derives this “fill-up” probability by utilizing the fact that 

the distribution of Un approaches the Poisson distribution for 

large values of m and n. That is, 

( ) λλ −→= ekkUP k
n !/}{ for ∞→nm, , (5) 

where 
mnme /−=λ . 

Thus, the fill-up probability is: 
λ−≅= eUP n }0{ . (6) 

Equations (4) and (6) are particularly important to assess 

the reliability of the algorithm and to determine the vector 
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size. It must be noted that these equations are approximations 

obtained assuming that m and n are large. Thus, the equations 

may not be sufficiently accurate depending on the values of m 

and n. Reference [9] compares their approximations with a 

simulation result to evaluate the accuracy from m = 100 to m 

= 100,000. However, since the number of trials in their 

simulation is not large (100 trials), the result is not very 

reliable. Moreover, the target of their simulation is limited to 

the estimated value n̂ and the standard error. That is, they did 

not show any results for the fill-up probability. Thus, a more 

comprehensive study is needed to assess the accuracy of the 

approximation. In Section IV, the accuracy of these 

approximate formulas is evaluated using strict analysis. 

C. Flow Counting Scenarios 

As shown above, flow counting techniques that measure 

different classes of flows have been reported. This study 

categorizes these techniques into the “active flow scenario” 

and the “open socket scenario.” Both of these scenarios 

provide useful information for network management. Each 

scenario is specified as follows: 

(1) Active Flow Scenario 

In this scenario, the algorithm counts the number of flow 

identifiers seen in a specified time period, which starts at time 

t1 and ends at time t2. In other words, only active flows are 

counted for this scenario. The algorithm does not count the 

flow that starts before t1 and stops after t2, if no packets are 

betweent1andt2. Therefore, low rate flows may be dropped 

from the measurement. Though low rate flows may be 

ignored, this scenario is still useful because it provides the 

information on active flows, which are influential to the 

network performance. The flows counted by this scenario are 

depicted in Fig. 1. 

 

Fig. 1.  Flows counted in the active flow scenario. 

The linear counting algorithm is applied to this scenario in 

a straightforward manner. The bit vector elements are first 

initialized to 0 at t1. Then, the flow identifier of an arrived 

packet is inputted to a hash function, and the vector element 

indexed by the hash output is turned to 1. At t2, the number of 

active flows can be obtained by counting Un and using (2). 

The methods of [4], [5] fall into this scenario. The method 

of [4] is basically identical to the above linear counting 

algorithm. The method also employs a number of ideas such 

as the virtual bitmap, the multi resolution bitmap etc, to 

reduce the memory space. 

(2) Open Socket Scenario 

In this scenario, the algorithm counts the number of flows 

that exist on the monitored link at a specified time period. 

Namely, the number of concurrently open sockets is 

estimated. Assuming that flows are repeatedly counted at 

times t1, t2,… Then, the open sockets that exist at ti (i = 2, 

3,…) must be counted even if they do not issue any packets 

during the interval [ti – 1, ti]. Fig. 2 illustrates the flows to be 

counted in this scenario. The open socket scenario is as 

significant as the active flow scenario because the 

measurement result will include the information about low 

rate flows. 

 

Fig. 2.  Flows counted in the open sockets scenario. 

To perform this scenario, the algorithm must continuously 

monitor the packet stream and decide how many flows are 

generated and not terminated before ti. Thus, it is important to 

detect flow termination. Reference [7] presents a method that 

detects the flow termination through timeouts. This method is 

based on the linear counting algorithm. However, the method 

employs a vector of timestamps instead of a bit vector. 

Because of this, the method is called the timestamp vector 

(TV) algorithm. When a packet arrives, the method first 

obtains the hash output from its flow identifier. Then, its 

arrival time is written to the vector element whose index is 

the hash output. At measurement time ti, Un is obtained as the 

number of vector elements which are not updated within the 

timeout period. The number of existing flows is then 

estimated by (2). 

Actually, the termination detection by timeouts is not very 

accurate. As a method to avoid this inaccuracy, [7] suggests 

the usage of the TCP FIN field and adapting the timeout 

period.  The effectiveness of employing the TCP FIN was 

confirmed in [10]. Additional improvement techniques were 

examined in [11], [12]. 

 

III. STRICT ANALYSIS 

This section strictly analyzes the statistical nature of the 

linear counting algorithm. The analysis derives the exact 

probability distribution for the number of bit vector elements 

turned to 1. This probability distribution is expressed in a 

recurring form and obtained by iterative computation. Using 

probability distribution makes computing the standard error 

and the fill-up probability possible. 

Our assumption is that n flows do exist having identifiers, 

suchasf1, f2,…,fn. These flow identifiers are mapped to hash 

values h1, h2,…,hn. Amongsth1, h2,…,hn, some values may be 

identical because of a hash collision. 

Let pn be the probability for a set of n flow identifiers that 

are mapped to a particular hash value vector (h1, 

h2,…,hn).Since a flow identifier is mapped to a particular 

hash value with probability p = 1 / m, 

: Packets

t1 t2

Flow #1

Flow #2

Flow #5

Flow #3

Flows Counted at t2 (Active Flows)

Flow #4

Flows Not Counted at t2

: Packets

ti – 1 ti

Flow #1

Flow #2

Flow #3

Flow #4

Flows Counted at ti

Flow #5

Flow #6

Flows Not Counted at ti
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pn = pn = 1 / mn. (7) 

Hereafter, set { }),(,),,(),,( 2211 nn hfhfhf K is referred to 

as a mapping set. Assume that there exist 

k( ),min(1 mnk ≤≤ ) distinct values H1, H2,…,Hk among h1, 

h2,…, hn. We define Nn, k as the number of possible mapping 

sets between the n flow identifiers and these k distinct hash 

values. Using Nn, k, Nn, k pn is the probability that the hash 

values H1, H2,…,Hk are generated from n flows f1, f2,…, fn. 

Let Mb, k be the number of sets { }kHHH ,...,, 21 formed by 

choosing k distinct numbers from 0, 1,…,m – 1. Trivially, 

Mb, k is expressed by binomial coefficients, 









=

k

m
M kb, . (8) 

Let pn, k be the probability that k elements of the bit vector 

are set to 1 by n flows. Using (7) and (8), pn, k is obtained as 

follows. 

nknnknkbkn
m

N
k

m
pNMp

1
,,,, 








== . (9) 

Equation (9) gives the strict probability that k vector 

elements are touched by n flows.  

Next, let us investigate the characteristics of Nn, k. First, it is 

obvious that 

Nn, 1 = 1. (10) 

This is because all the n flow identifiers generate the same 

hash value H1 for k = 1.  If, k = n, 

Nn, n = n!. (11) 

In this case, the flow identifier f1 may generate one of the n 

hash values H1, H2, …,Hn as h1, and f2 may then generate one 

of the n – 1 values other than h1. By repeating this 

observation,(11) is easily derived. 

To compute Nn, k for ),1min(1 mnk −≤< , let us consider 

the following two cases: 

Case A) The hash value hn generated by the flow identifier 

fn colliding with one or more hash values generated by some 

of f1, f2,…,fn – 1. 

Case B) The hash value hn does not collide with any of the 

hash values generated by f1, f2,…, fn – 1. 

These two cases are illustrated in Fig. 3.There are no other 

cases in which k distinct hash values are obtained from n flow 

identifiers. Thus, we can obtain Nn, k by summing the number 

of mapping sets for these cases. 

For Case A, k distinct hash values are generated from the 

n – 1flow identifiers f1, f2,…,fn – 1. Otherwise, k distinct hash 

values will not be generated because hn collides with some of 

the h1, h2, …,hn – 1 values. The number of mapping sets 

between n – 1 flows and k hash values is Nn – 1, k. For each of 

these mapping sets, hn may take one of the kvalues, H1, 

H2,…,Hk. Thus, the number of possible mapping sets is 

k Nn – 1, k for this case. 

In Case B, k – 1 distinct hash values other than hn are 

generated from the n – 1 flow identifiers f1, f2,…, fn – 1because 

hn does not collide with any of the h1, h2,…,hn – 1 values. The 

hash value hn may take one of the k values, H1, H2,…, Hk. For 

each of these k values, the number of mapping sets between 

other n – 1 flow identifiers and the k – 1 hash values is 

Nn – 1, k – 1.  Therefore, the number of possible mapping sets is 

k Nn – 1, k – 1 in this case. 

From the above consideration, we derive: 

Nn, k = k (Nn – 1, k + Nn – 1, k – 1)  

 for ),1min(1 mnk −≤< . (12) 

 

Fig. 3.  Possible mappings from n flows to k distinct hash values: (a) Case 

A and (b) Case B. 

The following recurrence formulas are derived using (8), 

(9),(11), and (12). 

1,11,
1

−= nn p
m

p for n > 1. (13) 

1,1,

1
−−

+−
= nnnn p

m

nm
p for n > 1. (14) 

1,1,1,

1
−−−

+−
+= knknkn p

m

km
p

m

k
p  

 For n > 2, ),1min(1 mnk −≤< . (15) 

Thus, for arbitrary n and k ( ),min(1 mnk ≤≤ ), we can 

calculate the probability pn, k by beginning the computation 

with p1, 1 and iteratively applying (13)−(15) while 

incrementing n. From (9), the initial value of the iteration is 

1
1

1
1,1 =








=

m

m
p . (16) 

If pn, k is known, the standard error and the fill-up 

probability are immediately obtained. The iterative 

computation of (13)−(15) is not as fast as the approximate 

formulas derived in [9]. However, the computational time is 

less than a few seconds on a PC with a Core2Quad2.83GHz 

CPU for n< 20000. Thus, this method is considerably 

practical for a moderate size problem. 

To validate the above analysis, a computer simulation was 

performed. In this simulation, flow identifiers composed of 

5-tuples were randomly generated and fed to a hash function 

on the basis of a prime modulo. The hash function maps a 

flow identifier to an integer in [0, m – 1]. The employed hash 

function is detailed in Appendix A. For the hash output 

obtained from a flow identifier, the corresponding vector 

element vh is set to 1. After executing this procedure for n 

flow identifiers, the number of untouched vector elements 

was counted. Repeat in g this procedure yielded the 

distribution of Un. The number of repetitions was 10
6
 and the 

n Flow Identifiers

k Distinct Hash Values

h(fi)

H1

H2

H3

Hk

Hk − 1

f1

f2
f3

f4

fn − 1 

fn

f1, f2, …, fn − 1: k − 1 Hash Values

fn: the Remaining Value without Collision

(a)

n Flow Identifiers

k Distinct Hash Values

h(fi)

H1

H2

H3

Hk

Hk − 1

f1

f2
f3

f4

fn − 1 

fn
fn & fi (i < n): Collision

f1

f2
f3

f4

fn − 1 

fn

(b)
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vector size m was a prime number 10007. The distribution of 

Un was tested for n = 5000 and n = 30000. That is, the 

characteristic is assessed for the cases of n < m and n > m. 

The simulation result is compared to the theoretical value 

obtained from (13)−(16) by setting k = m – Un. 

Figs. 4 and 5 show the simulation results. In these figures, 

the x-axis is Un, while the y-axis is the frequency of obtaining 

each Un value during 10
6
 trials. The figure also plots 10

6
 pn, k 

(k = m – Un) as the theoretical value. Fig. 4 shows the 

characteristic for n = 5000, while Fig. 5 shows the 

characteristic for n = 30000. The figures show that the 

simulation result is very close to the theoretical value for 

n < m as well as for n > m. This confirms the correctness of 

the proposed analysis. 

 

Fig. 4.  Distribution of Un for n = 5000. 

 

Fig. 5.  Distribution of Un for n = 30000. 

 

IV. COMPARISON BETWEEN STRICT ANALYSIS AND 

APPROXIMATION 

This section compares the proposed strict analysis with the 

approximate formulas derived in [9]. The comparison is 

performed for the standard error of nn /ˆ as well as the fill-up 

probability. For the method of [9], the values are obtained by 

(4) and (6). For the strict analysis, the standard error of nn /ˆ  

is computed by: 

∑
−

=








−=








),1min(

1

,

2

1
ˆˆ

StdError

nm

k

kn
k p
n

n

n

n
, (17) 

where 

m

km
mn ek

−
−= log

)

. 

The probability pn, k is calculated by (13)−(16). The fill-up 

probability by strict analysis is: 

mnn pUP ,}0{ == . (18) 

In addition, a computer simulation was performed on the 

analysis. In the simulation, n flow identifiers were randomly 

generated and the linear counting was executed in each trial. 

For standard error evaluation, the squared error of nn /ˆ was 

computed from the estimated value n̂ . If the vector was filled 

up, the data of the trial was not used. The trial was repeated 

10
6
 times and then the standard error was obtained from the 

average of the squared errors. For the fill-up probability, the 

simulation procedure is similar. In this evaluation, the 

number of vector fill-up events was summed up for 10
6
 trials. 

Thus, the fill-up probability is estimated by dividing the total 

number of fill-up events by 10
6
. 

Figs. 6 and 7 show the standard error for a small vector 

size (m = 101) and a moderate vector size (m = 10007). In the 

figures, the x-axis is n, while the y-axis is the standard error of

nn /ˆ . In Fig. 6, the proposed strict analysis agrees well with 

the simulation result. This supports the accuracy of the 

proposed analysis. The given figure shows that the formula of 

[9] considerably underestimates the error for a larger value of 

n. This is predictable because the formula is valid only for 

large values of m. That is, the method is not very accurate if m 

is as small as 101.In Fig. 7, the method of [9], the proposed 

analysis and the simulation result show almost the same 

standard error values. This clearly shows that the formula 

developed in [9] provides a very good approximation if m is 

as large as 10007. 

 

Fig. 6.  Standard error for a small vector size: m = 101. 

However, for m = 10007, the accuracy of the 

approximation, depending on the number of flows, is not 

always as good as in Fig. 7.Fig.8 plots the standard error 

obtained for larger values of n by keeping m to 10007. For 

this region of n, the method of [9] substantially 

underestimates the standard error. This may cause a problem 

in designing the vector size. Suppose that the standard error 

should be smaller than 5% and there exist 71500 flows. Then, 

the method of [9] will set m at 10007 to achieve the target 
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standard error because the error value obtained by (4) is 

0.0497. However, the actual error value will be larger than 

5%; the value is computed as 0.0567using the proposed strict 

analysis. Fortunately, the approximation does not greatly 

differ from the strict value. Thus, the problem caused by 

underestimation is avoidable by setting m to a slightly larger 

value than that obtained by (4). 

 

Fig. 7.  Standard error for a moderate vector size: m = 10007. 

 

Fig. 8.  Standard error for m = 10007 in the region where the method of [9] 

is not accurate. 

Figs. 9 and 10 compare the proposed strict analysis with 

the method of [9] and the simulation result for the fill-up 

probability. Fig. 9 shows the characteristic for m = 101 while 

Fig. 10 shows that m = 10007. Fig. 9 shows, if m = 101, the 

method of [9] considerably overestimates the fill-up 

probability in comparison with the strict analysis and the 

simulation result. In contrast, Fig. 10 confirms that the 

approximation is in tandem with the strict analysis and the 

simulation result if m is as large as 10007. 

For m = 10007, the approximate value of the fill-up 

probability is not very accurate if the fill-up probability is 

low.This is shown in Fig. 11, which compares the 

approximation with the strict analysis for the region where 

the fill up probability is less than 10
−14

. In this figure, the 

simulation result is omitted because it is difficult to obtain 

reliable data with a sufficient number of fill-up events 

through the simulation. The figure shows that the 

approximation overestimates the fill-up probability. This 

means that the error by the approximation is on the safe side. 

That is, if m is determined for a target fill-up probability by 

using the formula of [9], the actual fill-up probability will be 

smaller.  

 

Fig. 9.  Fill-up probability for a small vector size: m = 101. 

 

Fig. 10.  Fill-up probability for a moderate vector size: m = 10007. 

 

Fig. 11.  Fill-up probability for m = 10007 in the region where the method of 

[9] is not accurate. 
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For practical flow counting, the expected flow number n 

will be considerably large. To estimate such a flow number 

accurately, the vector size m should also be large. Thus, the 

above results imply that the approximate formulas of [9] are 

considerably reliable for flow counting applications in real 

networks.  

 

V. DESIGN ISSUES IN THE FLOW COUNTING APPLICATION 

To apply the linear counting algorithm to flow counting, 

two design issues must be addressed. These are strategies for 

handling the vector fill-up problem and determining the 

appropriate vector size. 

A. Vector Fill-Up Problem 

If all vector elements are updated during the measurement 

period, Un becomes 0. Thus, (2) does not yield any valid 

estimation. Therefore, it is necessary to establish a method to 

deal with this case. As such a method, [9] recommends 

rerunning the linear counting algorithm with a different hash 

function. This may be a practical solution for a database 

system, where the data is stored in a hard disk. Unfortunately, 

this method is inadequate for flow counting. To perform this 

method for flow counting, the flow identifiers of all arrived 

packets must be stored in the memory to prepare for possible 

re-execution of the algorithm. This requires an excessively 

large memory space. Moreover, if the algorithm is rerun, 

additional computational time is required to re-compute hash 

values and evaluate Un. However, if a large memory space is 

available to store the flow identifiers, it is advisable to 

increase the vector size with the available memory space than 

to store the flow identifiers. Since a large vector size will 

make the fill-up probability negligibly small, it becomes 

unnecessary to store the flow identifier and rerun the 

algorithm. 

This study proposes a very simple alternative method. That 

is, if the vector is filled up, the estimated flow number n̂  is 

set to a constant, 

maxˆ nn = , (19) 

where nmax is the maximum number that the algorithm can 

evaluate with the vector size m. Understandably from (2), 

nmax is the estimated flow number when Un = 1. Thus, 

mmn elogmax = . (20) 

With this method, it is unnecessary to store all the flow 

identifiers seen in the measurement period and rerun the 

algorithm with different hash functions. Thus, this method is 

very practical for real-time flow counting from the viewpoint 

of storage consumption as well as computational time. The 

method obviously outputs the most accurate estimation for 

n > nmax. The method of [9] does not yield a solution that is 

larger than nmax. This means that the estimation by the 

method of [9] is not better than the proposed method. For 

n < nmax, the proposed method may overestimate the flow 

number. However, the expected error caused by this 

overestimation is not large. This is confirmed in Fig. 12. 

Fig. 12 plots the simulation result that compares the 

standard error obtained by the proposed method with the 

method of [9]. The vector size m is 10007 in this figure. The 

figure shows that the error of the proposed method is slightly 

larger for 70000 < n < 86000. However, the difference is not 

very large. For n > 88000, the error becomes smaller for the 

proposed method. This characteristic shows that the accuracy 

of the proposed method is not inferior to the method 

mentioned in [9]. 

 

Fig. 12.  Comparison between the methods that handle the vector fill-up 

problem. 

B. Vector Size 

The vector size should be determined to achieve a 

sufficiently low error and a negligibly small fill-up 

probability for the maximum number of flows. Thus, it 

becomes necessary to forecast the maximum number of flows 

observed in the measurement period. 

The number of flows is bounded by the number of packets 

arriving in measured time. The number of packets is 

estimated by the product of the packet rate and time. The 

packet rate is bounded by the ratio of the link bit rate to the 

packet size. Therefore, for time T (s), the link bit rate r (b/s), 

and the minimum packet length lmin, the flow number n is 

bounded as follows: 

minl

rT
n ≤ . (21) 

This upper bound is often not tight. However, it can be 

tight for extreme cases, for example, when the monitored link 

is under a UDP flood or a TCP SYN flood attack with a 

spoofed source address [13]. For these attacks, the link 

capacity may be fully used by short attack packets, each of 

which have a different source address and source port. Thus, 

the number of observed flow identifiers may approach that of 

the arrived attack packets. 

For the open socket scenario, Un is the number of vector 

elements untouched during the timeout period. Thus, the 

vector should not be fully used by the packets that arrive 

during the timeout period. This means that the right side of 

(21) must be evaluated by setting T to the timeout period. It 

should be noted that the timeout period may be larger than the 

measurement interval. For the active flow scenario, T is 

simply the interval from the start time t1 to the stop time t2. 

For example, assuming that the number of flows is estimated 

every 1 s, r is 1 Gb/s and lmin is 42 octets. Then, (21) 

concludes that n is not larger than 2.97 × 106. This requires 

the vector size m to be 3.84 × 10
5
 if the standard error is less 

than 0.01. 
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VI. EVALUATION BY NETWORK DATA 

The effectiveness of flow counting, which is based on the 

linear counting algorithm, is evaluated by using real-world 

network data. The evaluation is performed for two different 

scenarios. It is shown that the error characteristic is very 

different depending on the scenario. 

A. Active Flow Scenario 

The linear counting algorithm is implemented as a 

program that calculates the number of flows for the active 

flow scenario. The program can read a live packet stream as 

well as a tcpdump-format file through the pcap library 

[14]. The program is written in C language and runs on a 

Linux OS. 

The program was executed for real-world network data, 

which is available from the MAWI database supported by the 

WIDE project [15]. From the files provided by the database, a 

1 hour file was created by combining four 15-minute files 

taken on April 13, 2011 at sample point F. The input data file 

was then created by extracting IP version 4 TCP packets from 

this 1 hour file. The input data file was fed to the program, 

which estimated the number of flows with an interval of 1 s. 

For comparison purposes, the true number of flows was also 

obtained by the method described in Appendix B by using the 

tcpslice [14] and tcptrace [16] programs. 

The input data was taken for a 150 Mb/s bidirectional link.  

From this bit rate, the upper bound of n is calculated as 

8.9 × 105by using (20). The actual number of flows was much 

smaller than this bound. Fig. 13 shows the output of the linear 

counting algorithm for m = 10007 in comparison with the 

true value. The output of the linear counting algorithm is very 

close to the true value. Fig. 14 depicts the close-up of the 

characteristics for m = 50021 and m = 3001. The figure 

indicates that the estimation for m = 50021 is very accurate. 

By contrast, a substantial error is observed for m = 3001. This 

shows that the statistical error of the algorithm is larger for a 

smaller value of m. 

 

Fig. 13.  Flow number evaluated by the linear counting algorithm in the 
active flow counting scenario. 

To clarify the relationship between m and the statistical 

error, the standard error was evaluated for the linear counting 

algorithm by changing the value of m. This result is depicted 

in Fig. 15. The figure also shows the theoretical value of the 

standard error computed for n = 2445, which is the average 

flow number of the 1hour data file. Fig. 15 shows that the 

error decreases by increasing the value of m. In Addition, the 

error of the linear counting algorithm is very close to the 

theoretical standard error, which is obtained assuming 

n = 2445. This characteristic implies that the error is almost 

determined by the statistical nature of the algorithm for the 

active flow scenario. Thus, it is easy to exactly estimate the 

error for the vector size and the average flow number by 

using (4) or (13)−(16). 

 

Fig. 14.  Estimation by the linear counting algorithm for m = 50021 and 

m = 3001. 

 
Fig. 15.  Relationship between the standard error and the vector size for the 

active flow counting scenario. 

The above results conclude that the number of flows is 

exactly estimated by the linear counting algorithm for the 

active flow scenario. Additionally, the actual estimation error 

is easily forecasted by the theory. Therefore, it is not difficult 

to determine the vector size for a given standard error, the 

fill-up probability, and an expected flow number for this 

scenario. 

B. Open Socket Scenario 

The linear counting algorithm was also examined for the 

open socket scenario. A program was implemented for this 

purpose as well. The program basically detects the 

termination of a flow by detecting timeouts. Thus, the 

program employs a timestamp vector (TV), which was 

introduced by [7]. However, the termination detection is 

based on a timeout, thus not very accurate. This means that a 

large estimation error is unavoidable. Thus, the program 
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employs three improvement techniques, which are suggested 

or examined in the literature [7], [10]−[12]. These techniques 

are referred to as T1, T2, and T3 hereafter and are described 

as follows. 

T1) FIN/RST message utilization [7], [10] 

This mechanism avoids the overestimation introduced by 

considering terminated flows to exist during the timeout 

period. Since a TCP flow is terminated with a FIN or RST 

message in a regular operation, its termination is basically 

discovered by watching a FIN or RST message. On the basis 

of this concept, the overestimation is eliminated by 

subtracting the number of flows that issued FIN/RST 

messages for the timeout period from the estimated flow 

number. The number of flows that issued the FIN/RST 

messages is easily counted by using another TV, whose 

elements are updated at arrivals of FIN/RST messages. This 

additional TV is referred as the FIN vector hereafter. 

T2) Short timeout for one-packet flows [11], [12] 

In real-world network data, there are many one-packet 

flows, each issuing only one packet (for example, a TCP 

SYN message). For one-packet flows, the termination cannot 

be detected by the FIN/RST messages and thus must be found 

by analyzing timeouts. Unfortunately, the timeout based 

method considers a one-packet flow to exist for the timeout 

period though it is actually terminated in a very short 

transmission time, causing excessive overestimation. This 

overestimation decreases by counting how many times each 

TV element is updated. Suppose that the update count of an 

element is 1. For this case, the element is obviously updated 

by one flow and only one packet has been issued from the 

flow. Then, it is likely that this flow is a one-packet flow. 

Thus, the overestimation is reduced by applying a smaller 

timeout period to such a vector element. Let uh denote how 

many times the h-th vector element ( 10 −≤≤ mh ) was 

updated. In the following, let To, 1denote the timeout period 

for the TV element having uh = 1. Similarly, the timeout 

period is denoted by To, 2 for the element having uh = 2. 

Timeout period for other elements is To. The value uh is reset 

to 0 when the measurement starts or the element is not 

updated for To.  

T3) FIN/RST message count [11] 

The accuracy of termination detection is improved by 

checking FIN/RST messages. However, a host may transmit 

multiple FIN messages repeatedly, if the peer host does not 

respond. In this case, the program considers the flow to be 

terminated by the first FIN message, though it is actually 

ended with the last FIN (or RST) message. If this happens, 

the flow number is underestimated because the flow is 

considered to end earlier than its actual termination. This 

underestimation is improved by counting the number of the 

FIN messages associated with the h-th vector element. Let vh 

denote the number of FIN messages. Then, if vh> 2, the h-th 

FIN vector element is not used to count the terminated flows. 

That is, the program considers that the flow associated with 

this element is repeatedly issuing multiple FIN messages and 

is not terminated. The counter vh is reset to 0 when the 

measurement starts or the TV element is not updated for To. 

For an RST message arrival, vh is set to 1 and thus the 

associated FIN vector element is utilized to count the 

terminated flows. 

The improved version of the TV algorithm that employs 

the above techniques T1, T2, and T3 was implemented as a 

program, which was written in C language and runs on a 

Linux OS. It uses the pcap library to read live traffic as well 

as the tcpdump format files. 

The program was executed for the same 1hour file that was 

used in the Section VI.A. Fig. 16 shows the result. In Fig. 16, 

m was set to 4000037. The timeout periods To, To, 1, and 

To, 2were set at 96 s, 1 s, and 10 s, respectively. These timeout 

values were chosen to achieve the best result. 

By comparing Fig. 16 and Fig. 13, it is noticeable that the 

number of flows greatly differs for the two scenarios. The 

average flow number was 2445 for the active flow scenario 

while it was 7313 for the open socket scenario. This shows 

that the real-world network holds many low-rate inactive 

flows, which are not counted for the active flow scenario. 

This difference suggests that these two scenarios are 

completely different and should not be confused.  

In Fig. 16, the output of the improved TV algorithm is 

considerably close to the true value. The standard error of 

estimation by the program was 0.046. Meanwhile, the 

theoretical error value of the linear counting algorithm is 

3.5×10 – 4 form = 4000037 and n = 7313. Therefore, the 

observed error is much greater than the theoretical value, 

computed by the statistical nature of the linear counting 

algorithm. In Addition, the error for the open socket scenario 

greatly depends on the parameters used in the termination 

detection. For example, if To increases to 110 s, the error 

increases to 0.076. Similarly, if To decreases to 80 s, the error 

increases to 0.088. Judging from these characteristics, it is 

concluded that the termination detection mechanism is the 

main cause of the estimation error for the open socket 

scenario. 

 
Fig. 16.  Flow number evaluated by the improved TV algorithm in the open 

socket scenario. 

The improvement techniques are essential to achieve good 

estimation accuracy. Fig. 17 shows the effectiveness of the 

technique T2. The timeout period was 4 s for the original TV 

algorithm, while To, To, 1, and To, 2were 11 s, 1 s, and 10 s, 

respectively, for the method improved with T2.These timeout 

values were chosen to minimize the standard error. In the 

given figure, the number of flows exhibits a peak from 

0:28:41 to 0:28:42 because of temporally increased 

one-packet flows. For this period, the output of the original 

TV algorithm greatly overestimates the flow number. In 

contrast, the overestimation is completely removed by 

employing the technique T2. Fig. 18 compares the case of 
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employing only T2 with that of employing T1, T2, and T3. 

The figure shows that the accuracy is further improved by 

using T1 and T3 in addition to T2. 

 

Fig. 17.  Effectiveness of the improvement technique T2. 

 

Fig. 18.  Effectiveness of the improvement techniques T1 and T3. 

The estimated accuracy of the improved TV algorithm 

greatly depends on the vector size m. For example, the 

standard error increases from 0.046 to 0.35 by reducing m 

from 4000037 to 500011. Fig. 19 compares the outputs for 

m = 4000037 and m = 500011. The figure shows that the 

flow number is overestimated for m = 500011. This 

overestimation is caused by T2 and T3. For these techniques, 

the counter values uh and vh exactly show the number of 

packets issued by a flow only if there is no collision for a hash 

value h. For T2, if two or more one-packet flows generate the 

same hash value, uh will be greater than 1. Thus, the short 

timeout period To, 1 is not applied to these one-packet flows. 

This causes overestimation. Similarly, for T3, if three flows 

generate the same hash value, vh becomes larger than 2. Thus, 

the algorithm considers these flows to be retransmitting FIN 

messages. If this happens, the termination is not detected by 

the FIN messages. This also causes overestimation. 

Therefore, the collision probability among hash outputs must 

be negligibly small, for techniques T2 and T3 to work 

correctly. This requires a large vector size. 

In conclusion, it is more difficult to accurately count the 

flow in the open socket scenario compared to the active flow 

scenario. This is because the error is caused by the detection 

of flow termination. Nevertheless, the estimation is 

considerably accurate as shown in Fig. 16, if the 

improvement techniques T1, T2, and T3 are employed. 

However, the vector size m must be large to obtain the 

accurate estimation with these techniques.  This means that 

the required memory consumption is large for the open 

socket scenario. 

 

Fig. 19.  Characteristic of the improved TV algorithm for m = 4000037 and 

m = 500011. 

 

VII. CONCLUSION 

This paper discusses the real-time flow counting technique 

based on the linear counting algorithm, which is based on a 

hash function and a vector. First, the paper proposed a strict 

analysis to clarify the exact statistical nature of the algorithm. 

The accuracy of the proposed analysis was confirmed 

through a computer simulation. Thereafter, strict analysis 

was compared with the approximate analysis derived in [9]. 

As a result, it was shown that the approximations were 

accurate with a few exceptions. 

Next, the paper investigated how to treat the vector fill-up 

problem in flow counting. It was shown in the method of [9] 

that re-executes the algorithm with a different hash function 

is not adequate for flow counting. Instead, the paper reviewed 

a very simple method, which uses the maximum output value 

for the vector fill-up case. The simulation results confirmed 

the extensiveness of the method. The upper bound of the flow 

number was also investigated as a basis for determining the 

appropriate vector size. 

This paper strictly distinguishes between two different 

measurement scenarios of flow counting: the active flow 

scenario and the open socket scenario. The algorithm was 

tested for these scenarios using real-world network data. As a 

result, for the active flow scenario, it was found that the 

estimation is accurate and the error is caused by the statistical 

nature of the algorithm. It is more difficult to accurately 

estimate the flow number for the open socket scenario. For 

this scenario, the estimation error is larger because of the 

difficulty in finding flow termination. It was also found that a 

large vector size is necessary for an open socket scenario. 

Estimating the flow number accurately with a small memory 

space remains to be an open problem. 

APPENDIX 

A. Hash Function 

This study employs a prime-modulo-based hash function. 
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Assume that we are monitoring an IP version 4 packet stream. 

Let is and id denote the source and destination addresses, and 

js and jd denote the source and destination port numbers, 

respectively. In addition, let p be the protocol field value. 

Then, for the flow identifier x = (p, is, id, js, jd), the function 

h(x) is 

mjjbiipaxh mod)}()2({)( dsds
16 ⊕+⊕⊕= , (a.1) 

Where a and b are constants and m is a prime number. In the 

simulations, a and b were set at 1. In Fig. 12, for the method 

of [9], b was changed to 1, 2, … to obtain different hash 

functions.  For the evaluation that uses real-world network 

data, a and b were set to 253 and 31, respectively to obtain 

better results. 

B. True Number of Flows 

For active flow and open socket scenarios, the true number 

of flows was estimated as follows. 

To obtain the number of active flows, the packet dump file 

was first sliced into 1 s files by the tcpslice [14] program. 

Each 1 s file is inputted into the tcptrace program. The 

output shows how many flows issued packets during a 1 s 

period.  

For the open socket scenario, the packet dump file is first 

entered in the tcptrace program. The output of the 

program is stored in a text file. This output file contains the 

arrival times of the first and last packets in a flow. Assume 

that the flows are repeatedly counted at times t1, t2, …. Then, 

the true number of flows at ti (i = 1, 2 …) are obtained by 

counting the flows of the first packet arriving before ti and the 

last packet arriving after ti − 1. A Perl script was written to 

extract time information from the tcptrace output file and 

count the number of flows to be measured at ti. 
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