

7

Abstract—Real-time flow counting is significant for Internet

Protocol (IP)network management because it enables operators

to take appropriate action against anomalies or performance

degradation. Most flow counting methods proposed in the

literature are based on the linear counting algorithm, which was

originally developed for database system applications.

This paper first strictly analyzes the statistical nature of the

linear counting algorithm. The correctness of the analysis is

confirmed through a computer simulation. The strict analysis is

also compared with an approximate analysis reported in a

previous study. The result clarifies the conditions where the

previous approximate analysis did not provide good accuracy.

The linear counting algorithm is based on a hash function

and a vector. To apply this algorithm to flow counting, two

design issues arise. One is the method that handles the case of

exhausting all vector elements, while the other is the

appropriate vector size. The paper presents a simple and

effective method for the former. For the latter issue, the upper

bound for the flow number is derived as a basis for determining

the vector size.

The algorithm is examined for two distinct measurement

scenarios: the “active flow scenario” and the “open socket

scenario.” For each scenario, the estimated accuracy is assessed

using real-world network data. As a result, it is shown that the

accurate measurement is more difficult for the open socket

scenario than for the active flow scenario.

Index Terms—IP networks, network management,

performance measurement, traffic

I. INTRODUCTION

Flow measurement in Internet Protocol(IP) networks has

been studied using various metrics such as flow byte volume,

flow packet volume, flow duration, flow timeout, and

heavy-hitter flows[1]−[3]. Among these metrics, the number

of flows is significant in several useful applications,

including port scan detection, denial-of-service attack

detection, general measurement in traffic analysis, and the

estimation of a TCP connection’s throughput[4]−[8].

In IP networks, a flow is identified by a flow identifier,

which is defined as a set of fields in the packet header [4], [7].

Flow counting is defined as a procedure that determines how

many different flow identifiers exist in a packet stream. The

number of flows is measurable in a real-time, online manner,

whereas some other flow metrics [1]−[3]must be analyzed

Manuscript received January15, 2012.

S. Zhu is with the Department of Information Systems Engineering, the
Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa,

Imizu-shi, Toyama 939-0398, Japan (e-mail: shanzhu06@hotmail.com).

S. Ohta is with the Department of Information Systems Engineering, the
Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa,

Imizu-shi, Toyama 939-0398, Japan (phone: +81-768-56-7500; fax:

+81-768-56-6172; e-mail: ohta@pu-toyama.ac.jp)...

offline. Their real-time nature makes the number of flows a

particularly useful performance metric.

Flow counting is essential to determine the number of

unique values in a large data set. This is efficiently achieved

by an algorithm called linear counting, which was

comprehensively studied from the viewpoint of database

applications [9]. The flow counting methods reported in the

literature [4]-[7] are based on this algorithm.

The linear counting algorithm is based on a vector and a

hash function. To successfully apply the algorithm to an

actual problem, the vector size must be appropriately

determined by considering the statistical nature of the

algorithm. Several formulas that show the statistical nature of

the linear counting algorithm have been presented [9].

However, the formulas are derived using approximation, and

thus, are not strictly exact. There have been no studies that

assess the accuracy of the approximation sufficiently.

Therefore, it is necessary and interesting to evaluate the

formulas using a strict analysis. In addition, the algorithm

was developed for a database application. Thus, for the flow

counting application, the practical design issues of the

algorithm must be addressed to satisfy the requirements

inherent to IP networks. It is also necessary to evaluate the

performance of the algorithm for flow counting in IP

networks.

This study investigates the above issues using the flow

counting method based on the linear counting algorithm. The

first purpose of this study is to strictly analyze the linear

counting algorithm and assess the accuracy of the previous

approximate formulas. Secondly, the study also focuses on

the problems inherent to the flow counting application.

For the first purpose, the paper strictly analyzes the

statistical nature of the linear counting algorithm. The

analysis is done in a completely different way from the

previous study. The accuracy of the analysis is confirmed

through a computer simulation. It is also shown that the

previous approximate formulas are not always exact

depending on conditions such as the problem size. Using

strict analysis, it is possible to design the vector size, exactly

and independently, for the condition.

To accomplish the second purpose, the paper proposes a

new method to deal with the case when the elements of the

vector used in the algorithm are exhausted during the

counting process. It is confirmed that the proposed method

provides an accurate estimation with a simple computational

procedure. The paper assesses the upper bound for the

number of measured flows. This bound is essential to design

the vector size. The flow counting method based on the linear

counting algorithm is also tested for real-world network data.

Additionally, the paper evaluates the effectiveness of the

Real-Time Flow Counting in IP Networks:

 Strict Analysis and Design Issues

Shan Zhu and Satoru Ohta

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), February Edition, 2012

8

accuracy improvement techniques reported in the literature

[7], [10][12]. By employing these results, it becomes

possible to design the algorithm optimally for the flow

counting application.

This paper is organized as follows. First, the studies related

to this paper are reviewed in Section II. Section III strictly

analyzes the statistical nature of the linear counting algorithm.

The proposed strict analysis is compared with the

approximate formulas of the previous study in Section IV.

Section V discusses the design issues when the linear

counting algorithm is applied to the flow counting. In Section

VI, the flow counting based on the linear counting algorithm

is examined for real network data. Finally, Section VII states

the conclusion.

II. RELATED WORK

A. Flow-Related Measurement

In IP networks, a flow is identified by a flow identifier,

which is defined as a set of packet header fields [4], [7]. This

paper defines a flow identifier as a quintuple of source

address, destination address, protocol, source port, and

destination port, as commonly found in the literature[2], [7].

This definition means that a flow is associated with an open

TCP or UDP socket across the monitored link.

Since a flow is a basic unit of communication between

application processes, it is important to measure the

characteristics of flows for management purposes. Therefore,

various flow measurement techniques have been studied

[1]−[7]. Reference [1] investigated several flow

characteristics including the flow volume and duration. In

addition, [1] introduced the concept of an active flow; that is,

a flow which is active as long as the packets observed are

separated in time by less than a specified timeout value.

Reference [2] investigates the relationship between the flow

characteristics and its applications. In [3], the method of

identifying heavy-hitter flows, which issue many packets, is

investigated to find the dominant traffic from sampled data.

References [4]−[7] report the flow counting techniques,

which estimate the number of flows during a specified time

period. While the studies of [1]−[3] present offline

approaches, these flow counting techniques are able to

provide real-time, online measurements. Because of the

real-time nature, the flow counting techniques are important

for network operators to take immediate action against

anomalies or degradation. In [4], [5], flow counting

algorithms based on a bit vector are explored. A similar

technique is used in the traffic measurement system

described in [6]. Meanwhile, Reference [7] suggests that the

method of [4] uses a discrete measurement interval and

underestimates the number of flows. To avoid this

underestimation, a method called the timestamp vector

algorithm is proposed in [7].

It is inadequate to say that the method of [4]

underestimates the flow number because the class of counted

flows is different between the methods presented in [4] and

[7]. The method of [4] exactly estimates the number of active

flows, which conforms to the definition found in [1]. By

contrast, the method of [7] tries to count all existing flows,

which include inactive flows in addition to active flows.

Because of this difference, it is trivial to estimate that the

method of [4] is smaller than the method of [7]. Therefore, we

should not easily conclude that the method of [4] is inferior to

that of [7]. This paper strictly distinguishes this difference in

the flow class.

B. Linear Counting Technique

The flow counting problem is equivalent to counting the

number of unique values found in a data set. A practical

algorithm for doing this is called the “linear counting

algorithm,” which is comprehensively analyzed in [9].

The linear counting algorithm is described as follows. The

algorithm employs a bit vector of size m. First, all elements of

the bit vector are initialized to 0. Each data value is then

inputted to a hash function, which maps the input value to an

integer from 0 to m – 1. The bit vector element whose index

is the hash output is turned to 1. Therefore, the value 0 means

that the element was untouched during the hash computations.

After all data values are processed, the number of unique

values is estimated from the number of untouched elements.

Reference [9] derives the following important results by

analyzing the linear counting algorithm.

Assume that there are n unique values in the data set. Let

Un be the number of untouched bit vector elements for n

unique values. Un is a random variable. The expected value of

Un, denoted by E(Un), is

E(Un) ≅ me
 – n/m

for m >> 1. (1)

Let n̂ be the expected number of the unique values. Then,

from (1),

m

U
mn n

elogˆ −= . (2)

We can estimate the number of unique values by n̂ . Since Un

is a random variable, n̂ varies for a fixed value of n and

includes an error.

Reference [9] also derived the variance of Un as follows:

{ }mnmn
n emnmeU //)/1(1)(Var −− +−≅ . (3)

Based on (3), the standard error of the ratio nn /ˆ is estimated

as follows:

n

mnem

n

n mn 2/1/)1/(ˆ
StdError

−−
≅








, (4)

where the standard error is defined as the square root of the

variance.

The linear count algorithm does not work if all of the

vector elements are filled up by 1. If this happens, since

Un = 0,the right side of (2) does not have a valid value. Thus,

it becomes impossible to estimate n. For the avoidance of this

problem, it is essential to considerably decrease the

probability that all the elements are filled up by 1. Reference

[9] derives this “fill-up” probability by utilizing the fact that

the distribution of Un approaches the Poisson distribution for

large values of m and n. That is,

() λλ −→= ekkUP k
n !/}{ for ∞→nm, , (5)

where
mnme /−=λ .

Thus, the fill-up probability is:
λ−≅= eUP n }0{ . (6)

Equations (4) and (6) are particularly important to assess

the reliability of the algorithm and to determine the vector

9

size. It must be noted that these equations are approximations

obtained assuming that m and n are large. Thus, the equations

may not be sufficiently accurate depending on the values of m

and n. Reference [9] compares their approximations with a

simulation result to evaluate the accuracy from m = 100 to m

= 100,000. However, since the number of trials in their

simulation is not large (100 trials), the result is not very

reliable. Moreover, the target of their simulation is limited to

the estimated value n̂ and the standard error. That is, they did

not show any results for the fill-up probability. Thus, a more

comprehensive study is needed to assess the accuracy of the

approximation. In Section IV, the accuracy of these

approximate formulas is evaluated using strict analysis.

C. Flow Counting Scenarios

As shown above, flow counting techniques that measure

different classes of flows have been reported. This study

categorizes these techniques into the “active flow scenario”

and the “open socket scenario.” Both of these scenarios

provide useful information for network management. Each

scenario is specified as follows:

(1) Active Flow Scenario

In this scenario, the algorithm counts the number of flow

identifiers seen in a specified time period, which starts at time

t1 and ends at time t2. In other words, only active flows are

counted for this scenario. The algorithm does not count the

flow that starts before t1 and stops after t2, if no packets are

betweent1andt2. Therefore, low rate flows may be dropped

from the measurement. Though low rate flows may be

ignored, this scenario is still useful because it provides the

information on active flows, which are influential to the

network performance. The flows counted by this scenario are

depicted in Fig. 1.

Fig. 1. Flows counted in the active flow scenario.

The linear counting algorithm is applied to this scenario in

a straightforward manner. The bit vector elements are first

initialized to 0 at t1. Then, the flow identifier of an arrived

packet is inputted to a hash function, and the vector element

indexed by the hash output is turned to 1. At t2, the number of

active flows can be obtained by counting Un and using (2).

The methods of [4], [5] fall into this scenario. The method

of [4] is basically identical to the above linear counting

algorithm. The method also employs a number of ideas such

as the virtual bitmap, the multi resolution bitmap etc, to

reduce the memory space.

(2) Open Socket Scenario

In this scenario, the algorithm counts the number of flows

that exist on the monitored link at a specified time period.

Namely, the number of concurrently open sockets is

estimated. Assuming that flows are repeatedly counted at

times t1, t2,… Then, the open sockets that exist at ti (i = 2,

3,…) must be counted even if they do not issue any packets

during the interval [ti – 1, ti]. Fig. 2 illustrates the flows to be

counted in this scenario. The open socket scenario is as

significant as the active flow scenario because the

measurement result will include the information about low

rate flows.

Fig. 2. Flows counted in the open sockets scenario.

To perform this scenario, the algorithm must continuously

monitor the packet stream and decide how many flows are

generated and not terminated before ti. Thus, it is important to

detect flow termination. Reference [7] presents a method that

detects the flow termination through timeouts. This method is

based on the linear counting algorithm. However, the method

employs a vector of timestamps instead of a bit vector.

Because of this, the method is called the timestamp vector

(TV) algorithm. When a packet arrives, the method first

obtains the hash output from its flow identifier. Then, its

arrival time is written to the vector element whose index is

the hash output. At measurement time ti, Un is obtained as the

number of vector elements which are not updated within the

timeout period. The number of existing flows is then

estimated by (2).

Actually, the termination detection by timeouts is not very

accurate. As a method to avoid this inaccuracy, [7] suggests

the usage of the TCP FIN field and adapting the timeout

period. The effectiveness of employing the TCP FIN was

confirmed in [10]. Additional improvement techniques were

examined in [11], [12].

III. STRICT ANALYSIS

This section strictly analyzes the statistical nature of the

linear counting algorithm. The analysis derives the exact

probability distribution for the number of bit vector elements

turned to 1. This probability distribution is expressed in a

recurring form and obtained by iterative computation. Using

probability distribution makes computing the standard error

and the fill-up probability possible.

Our assumption is that n flows do exist having identifiers,

suchasf1, f2,…,fn. These flow identifiers are mapped to hash

values h1, h2,…,hn. Amongsth1, h2,…,hn, some values may be

identical because of a hash collision.

Let pn be the probability for a set of n flow identifiers that

are mapped to a particular hash value vector (h1,

h2,…,hn).Since a flow identifier is mapped to a particular

hash value with probability p = 1 / m,

: Packets

t1 t2

Flow #1

Flow #2

Flow #5

Flow #3

Flows Counted at t2 (Active Flows)

Flow #4

Flows Not Counted at t2

: Packets

ti – 1 ti

Flow #1

Flow #2

Flow #3

Flow #4

Flows Counted at ti

Flow #5

Flow #6

Flows Not Counted at ti

10

pn = pn = 1 / mn. (7)

Hereafter, set { }),(,),,(),,(2211 nn hfhfhf K is referred to

as a mapping set. Assume that there exist

k(),min(1 mnk ≤≤) distinct values H1, H2,…,Hk among h1,

h2,…, hn. We define Nn, k as the number of possible mapping

sets between the n flow identifiers and these k distinct hash

values. Using Nn, k, Nn, k pn is the probability that the hash

values H1, H2,…,Hk are generated from n flows f1, f2,…, fn.

Let Mb, k be the number of sets { }kHHH ,...,, 21 formed by

choosing k distinct numbers from 0, 1,…,m – 1. Trivially,

Mb, k is expressed by binomial coefficients,









=

k

m
M kb, . (8)

Let pn, k be the probability that k elements of the bit vector

are set to 1 by n flows. Using (7) and (8), pn, k is obtained as

follows.

nknnknkbkn
m

N
k

m
pNMp

1
,,,, 








== . (9)

Equation (9) gives the strict probability that k vector

elements are touched by n flows.

Next, let us investigate the characteristics of Nn, k. First, it is

obvious that

Nn, 1 = 1. (10)

This is because all the n flow identifiers generate the same

hash value H1 for k = 1. If, k = n,

Nn, n = n!. (11)

In this case, the flow identifier f1 may generate one of the n

hash values H1, H2, …,Hn as h1, and f2 may then generate one

of the n – 1 values other than h1. By repeating this

observation,(11) is easily derived.

To compute Nn, k for),1min(1 mnk −≤< , let us consider

the following two cases:

Case A) The hash value hn generated by the flow identifier

fn colliding with one or more hash values generated by some

of f1, f2,…,fn – 1.

Case B) The hash value hn does not collide with any of the

hash values generated by f1, f2,…, fn – 1.

These two cases are illustrated in Fig. 3.There are no other

cases in which k distinct hash values are obtained from n flow

identifiers. Thus, we can obtain Nn, k by summing the number

of mapping sets for these cases.

For Case A, k distinct hash values are generated from the

n – 1flow identifiers f1, f2,…,fn – 1. Otherwise, k distinct hash

values will not be generated because hn collides with some of

the h1, h2, …,hn – 1 values. The number of mapping sets

between n – 1 flows and k hash values is Nn – 1, k. For each of

these mapping sets, hn may take one of the kvalues, H1,

H2,…,Hk. Thus, the number of possible mapping sets is

k Nn – 1, k for this case.

In Case B, k – 1 distinct hash values other than hn are

generated from the n – 1 flow identifiers f1, f2,…, fn – 1because

hn does not collide with any of the h1, h2,…,hn – 1 values. The

hash value hn may take one of the k values, H1, H2,…, Hk. For

each of these k values, the number of mapping sets between

other n – 1 flow identifiers and the k – 1 hash values is

Nn – 1, k – 1. Therefore, the number of possible mapping sets is

k Nn – 1, k – 1 in this case.

From the above consideration, we derive:

Nn, k = k (Nn – 1, k + Nn – 1, k – 1)

 for),1min(1 mnk −≤< . (12)

Fig. 3. Possible mappings from n flows to k distinct hash values: (a) Case

A and (b) Case B.

The following recurrence formulas are derived using (8),

(9),(11), and (12).

1,11,
1

−= nn p
m

p for n > 1. (13)

1,1,

1
−−

+−
= nnnn p

m

nm
p for n > 1. (14)

1,1,1,

1
−−−

+−
+= knknkn p

m

km
p

m

k
p

 For n > 2,),1min(1 mnk −≤< . (15)

Thus, for arbitrary n and k (),min(1 mnk ≤≤), we can

calculate the probability pn, k by beginning the computation

with p1, 1 and iteratively applying (13)−(15) while

incrementing n. From (9), the initial value of the iteration is

1
1

1
1,1 =








=

m

m
p . (16)

If pn, k is known, the standard error and the fill-up

probability are immediately obtained. The iterative

computation of (13)−(15) is not as fast as the approximate

formulas derived in [9]. However, the computational time is

less than a few seconds on a PC with a Core2Quad2.83GHz

CPU for n< 20000. Thus, this method is considerably

practical for a moderate size problem.

To validate the above analysis, a computer simulation was

performed. In this simulation, flow identifiers composed of

5-tuples were randomly generated and fed to a hash function

on the basis of a prime modulo. The hash function maps a

flow identifier to an integer in [0, m – 1]. The employed hash

function is detailed in Appendix A. For the hash output

obtained from a flow identifier, the corresponding vector

element vh is set to 1. After executing this procedure for n

flow identifiers, the number of untouched vector elements

was counted. Repeat in g this procedure yielded the

distribution of Un. The number of repetitions was 10
6
 and the

n Flow Identifiers

k Distinct Hash Values

h(fi)

H1

H2

H3

Hk

Hk − 1

f1

f2
f3

f4

fn − 1

fn

f1, f2, …, fn − 1: k − 1 Hash Values

fn: the Remaining Value without Collision

(a)

n Flow Identifiers

k Distinct Hash Values

h(fi)

H1

H2

H3

Hk

Hk − 1

f1

f2
f3

f4

fn − 1

fn
fn & fi (i < n): Collision

f1

f2
f3

f4

fn − 1

fn

(b)

11

vector size m was a prime number 10007. The distribution of

Un was tested for n = 5000 and n = 30000. That is, the

characteristic is assessed for the cases of n < m and n > m.

The simulation result is compared to the theoretical value

obtained from (13)−(16) by setting k = m – Un.

Figs. 4 and 5 show the simulation results. In these figures,

the x-axis is Un, while the y-axis is the frequency of obtaining

each Un value during 10
6
 trials. The figure also plots 10

6
 pn, k

(k = m – Un) as the theoretical value. Fig. 4 shows the

characteristic for n = 5000, while Fig. 5 shows the

characteristic for n = 30000. The figures show that the

simulation result is very close to the theoretical value for

n < m as well as for n > m. This confirms the correctness of

the proposed analysis.

Fig. 4. Distribution of Un for n = 5000.

Fig. 5. Distribution of Un for n = 30000.

IV. COMPARISON BETWEEN STRICT ANALYSIS AND

APPROXIMATION

This section compares the proposed strict analysis with the

approximate formulas derived in [9]. The comparison is

performed for the standard error of nn /ˆ as well as the fill-up

probability. For the method of [9], the values are obtained by

(4) and (6). For the strict analysis, the standard error of nn /ˆ

is computed by:

∑
−

=








−=








),1min(

1

,

2

1
ˆˆ

StdError

nm

k

kn
k p
n

n

n

n
, (17)

where

m

km
mn ek

−
−= log

)

.

The probability pn, k is calculated by (13)−(16). The fill-up

probability by strict analysis is:

mnn pUP ,}0{ == . (18)

In addition, a computer simulation was performed on the

analysis. In the simulation, n flow identifiers were randomly

generated and the linear counting was executed in each trial.

For standard error evaluation, the squared error of nn /ˆ was

computed from the estimated value n̂ . If the vector was filled

up, the data of the trial was not used. The trial was repeated

10
6
 times and then the standard error was obtained from the

average of the squared errors. For the fill-up probability, the

simulation procedure is similar. In this evaluation, the

number of vector fill-up events was summed up for 10
6
 trials.

Thus, the fill-up probability is estimated by dividing the total

number of fill-up events by 10
6
.

Figs. 6 and 7 show the standard error for a small vector

size (m = 101) and a moderate vector size (m = 10007). In the

figures, the x-axis is n, while the y-axis is the standard error of

nn /ˆ . In Fig. 6, the proposed strict analysis agrees well with

the simulation result. This supports the accuracy of the

proposed analysis. The given figure shows that the formula of

[9] considerably underestimates the error for a larger value of

n. This is predictable because the formula is valid only for

large values of m. That is, the method is not very accurate if m

is as small as 101.In Fig. 7, the method of [9], the proposed

analysis and the simulation result show almost the same

standard error values. This clearly shows that the formula

developed in [9] provides a very good approximation if m is

as large as 10007.

Fig. 6. Standard error for a small vector size: m = 101.

However, for m = 10007, the accuracy of the

approximation, depending on the number of flows, is not

always as good as in Fig. 7.Fig.8 plots the standard error

obtained for larger values of n by keeping m to 10007. For

this region of n, the method of [9] substantially

underestimates the standard error. This may cause a problem

in designing the vector size. Suppose that the standard error

should be smaller than 5% and there exist 71500 flows. Then,

the method of [9] will set m at 10007 to achieve the target

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

1.8E+04

2.0E+04

6000 6050 6100 6150

F
re

q
u

e
n

cy

Number of Untouched Elements

Theory

Simulation

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

440 460 480 500 520 540 560

F
re

q
u

e
n

cy

Number of Untouched Elements

Theory

Simulation

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300

S
ta

n
d

a
rd

 E
rr

o
r

Number of Flows

Method of [9]

Strict Analysis

Simulation

12

standard error because the error value obtained by (4) is

0.0497. However, the actual error value will be larger than

5%; the value is computed as 0.0567using the proposed strict

analysis. Fortunately, the approximation does not greatly

differ from the strict value. Thus, the problem caused by

underestimation is avoidable by setting m to a slightly larger

value than that obtained by (4).

Fig. 7. Standard error for a moderate vector size: m = 10007.

Fig. 8. Standard error for m = 10007 in the region where the method of [9]

is not accurate.

Figs. 9 and 10 compare the proposed strict analysis with

the method of [9] and the simulation result for the fill-up

probability. Fig. 9 shows the characteristic for m = 101 while

Fig. 10 shows that m = 10007. Fig. 9 shows, if m = 101, the

method of [9] considerably overestimates the fill-up

probability in comparison with the strict analysis and the

simulation result. In contrast, Fig. 10 confirms that the

approximation is in tandem with the strict analysis and the

simulation result if m is as large as 10007.

For m = 10007, the approximate value of the fill-up

probability is not very accurate if the fill-up probability is

low.This is shown in Fig. 11, which compares the

approximation with the strict analysis for the region where

the fill up probability is less than 10
−14

. In this figure, the

simulation result is omitted because it is difficult to obtain

reliable data with a sufficient number of fill-up events

through the simulation. The figure shows that the

approximation overestimates the fill-up probability. This

means that the error by the approximation is on the safe side.

That is, if m is determined for a target fill-up probability by

using the formula of [9], the actual fill-up probability will be

smaller.

Fig. 9. Fill-up probability for a small vector size: m = 101.

Fig. 10. Fill-up probability for a moderate vector size: m = 10007.

Fig. 11. Fill-up probability for m = 10007 in the region where the method of

[9] is not accurate.

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0 5000 10000 15000 20000 25000 30000

S
ta

n
d

a
rd

 E
rr

o
r

Number of Flows

Method of [9]

Strict Analysis

Simulation

4.0E-02

4.5E-02

5.0E-02

5.5E-02

6.0E-02

6.5E-02

7.0E-02

70000 72000 74000 76000

S
ta

n
d

a
rd

 E
rr

o
r

Number of Flows

Method of [9]

Strict Analysis

Simulation

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

240 260 280 300 320 340 360 380 400

F
il

l-
U

p
 P

ro
b

a
b

il
it

y

Number of Flows

Method of [9]

Strict Analysis

Simulation

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

68000 72000 76000 80000 84000

F
il

l-
U

p
 P

ro
b

a
b

il
it

y

Number of Flows

Method of [9]

Strict Analysis

Simulation

1.0E-17

1.0E-16

1.0E-15

1.0E-14

56000 56200 56400 56600 56800 57000

F
il

l-
U

p
 P

ro
b

a
b

il
it

y

Number of Flows

Method of [9]

Strict Analysis

13

For practical flow counting, the expected flow number n

will be considerably large. To estimate such a flow number

accurately, the vector size m should also be large. Thus, the

above results imply that the approximate formulas of [9] are

considerably reliable for flow counting applications in real

networks.

V. DESIGN ISSUES IN THE FLOW COUNTING APPLICATION

To apply the linear counting algorithm to flow counting,

two design issues must be addressed. These are strategies for

handling the vector fill-up problem and determining the

appropriate vector size.

A. Vector Fill-Up Problem

If all vector elements are updated during the measurement

period, Un becomes 0. Thus, (2) does not yield any valid

estimation. Therefore, it is necessary to establish a method to

deal with this case. As such a method, [9] recommends

rerunning the linear counting algorithm with a different hash

function. This may be a practical solution for a database

system, where the data is stored in a hard disk. Unfortunately,

this method is inadequate for flow counting. To perform this

method for flow counting, the flow identifiers of all arrived

packets must be stored in the memory to prepare for possible

re-execution of the algorithm. This requires an excessively

large memory space. Moreover, if the algorithm is rerun,

additional computational time is required to re-compute hash

values and evaluate Un. However, if a large memory space is

available to store the flow identifiers, it is advisable to

increase the vector size with the available memory space than

to store the flow identifiers. Since a large vector size will

make the fill-up probability negligibly small, it becomes

unnecessary to store the flow identifier and rerun the

algorithm.

This study proposes a very simple alternative method. That

is, if the vector is filled up, the estimated flow number n̂ is

set to a constant,

maxˆ nn = , (19)

where nmax is the maximum number that the algorithm can

evaluate with the vector size m. Understandably from (2),

nmax is the estimated flow number when Un = 1. Thus,

mmn elogmax = . (20)

With this method, it is unnecessary to store all the flow

identifiers seen in the measurement period and rerun the

algorithm with different hash functions. Thus, this method is

very practical for real-time flow counting from the viewpoint

of storage consumption as well as computational time. The

method obviously outputs the most accurate estimation for

n > nmax. The method of [9] does not yield a solution that is

larger than nmax. This means that the estimation by the

method of [9] is not better than the proposed method. For

n < nmax, the proposed method may overestimate the flow

number. However, the expected error caused by this

overestimation is not large. This is confirmed in Fig. 12.

Fig. 12 plots the simulation result that compares the

standard error obtained by the proposed method with the

method of [9]. The vector size m is 10007 in this figure. The

figure shows that the error of the proposed method is slightly

larger for 70000 < n < 86000. However, the difference is not

very large. For n > 88000, the error becomes smaller for the

proposed method. This characteristic shows that the accuracy

of the proposed method is not inferior to the method

mentioned in [9].

Fig. 12. Comparison between the methods that handle the vector fill-up

problem.

B. Vector Size

The vector size should be determined to achieve a

sufficiently low error and a negligibly small fill-up

probability for the maximum number of flows. Thus, it

becomes necessary to forecast the maximum number of flows

observed in the measurement period.

The number of flows is bounded by the number of packets

arriving in measured time. The number of packets is

estimated by the product of the packet rate and time. The

packet rate is bounded by the ratio of the link bit rate to the

packet size. Therefore, for time T (s), the link bit rate r (b/s),

and the minimum packet length lmin, the flow number n is

bounded as follows:

minl

rT
n ≤ . (21)

This upper bound is often not tight. However, it can be

tight for extreme cases, for example, when the monitored link

is under a UDP flood or a TCP SYN flood attack with a

spoofed source address [13]. For these attacks, the link

capacity may be fully used by short attack packets, each of

which have a different source address and source port. Thus,

the number of observed flow identifiers may approach that of

the arrived attack packets.

For the open socket scenario, Un is the number of vector

elements untouched during the timeout period. Thus, the

vector should not be fully used by the packets that arrive

during the timeout period. This means that the right side of

(21) must be evaluated by setting T to the timeout period. It

should be noted that the timeout period may be larger than the

measurement interval. For the active flow scenario, T is

simply the interval from the start time t1 to the stop time t2.

For example, assuming that the number of flows is estimated

every 1 s, r is 1 Gb/s and lmin is 42 octets. Then, (21)

concludes that n is not larger than 2.97 × 106. This requires

the vector size m to be 3.84 × 10
5
 if the standard error is less

than 0.01.

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

8.0E-02

60000 70000 80000 90000 100000

S
ta

n
d

a
rd

 E
rr

o
r

Number of Flows

Method of [9]

Proposed Method

14

VI. EVALUATION BY NETWORK DATA

The effectiveness of flow counting, which is based on the

linear counting algorithm, is evaluated by using real-world

network data. The evaluation is performed for two different

scenarios. It is shown that the error characteristic is very

different depending on the scenario.

A. Active Flow Scenario

The linear counting algorithm is implemented as a

program that calculates the number of flows for the active

flow scenario. The program can read a live packet stream as

well as a tcpdump-format file through the pcap library

[14]. The program is written in C language and runs on a

Linux OS.

The program was executed for real-world network data,

which is available from the MAWI database supported by the

WIDE project [15]. From the files provided by the database, a

1 hour file was created by combining four 15-minute files

taken on April 13, 2011 at sample point F. The input data file

was then created by extracting IP version 4 TCP packets from

this 1 hour file. The input data file was fed to the program,

which estimated the number of flows with an interval of 1 s.

For comparison purposes, the true number of flows was also

obtained by the method described in Appendix B by using the

tcpslice [14] and tcptrace [16] programs.

The input data was taken for a 150 Mb/s bidirectional link.

From this bit rate, the upper bound of n is calculated as

8.9 × 105by using (20). The actual number of flows was much

smaller than this bound. Fig. 13 shows the output of the linear

counting algorithm for m = 10007 in comparison with the

true value. The output of the linear counting algorithm is very

close to the true value. Fig. 14 depicts the close-up of the

characteristics for m = 50021 and m = 3001. The figure

indicates that the estimation for m = 50021 is very accurate.

By contrast, a substantial error is observed for m = 3001. This

shows that the statistical error of the algorithm is larger for a

smaller value of m.

Fig. 13. Flow number evaluated by the linear counting algorithm in the
active flow counting scenario.

To clarify the relationship between m and the statistical

error, the standard error was evaluated for the linear counting

algorithm by changing the value of m. This result is depicted

in Fig. 15. The figure also shows the theoretical value of the

standard error computed for n = 2445, which is the average

flow number of the 1hour data file. Fig. 15 shows that the

error decreases by increasing the value of m. In Addition, the

error of the linear counting algorithm is very close to the

theoretical standard error, which is obtained assuming

n = 2445. This characteristic implies that the error is almost

determined by the statistical nature of the algorithm for the

active flow scenario. Thus, it is easy to exactly estimate the

error for the vector size and the average flow number by

using (4) or (13)−(16).

Fig. 14. Estimation by the linear counting algorithm for m = 50021 and

m = 3001.

Fig. 15. Relationship between the standard error and the vector size for the

active flow counting scenario.

The above results conclude that the number of flows is

exactly estimated by the linear counting algorithm for the

active flow scenario. Additionally, the actual estimation error

is easily forecasted by the theory. Therefore, it is not difficult

to determine the vector size for a given standard error, the

fill-up probability, and an expected flow number for this

scenario.

B. Open Socket Scenario

The linear counting algorithm was also examined for the

open socket scenario. A program was implemented for this

purpose as well. The program basically detects the

termination of a flow by detecting timeouts. Thus, the

program employs a timestamp vector (TV), which was

introduced by [7]. However, the termination detection is

based on a timeout, thus not very accurate. This means that a

large estimation error is unavoidable. Thus, the program

0

5000

10000

15000

20000

25000

30000

35000

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

A
ct

iv
e

 F
lo

w
s

Time (hh:mm:ss)

True Value

Linear Counting

Algorithm

2000

2200

2400

2600

2800

3000

3200

0:04:00 0:04:10 0:04:20 0:04:30

N
u

m
b

e
r

o
f

F
lo

w
s

Time (hh:mm:ss)

True Value

m = 50021

m = 3001

0

0.005

0.01

0.015

0.02

1000 10000 100000

S
ta

n
d

a
rd

 E
rr

o
r

Vector Size, m

Experimental Value

Theoretical Value (n = 2445)

15

employs three improvement techniques, which are suggested

or examined in the literature [7], [10]−[12]. These techniques

are referred to as T1, T2, and T3 hereafter and are described

as follows.

T1) FIN/RST message utilization [7], [10]

This mechanism avoids the overestimation introduced by

considering terminated flows to exist during the timeout

period. Since a TCP flow is terminated with a FIN or RST

message in a regular operation, its termination is basically

discovered by watching a FIN or RST message. On the basis

of this concept, the overestimation is eliminated by

subtracting the number of flows that issued FIN/RST

messages for the timeout period from the estimated flow

number. The number of flows that issued the FIN/RST

messages is easily counted by using another TV, whose

elements are updated at arrivals of FIN/RST messages. This

additional TV is referred as the FIN vector hereafter.

T2) Short timeout for one-packet flows [11], [12]

In real-world network data, there are many one-packet

flows, each issuing only one packet (for example, a TCP

SYN message). For one-packet flows, the termination cannot

be detected by the FIN/RST messages and thus must be found

by analyzing timeouts. Unfortunately, the timeout based

method considers a one-packet flow to exist for the timeout

period though it is actually terminated in a very short

transmission time, causing excessive overestimation. This

overestimation decreases by counting how many times each

TV element is updated. Suppose that the update count of an

element is 1. For this case, the element is obviously updated

by one flow and only one packet has been issued from the

flow. Then, it is likely that this flow is a one-packet flow.

Thus, the overestimation is reduced by applying a smaller

timeout period to such a vector element. Let uh denote how

many times the h-th vector element (10 −≤≤ mh) was

updated. In the following, let To, 1denote the timeout period

for the TV element having uh = 1. Similarly, the timeout

period is denoted by To, 2 for the element having uh = 2.

Timeout period for other elements is To. The value uh is reset

to 0 when the measurement starts or the element is not

updated for To.

T3) FIN/RST message count [11]

The accuracy of termination detection is improved by

checking FIN/RST messages. However, a host may transmit

multiple FIN messages repeatedly, if the peer host does not

respond. In this case, the program considers the flow to be

terminated by the first FIN message, though it is actually

ended with the last FIN (or RST) message. If this happens,

the flow number is underestimated because the flow is

considered to end earlier than its actual termination. This

underestimation is improved by counting the number of the

FIN messages associated with the h-th vector element. Let vh

denote the number of FIN messages. Then, if vh> 2, the h-th

FIN vector element is not used to count the terminated flows.

That is, the program considers that the flow associated with

this element is repeatedly issuing multiple FIN messages and

is not terminated. The counter vh is reset to 0 when the

measurement starts or the TV element is not updated for To.

For an RST message arrival, vh is set to 1 and thus the

associated FIN vector element is utilized to count the

terminated flows.

The improved version of the TV algorithm that employs

the above techniques T1, T2, and T3 was implemented as a

program, which was written in C language and runs on a

Linux OS. It uses the pcap library to read live traffic as well

as the tcpdump format files.

The program was executed for the same 1hour file that was

used in the Section VI.A. Fig. 16 shows the result. In Fig. 16,

m was set to 4000037. The timeout periods To, To, 1, and

To, 2were set at 96 s, 1 s, and 10 s, respectively. These timeout

values were chosen to achieve the best result.

By comparing Fig. 16 and Fig. 13, it is noticeable that the

number of flows greatly differs for the two scenarios. The

average flow number was 2445 for the active flow scenario

while it was 7313 for the open socket scenario. This shows

that the real-world network holds many low-rate inactive

flows, which are not counted for the active flow scenario.

This difference suggests that these two scenarios are

completely different and should not be confused.

In Fig. 16, the output of the improved TV algorithm is

considerably close to the true value. The standard error of

estimation by the program was 0.046. Meanwhile, the

theoretical error value of the linear counting algorithm is

3.5×10 – 4 form = 4000037 and n = 7313. Therefore, the

observed error is much greater than the theoretical value,

computed by the statistical nature of the linear counting

algorithm. In Addition, the error for the open socket scenario

greatly depends on the parameters used in the termination

detection. For example, if To increases to 110 s, the error

increases to 0.076. Similarly, if To decreases to 80 s, the error

increases to 0.088. Judging from these characteristics, it is

concluded that the termination detection mechanism is the

main cause of the estimation error for the open socket

scenario.

Fig. 16. Flow number evaluated by the improved TV algorithm in the open

socket scenario.

The improvement techniques are essential to achieve good

estimation accuracy. Fig. 17 shows the effectiveness of the

technique T2. The timeout period was 4 s for the original TV

algorithm, while To, To, 1, and To, 2were 11 s, 1 s, and 10 s,

respectively, for the method improved with T2.These timeout

values were chosen to minimize the standard error. In the

given figure, the number of flows exhibits a peak from

0:28:41 to 0:28:42 because of temporally increased

one-packet flows. For this period, the output of the original

TV algorithm greatly overestimates the flow number. In

contrast, the overestimation is completely removed by

employing the technique T2. Fig. 18 compares the case of

0

5000

10000

15000

20000

25000

30000

35000

40000

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

F
lo

w
s

Time (hh:mm:ss)

True Value

Improved TV

Algorithm

16

employing only T2 with that of employing T1, T2, and T3.

The figure shows that the accuracy is further improved by

using T1 and T3 in addition to T2.

Fig. 17. Effectiveness of the improvement technique T2.

Fig. 18. Effectiveness of the improvement techniques T1 and T3.

The estimated accuracy of the improved TV algorithm

greatly depends on the vector size m. For example, the

standard error increases from 0.046 to 0.35 by reducing m

from 4000037 to 500011. Fig. 19 compares the outputs for

m = 4000037 and m = 500011. The figure shows that the

flow number is overestimated for m = 500011. This

overestimation is caused by T2 and T3. For these techniques,

the counter values uh and vh exactly show the number of

packets issued by a flow only if there is no collision for a hash

value h. For T2, if two or more one-packet flows generate the

same hash value, uh will be greater than 1. Thus, the short

timeout period To, 1 is not applied to these one-packet flows.

This causes overestimation. Similarly, for T3, if three flows

generate the same hash value, vh becomes larger than 2. Thus,

the algorithm considers these flows to be retransmitting FIN

messages. If this happens, the termination is not detected by

the FIN messages. This also causes overestimation.

Therefore, the collision probability among hash outputs must

be negligibly small, for techniques T2 and T3 to work

correctly. This requires a large vector size.

In conclusion, it is more difficult to accurately count the

flow in the open socket scenario compared to the active flow

scenario. This is because the error is caused by the detection

of flow termination. Nevertheless, the estimation is

considerably accurate as shown in Fig. 16, if the

improvement techniques T1, T2, and T3 are employed.

However, the vector size m must be large to obtain the

accurate estimation with these techniques. This means that

the required memory consumption is large for the open

socket scenario.

Fig. 19. Characteristic of the improved TV algorithm for m = 4000037 and

m = 500011.

VII. CONCLUSION

This paper discusses the real-time flow counting technique

based on the linear counting algorithm, which is based on a

hash function and a vector. First, the paper proposed a strict

analysis to clarify the exact statistical nature of the algorithm.

The accuracy of the proposed analysis was confirmed

through a computer simulation. Thereafter, strict analysis

was compared with the approximate analysis derived in [9].

As a result, it was shown that the approximations were

accurate with a few exceptions.

Next, the paper investigated how to treat the vector fill-up

problem in flow counting. It was shown in the method of [9]

that re-executes the algorithm with a different hash function

is not adequate for flow counting. Instead, the paper reviewed

a very simple method, which uses the maximum output value

for the vector fill-up case. The simulation results confirmed

the extensiveness of the method. The upper bound of the flow

number was also investigated as a basis for determining the

appropriate vector size.

This paper strictly distinguishes between two different

measurement scenarios of flow counting: the active flow

scenario and the open socket scenario. The algorithm was

tested for these scenarios using real-world network data. As a

result, for the active flow scenario, it was found that the

estimation is accurate and the error is caused by the statistical

nature of the algorithm. It is more difficult to accurately

estimate the flow number for the open socket scenario. For

this scenario, the estimation error is larger because of the

difficulty in finding flow termination. It was also found that a

large vector size is necessary for an open socket scenario.

Estimating the flow number accurately with a small memory

space remains to be an open problem.

APPENDIX

A. Hash Function

This study employs a prime-modulo-based hash function.

0

10000

20000

30000

40000

50000

60000

70000

0:28:30 0:28:40 0:28:50 0:29:00

N
u

m
b

e
r

o
f

F
lo

w
s

Time (hh:mm:ss)

True Value

Original TV Algorithm

Improved with T2

5500

6000

6500

7000

7500

8000

8500

0:35:00 0:40:00 0:45:00

N
u

m
b

e
r

o
f

F
lo

w
s

Time (hh:mm:ss)

True Value

T2

T1 + T2 + T3

0

5000

10000

15000

20000

25000

30000

35000

40000

0:28:30 0:28:40 0:28:50 0:29:00

N
u

m
b

e
r

o
f

F
lo

w
s

Time (hh:mm:ss)

True Value

m = 4000037

m = 500011

17

Assume that we are monitoring an IP version 4 packet stream.

Let is and id denote the source and destination addresses, and

js and jd denote the source and destination port numbers,

respectively. In addition, let p be the protocol field value.

Then, for the flow identifier x = (p, is, id, js, jd), the function

h(x) is

mjjbiipaxh mod)}()2({)(dsds
16 ⊕+⊕⊕= , (a.1)

Where a and b are constants and m is a prime number. In the

simulations, a and b were set at 1. In Fig. 12, for the method

of [9], b was changed to 1, 2, … to obtain different hash

functions. For the evaluation that uses real-world network

data, a and b were set to 253 and 31, respectively to obtain

better results.

B. True Number of Flows

For active flow and open socket scenarios, the true number

of flows was estimated as follows.

To obtain the number of active flows, the packet dump file

was first sliced into 1 s files by the tcpslice [14] program.

Each 1 s file is inputted into the tcptrace program. The

output shows how many flows issued packets during a 1 s

period.

For the open socket scenario, the packet dump file is first

entered in the tcptrace program. The output of the

program is stored in a text file. This output file contains the

arrival times of the first and last packets in a flow. Assume

that the flows are repeatedly counted at times t1, t2, …. Then,

the true number of flows at ti (i = 1, 2 …) are obtained by

counting the flows of the first packet arriving before ti and the

last packet arriving after ti − 1. A Perl script was written to

extract time information from the tcptrace output file and

count the number of flows to be measured at ti.

REFERENCES

[1] K. C. Claffy and H. W. Braun, “A parameterizable methodology for

Internet traffic flow profiling,”IEEE J. on Selected Areas in Communs.,
SAC-13, 8, 1995, pp. 1481-1494.

[2] M.-S. Kim, Y. J. Won, H.-J. Lee, J. W. Hong, and R. Boutaba,

“Flow-based characteristic analysis of Internet application traffic,” in
Proc. E2EMON, San Diego, California, USA, 2004, pp. 62-67.

[3] T. Mori, T. Takine, J. Pan, R. Kawahara, M. Uchida, and S. Goto,

“Identifying heavy-hitter flows from sampled flow statistics, ”IEICE
Trans. on Commun., E90-B, 11, 2007, pp. 3061-3072.

[4] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting

active flows on high speed links,” in Proc. IMC '03 Miami Beach, FL,

USA, 2003, pp. 153-166.

[5] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting

active flows on high-speed links, ”IEEE/ACM Trans. on Networking,

14, 2006, pp. 925-937.

[6] K. Keys, D. Moore, and C. Estan, “A robust system for accurate

real-time summaries of Internet traffic,” in Proc. SIGMETRICS '05,
Banff, Alberta, Canada, 2005, pp. 85-96.

[7] H.-A. Kim and D. R. O’Hallaron, “Counting network flows in real

time,” in Proc. GLOBECOM 2003, San Francisco, 2003, pp.
3888-3893.

[8] S. Zhu and S. Ohta, “Simple method to passively estimate the

throughput of a TCP flow in IP networks,” in Proc. ICOIN 2010,
Busan, Korea, 2010, paper 5B-3.

[9] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time

probabilistic counting algorithm for database applications, ”ACM

Transactions on Database Systems, 15, 2, 1990, pp. 208-229.

[10] S. Zhu and S. Ohta, “Fast and accurate flow counting algorithm for the

management of IP networks,” in Proc. NOMS 2010, Osaka, Japan,

2010, pp. 918-921.

[11] S. Zhu and S. Ohta, “Real-time measurement of flows classified

according to their application for IP networks, ”Cyber Journals:
Multidisciplinary Journals in Science and Technology, Journal of

Selected Areas in Telecommunications (JSAT), 2, 12, December

Edition, 2011.

[12] S. Ohta and S. Zhu, “Real-time measurement of flows classified

according to their application,” in Proc. APNOMS 2011, Taipei,
Taiwan, 2011, paper TS3-2.

[13] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of

network-based defense mechanisms countering the DoS and DDoS
problems, ”ACM Computing Surveys, 39, 1, Article 3, 2007.

[14] TCPDUMP/LIBPCAP Repository, Available:

http://www.tcpdump.org/
[15] Wide: Working Group MAWI, Available:

http://www.wide.ad.jp/project/wg/mawi.html

[16] tcptrace - Official Home Page, Available: http://www.tcptrace.org/

Shan Zhu received the B.E. degree from the Liaoning University of China in

2005 and the M.E degree from the Northeastern University of China in 2008.

She entered Toyama Prefectural University in 2008 and is now a

doctorate student.

Ms. Zhu is a student member of the IEICE.

Satoru Ohta received the B.E., M.E., and Dr. Eng. degrees from the Tokyo

Institute of Technology, Tokyo, Japan, in 1981, 1983, and 1996,

respectively.

In 1983, he joined NTT, where he worked on the research and

development of cross-connect systems, broadband ISDN, network

management, and telecommunication network planning. Since 2006, he has

been a professor in the Department of Information Systems at Toyama

Prefectural University, Imizu, Japan. His current research interests are

network performance evaluation and power management of network

systems.

Dr. Ohtais a member of the IEEE, IEICE, and ECTI. He received the

Excellent Paper Award in 1991 from IEICE.

