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How to Tackle Interference in MIMO
Interference Channel

Ethan Hill, Rodriguez Hugo and Sonia Cirino

Abstract—Multiple Input Multiple Output Interference
Channel is investigated in this paper. We focus on how to tackle
the interference when different users try to send their code words
to their corresponding receivers. We propose a strategy to remove
the interference while allowing different users transmit at the
same time. Our strategy is low-complexity while the performance
is good. Mathematical analysis is provided and simulations are
given based on our system.

Index Terms—MIMO, Interference Channel, Alamouti Codes,
Diversity, Interference Cancellation, Complexity

1. INTRODUCTION

he development of wireless communication systems for

high bit rate data transmission and high-quality information
exchange between terminals is becoming one of the new
challenging targets in telecommunications research. Multiple
input multiple output (MIMO) systems are currently stimulating
considerable interest across the wireless industry because they
appear to be a key technology for future wireless generations
[1]-[9]. An (N,M)-MIMO wireless system can be generally
defined as a MIMO system in which N signals are transmitted
by N antennas at the same time using the same bandwidth and,
thanks to effective processing at the receiver side based on the
M received signals by M different antennas, is able to
distinguish the different transmitted signals. The processing at
the receiver is essentially efficient co-channel interference
cancellation on the basis of the collected multiple information.
This permits improving system performance whether the
interest is to increase the single link data rate or increase the
number of users in the whole system.

An interference channel is a network consisting N senders
and N receivers. There exists a one-to-one correspondence
between senders and receivers. Each sender only wants to
communicate with its corresponding receiver, and each receiver
only cares about the information from its corresponding sender.
However, each channel interferers the others. So an interference
channel has N principal links and N(N — 1) interference links.
This scenario often occurs, when several sender-receiver pairs
share a common media. For example, in satellite
communication, two satellites send information to its
corresponding ground station simultaneously. Each ground
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Fig. 1. Channel Model
station can receive the signals from both of the two satellites and
its communication is interfered by the other pair’s
communication. The study of this kind of channel was initiated
by Shannon in 1961. However, this channel has not been solved
in general case even in the general Gaussian case.

In this paper, we focus on MIMO interference channels
[10]-[18]. Since each user transmits at the same time, how to
deal with the co-channel interference is an interesting question.
Schemes to cancel the co-channel interference when channel
knowledge is known at the transmitter are proposed in
[19]-[30]. In this paper, we propose and analyze a scheme when
channel knowledge is not known at the transmitter, a scenario
which is more practical. The article is organized as follows. In
the next section the system model is introduced. Detailed
interference cancellation procedures are provided and
performance analysis is given. Then simulation results are
presented. Concluding remarks are given in the final section.

II. INTERFERENCE CANCELLATION AND PERFORMANCE
ANALYSIS

Assume there are 2 transmitters each with 2 transmit an-
tennas and 2 receivers each equipped with 2 receive antennas.
Each transmit sends codewords to different receivers. So this
is an interference channel. Let ¢, ,,(j) denote the transmitted
symbol from the n-th antenna of user j at transmission interval
t and ry ., be the received word at the receive antenna 7 at
the first receiver. We only need to consider receiver 1, because
the analysis for receiver 2 is similar. Then, for the received
symbols we will have
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It is well-known that one can separate signals sent from .J
different users each equipped with N transmit antennas, with
enough receive antennas. We can simply form a decoding
matrix that is orthogonal to the space spanned by channel



coefficients of the users to be eliminated. For example, if we
let
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Therefore, one can rewrite Equation (2) as follows:
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To decode user 1, one can simply find a zero-forcing(ZF)
matrix Z such as

H(1)Z #0 (10)

and

H(j)Z =0 for j#1 (11)

In other words, Z should null the space spanned by the row
vectors of all H(j)s, for j =2,3,..., J. Also, it should not
null at least one row vector of H(1). Since all the rows of
H(j)s might be linearly independent, the dimension of Z,
ie. M, must be at least equal to the number of these rows,
or (/ —1)N + 1. Each antenna group (user) can employ a
modulation scheme to benefit transmit diversity; as if it is the
only group that is sending data.

In order to reduce the number of required receive antennas,
we propose a scheme to cancel the interference with less
number of receive antennas.

Consider 2 users each transmitting Alamouti code, i.e
Orthogonal Space-Time Block Code (OSTBC)
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to receivers each equipped with at least 2 receive antennas.
The received signal at the first receive antenna of the first
receiver can be written in the following format:

?“1‘1(1) 81(1) ‘»2(1) 051’1(1.1) +
?“21(1) 7‘22(1)* 81(1)* 052’1(1.1)
( 51(2)  s2(2) ( 05131(?.1) + ( ?]131(_1) 13)
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where 7; ; (k) denotes the received signal at the jth antenna
of receiver k at time slot 4. a; ;(k,[) denotes the channel

coefficient from transmit antenna 7 from transmitter & to the
receive antenna j from receiver [. 1; ;(k) denotes the noise

at the jth antenna of receiver k at time slot i.At the second
receive antenna of the first receiver, we have
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Similarly, the received signal at the first receive antenna of the
second receiver can be written in the following format:
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At the second receive antenna of the second receiver, we have
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The idea behind interference cancellation arises hom sepa-
rate decodability of each symbol; at each receive antenna we
perform the decoding algorithm as if there is only one user.
This user will be the one the effect of whom we want to
cancel out. Then, we simply subtract the soft-decoded value
of each symbol in one of the receive antennas from the rest
and as a result remove the effect of that user. This procedure
is presented in the following. At the first antenna of receiver

(65} 1(1

1, we have
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At the second antenna of receiver 1, we have
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In order to cancel the signals a% and s from User
1, we first multiply both sides of Equation (17) with
ar1(l, 1) (12?1('.1.1)
ag (L, 1) —aqg (1, 1)*
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In order to eliminate the effect of user 1. we need to divide
both sides of Equation (25) by

1

. — — 21
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and divide both sides of Equation (26) by
1
(22)

(Jon,2(1, )2 + fevao(1,1)[2)

Equations (25) and (26) becomes Equations (27) and (28).
Then we can subtract both sides of Equation (27) from
Equation (28). The resulting terms are shown by
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where 7/(1) and H (1) are given by Equations (29) and (30).
m.a(l) . n2a(l) are given by

(mmﬂ)_ ! @mmd
12,2(1) (log,2(1, 1) 2 + |ag,2(1, 1)]?) \m2,2(1)

1 (1)
- - - - Yy, 24
(Jar, 1 (1 1) + Jag,1 (1, 1)]?) (?72‘1(1) ) 24)

The distribution of 712(1)", 122(1)"1 are Gaussian white
noise. In Equation (25), H (1) can be written as the following

structure:
b(1)
—a(1)*

where (1) and b(1) are given by Equations (31) and (32).
In order to decode the s7, we can multiply both sides of the
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In order to keep the Gaussian white noise, we need

1 all) \ oo
ka+mnP(lJ) o) =
V]a(1)[2 + [b(1)]2s1(

1 a(l) ' (??12 )
+¢MUP+WU2(MU*> ma1)’) €7

Maximum likelihood decoding can be used to decode s7:
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So the decoding is symbol-by-symbol. In order to decode the
53, we can multiply both sides of the Equation (23) with

. T
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In order to keep the Gaussian white noise, we need
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Maximum likelihood decoding can be used to decode s3:
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The decoding is also symbol-by-symbol. Now we analyze the
diversity. From Equation (34), we know that the diversity

is determined by factor +/|a(1)|? + |b(1)[?. The diversity is

defined as
log P,
d=— lim o

p—o< log p

(40)

where p denotes the SNR and P, represents the probability of
error. It is known that the error probability can be written as

).b(1))
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4
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where ¢ is the error. We need to analyze a(1) and b(1). Con-
ditioned on @ o(1,1), a0 2(1,1), ay 1(1,1), 0 1(1,1), then
a(1) and b(1) are both Gaussian random variables. It 1s easy
to verify that

(4D

Ela(1) - b(1)[ar(1,1),a00(1,1), 01,1 (1,1), a21(1,1)] = 0
(42)
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So a(1) and b(1) are independent Gaussian random variables
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When p is large, Equation (43) becomes

e
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By Equation (40), the diversity is 2. Now we analyze the
diversity for so(2). We know that the diversity is determined

by factor +/|a(1)]2 + [h(1)]2. The error probability can be
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where e is the error. We need to analyze (1) and b(1).
Conditioned on a2(2).@22(2,1), a1.1(2,1), 2 1(2,1), then
a(1) and b(1) are both Gaussian random variables. It is easy
to verify that
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When p is large, Equation (47) becomes

25 —2
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By Equation (40), the diversity for s is 2. Once we detect
the signals at receiver 1. We can follow the similar procedure
to detect signals from transmitter 2 at receiver 2. Because the
above scheme works in the same way for receiver 2.

In summary, the interference cancellation based on Alam-
outi codes can achieve cancel the interference successfully and
the decoding complexity is symbol-by-symbol which is the
lowest and the diversity is 2, which is the best as far as we
know when no channel information is available at the user
side and the lowest decoding complexity is required.

ITI. SIMULATIONS

In order to evaluate the proposed scheme, we use a system
with two users with two antennas and two receivers each
with two receive antennas. This is a typical interference
channel. The two users are sending signals to the receivers
simultaneously. We assume alamouti codes are transmitted.
So there will be co-channel interference. If the proposed
interference cancellation is used, the performance is provided

- Inierference Cancellation |
&~ TDMA Scheme

BER

Fig. 2. QPSK constellation with interference cancellation

o TDMAScheme |
8- Interference Cancellation

Fig. 3. 8-PSK constellation with interference cancellation

in Figures 2 and 3 while QPSK is used in Figure 2 and 8-
PSK is used in Figure 3. In each figure, we compare the
interference cancellation scheme with a TDMA scheme with
beamforming scheme. That is. during each time slot, one user
transmits while the other keeps silent. In order to make the
rate the same for the two schemes, in Figure 2, 16-QAM is
used while in Figure 3, 64-QAM is used. It is obvious that
the proposed scheme has better performance which confirms
the effectiveness of the interference cancellation scheme.

I[V. CONCLUSIONS

In this paper, we discuss the interference channel. We first
give detailed description on interference channel. Later we
show that how to tackle interference in such a system is
important. Aiming to remove the interference, a strategy for
interference channel is proposed and analyzed. The complexity
of the strategy is low while the performance is good. Simula-
tions confirm the theoretical analysis.
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