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Abstract— An AdeptThree robot arm is a SCARA robot that 

widest working envelope in its class. The robot should be 

represented in its mathematical model in order to be able to study 

the behavior and also to design a controller for the robot. 

Jacobean matrix of a robot can be used to determine the position 

and motion of a robot end-effector. In this paper, an AdeptThree 

robot was selected to develop its represented model and a 

Jacobean model was also built for the robot. System identification 

method had been chosen to build four models of each joint of the 

AdeptThree robot in time domain system. All of the models were 

accepted after passing both whiteness and independent tests in 

residual analysis plots. 

 
Index Terms— AdeptThree robot, SCARA, System 

Identification, Jacobean. 

I. INTRODUCTION 

obots are mostly used to replace workers in such 

dangerous, high precision or in routine and repeated 

works. Robots often do a better job than human. A robot arm 

is a type of robot which works similarly to a human arm. A 

robot arm or also called manipulator is composed of a set of 

joints separated in space by the arm links and it looks like our 

own wrist and elbow [1]. 

Due to imprecision, it is not easy to control the robot motion 

to do an appropriate job perfectly. The imprecision will 

happen along the robot motion or operation and it might be 

caused by its structure or control algorithm. Dynamic 

parameters of the robot also will not able to be brought 

together into the robot model because of the imprecision. On 

the other hand, knowledge about the robot parameter values 

should match to the robot system in detail to get a good robot 

model. 

The uncertainty in modeling a robot will make difficulty to 

design its good model. Therefore, system identification is 

often needed to include the uncertainty into the robot model. 

System identification is widely used in engineering and non-

engineering areas [2]. The system identification gives 

possibility to construct a model from experimental data. 

An AdeptThree robot arm is a selectively compliant 

assembly robot arm (SCARA) manufactured by the Adept 

Company. In general, traditional SCARA's are 4-axis robot 

arms within their work envelope. They have the jointed two-

link arm layout similar to our human arms and commonly used 
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in pick-and-place, assembly, and packaging applications. As a 

SCARA robot, an AdeptThree robot has 4 joints which mean 

that it has 4 degree of freedom (DOF). The Adept robot has 

been designed with complete components including operating 

system and programming language namely V+ [1]. 

Some studies and researches were done in the field of robot 

arm i.e. Bulent [3] studied about possibility to used two 

cooperating SCARA manipulator while doing a job, Mustafa 

[4] implemented fuzzy and neural network for control 3-DOF 

robot manipulator, Rasit [5] presented a neural network for 

solving 3-joint robot inverse kinematics, Toshio [6] introduced 

a neural network in case of robotic arm on-line learning,. The 

work presented in this paper is aimed to investigate and to 

develop the mathematical model of an AdeptThree robot arm 

and its Jacobean model.  

 

II. SUPPORTING THEORY 

A. System identification  

System or process identification is the field of mathematical 

modeling of systems (processes) from test or experimental 

data. The input-output data are usually collected from an 

identification test or experiment that is designed to make the 

measured data maximally informative about the system 

properties that are of interest to the user [7]. A system 

identification procedure can be exploited in which 

experimental data is used directly [8], whereas identification 

produces usually input-output models [9].  

A general procedure for process estimation includes the 

following steps [9]: 

� Determination of the model structure. This often makes 

use of empirical experience about the process, or 

information from some basic experiments 

� Parameter estimation. The procedure for parameter 

estimation depends on the type and characteristics of the 

process input, as well as the desired model structure. 

� Model verification. A suitable model should agree with 

the experimental data, it should describe the process 

accurately, and it should meet the purpose in which it was 

obtained for. Further, it can be verified whether the 

parameters obtained are within physical limits. It is also 

possible to reduce the model and to compare it with the 

original model to see if a simpler model suffices. 

Three ways to define a mathematical model in system 
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identification are: 

� White box modeling. A model will be built from a clear 

system which is mean that all of its parameters can be 

found. 

� Grey box modeling. In this case, many parameters are 

known but not all of these parameters. A measurement can 

be used to construct unknown parameter(s). This is a 

collaborated model between white box and black box 

modeling. 

� Black box modeling. In this kind of system identification, 

no parameter is known. The way to get the model is by 

using data measurement. Data input and output will be 

compared to implement the relationship of both data. 

In order to get a good model, a model should be validated. 

MATLAB System Identification Toolbox has provided two 

kinds of model validation by using residual analysis plots or 

Akaike’s Final Prediction Error (FPE) criterion. 

 

Residual Analysis Plots  

Residual analysis plots can be used for either time domain 

or frequency domain input-output data. In time domain 

validation data, the plots will show both autocorrelation 

function of residuals for each model and cross-correlation 

between the input and the residuals for each input-output pairs. 

Conversely, for frequency domain validation data, the plots 

will give both estimated power spectrum of residuals for each 

model and transfer-function amplitude from the input to the 

residuals for each input-output pairs [10]. 

Residual analysis consists of whiteness test and independent 

test. In the whiteness test criteria, a good model has 

autocorrelation function inside the confidence interval of the 

corresponding estimates, indicating that the residuals are 

uncorrelated. The confidence interval corresponds to the range 

of residuals value with specific probability of being 

statistically significant for the system. On the other hand, in 

independent test, a good model has residuals uncorrelated with 

past inputs. The evidence indicates that the model does not 

describe how part of the output relates to the corresponding 

input [10]. 

 

Akaike’s Criterion 

Akaike’s criterion provides a measure of model quality by 

simulating the situation where the model is tested on different 

data set. The FPE of Akaike’s criterion is formulated as 

follows [10]. 
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Where V is the loss function, d is the number of estimated 

parameters, N is the values number in estimation data set and 

θN represents the estimated parameters. By assuming that FPE 

is asymptotic for d<<N, the eq.1 can be simplified as: 

( )NdVFPE 21+=  (3) 

The FPE can be computed for either linear or non linear 

model and according to Akaike’s theory, a model that has 

smallest FPE is the most accurate model [10]. 

 

B. Kinematics  

The aim of kinematics is to define relative position of a 

frame to its original coordinates. Basic vector algebra can be 

used to solve the problem in kinematics. The sequences to get 

the relative position are finding the A matrixes, building an 

arm T matrix and calculating it with the coordinate position 

which is desired. 

 

A matrix 

The A matrix is a homogenous 4x4 transformation matrix 

which describe the position of a point on an object and the 

orientation of the object in a three dimensional space. The A 

matrixes can be built by using the Denavid-Hartenberg (D-H) 

convention with the relation of frame i-1 and base frame i 

given in following equation[11]. 
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The matrix contains link parameters and joint parameters. 

The link parameters are αi which is the twist of the link i and 

αi which is the length of link i. The joint parameters are joint 

angle θi and the joint offset di. The matrix can be simplified as 

follows [11]. 
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Where Ri is a 3x3 rotation matrix and Pi is a 3x1 translation 

matrix. 

 

Arm T Matrix 

The arm T matrix is a kinematics chain of transformation. It 

can be built from 2 or more A matrixes which is shown by 

following equation [11]. 

11
2

0
1

0 ,..., −=≡ n
nn AAATT  (6) 

The arm T matrix is usable to obtain coordinates of a point 

in terms of the base link. 

 

Direct Kinematics 

To get the position of the frame which is relative to the base 

frame, the arm T matrix should be multiplied with the 

coordinate matrix rn given by position of the end effector. A 

parameter, which is a scaling factor, should be added to the 

matrix rn to become a 4x1 matrix and be able to be multiplied. 

The final matrix of the robot kinematics is [11],[12],[13]: 



 

 3 

 
















=

110

nii

o

rPR
r

 (7) 

The direct kinematics can be found in the matrix Pi. The X, 

Y and Z positions are P1, P2 and P3 respectively. 

 

Velocity Transformation 

Given joint variable coordinate of the end effectors q=[q1, 

q2 … qn]
T
. On the matrix q, q=θ for a rotary joint and q=d for 

a prismatic joint. Then a generally nonlinear transformation 

from joint variable q(t) to y(t) is y=h(q) and the velocities of 

joint axes is given as[11][12]: 
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Where J is the Jacobean manipulator and inverse of the 

Jacobean J
-1

 relates the change in the end-effector to the 

change in axis displacements. 

The Jacobean is an important component in many robot 

control algorithms. Many ways to design a Jacobean matrix of 

a robot arm were presented. Zomaya et al. (1999) had 

presented three kinds of algorithms to perform a Jacobean 

matrix. The other algorithm which uses tool configuration 

vector ω was provided by Manjunath and Ardil (2007) and 

Frank et al.(2006) as follows: 
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Therefore the Jacobean matrix can be found using following 

equation [11][12]. 
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III. RESULTS 

A. Physical System 

An AdeptThree robot consists of 4 joints and the joint 

motions are revolution, revolution, prismatic and revolution 

(RRPR) respectively from 1st until 4th joint [1]. Fig. 1 shows 

the schematic figure and the joints of AdeptThree robot. 

The AdeptThree robot is controlled by a central processing 

unit (CPU). The CPU has input/output devices and 

communication devices. The input/output devices are 

keyboard, mouse, monitor, printer and robot arm itself. The 

CPU also supports the communication using some devices, 

such as area network (LAN), digital input/output (DIO), and 

serial port. With almost two meters in diameter of working 

area, the AdeptThree robot has widest working envelope in its 

class [1]. 

 

B. Mathematical Model 

Many parameters of the AdeptThree robot are not provided 

by its manufacturing company. Therefore, the appropriate 

model will be constructed by assuming the robot as black box 

models and gaining the models by using MATLAB System 

Identification Toolbox based on the data input-output 

measured from the robot. The input to the black box is voltage 

and the output is either joint angle or link offset. 

A number of experimental joint tracking has been made to 

collect the joint data. From the data, transfer functions of each 

joint were designed in time domain system identification. Each 

joint model is built using a 2
nd

 order system with a gain (K), a 

zero (Tz), an integrator and a pole (Tp). The estimated model 

of first joint was fixed at 3
rd

 iteration and the parameters of the 

model are K1=0.22773, Tz1=0.004892 and Tp1 =0.0015202. 

Second joint model was found at 5
th

 iteration and its model 

parameters are K2=0.24557, Tz2= 0.004892 and Tp2= 

0.0014101. The model parameters of third joint and fourth 

joint are K3 = 1.218, K4= 2.1202, Tz3= 0.001106, 

Tz4=0.001517, Tp3 and Tp4= 0.001. The third and fourth joints 

were defined in 7
th

 iteration and 1
st
 iteration for third and 

fourth joint respectively. Henceforward the transfer functions 

of first to fourth joints are given in the following equations. 
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System Identification toolbox in MATLAB will also 

generate model validation automatically after a model had 

been built. The default method for validating model in this 

MATLAB toolbox is residual analysis plots. In this case the 

models for first, second, third and fourth joints are match at 

99.81%, 99.81%, 100% and 100% respectively. 

Using residual analysis plots for time domain input-output 

data, autocorrelations and cross correlations of each joint 

model were illustrated in fig.2 downward from 1
st
 to 4

th
 joint.  

The figure shows that the model residuals for both correlations 

of each joint are laid between the confidential lines (dotted 

lines). This is the evidence that all models are acceptable. 

 
Fig. 1  Physic of AdeptThree Robot 
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C. The Jacobean 

The steps to get the relative position are calculating the A 

matrices and multiplying the A matrix of each joint to build an 

arm T matrix. To build the A matrices, first step that must be 

done is to define the DH parameters of the robot as shown in 

table 1. 

Joints and links parameters are shown in fig.1. The joints 

are where the motion in the arm occurs while the links are a 

fixed construction. Thus the link has a fixed relationship 

between the joints [11]. 
The arm T matrix of the AdeptThree robot which is found 

using eq.2 and eq.3 is as follows. 
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Where  c1, c2, c4 are the cosines of θ1, θ2, and θ4; s1, s2, s4 are 

the sinus of θ1, θ2, and θ4; l1 and  l2 are the length of link 1, and 

link 2; d3 and d4 are the length of link 3 and 4; h is the length 

of 1
st
 joint column. 

By using the arm T matrix, it is possible to calculate the 

values of (Px, Py, Pz) with respect to the fixed coordinate 

system. Length of link 4 (d4) was removed from the equations 

due to no hand gripper. Then the end-effector position 

obtained with direct kinematics is equations which are listed in 

following equations. 

11212 clclPX += +
 

11212 slslPY += +
 (17) 

43 ddhPZ −−=  

Where constant parameters l1=559 mm, l2=508 mm, and 

h=876.3 mm. The direct kinematics can be used to find the 

end-effector coordinate of the robot movement by substituting 

the constant parameter values to the above equation. 

The manipulator's speeds are calculated by means of the 

Jacobean matrix. By knowing the speeds of the articulations 

we obtain the speed with which the SCARA describes a 

trajectory. With the equations of the kinematics models, the 

following matrix is obtained. 
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  From the formulation above, 4 tool configuration vectors 

can be built and a Jacobean 6x4 matrix is found from the 

vectors. The vectors are constructed using eq.7 and as the 

result four sub matrices forming the Jacobean matrix are 

obtained as follows. 
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      The Jacobean is formed from the 4
th

 vectors as 

J(q)=[J1(q1), J2(q2), J3(q3), J4(q4)].  The similar Jacobean was 

also build by Manjunath and Ardil (2007) for a developed 

SCARA as follows. 
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To be specific for an AdeptThree robot, the constant 

parameters of the robot should be substituted into the eq.20. 

Finally, the Jacobean matrix for the AdeptThree robot is found 

TABLE I 

DH PARAMETERS OF AN ADEPTTHREE ROBOT 

Joint θi di ai αi 

1st  θ1 h l1 0 

2nd  θ2 0 l2 0 

3rd  0 -d3 0 π 
4th  θ4 -d4 0 0 

 

 
(a)                                              (b) 

Fig. 2 a) Autocorrelations and b) cross correlations 
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in the following equation.  
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The above Jacobean matrix is not a square matrix because it 

has 6x4 components. Because the Jacobean is not a square 

matrix, the matrix can not be inverted. Therefore, it can only 

be used to calculate the robot joint velocities. The Jacobean 

matrix of the AdeptThree robot which is built with using tool 

configuration vectors indicates that about 24 of 32 or about ¾ 

of the matrix components are equal to zero. 

 

IV. CONCLUSION 

MATLAB System Identification Toolbox was used in this 

project to develop the mathematical models of each joint of the 

AdeptThree robot. The models were designed with the data 

measurements, which contain voltages as the input and either 

joint angles or link offset as the output. Results of model 

validation show that all of the joint models are accepted. 

In different way, Jacobean matrix of an AdeptThree robot 

also had been developed. The Jacobean consists of 6x4 

components and it can be used for defining the joint speed of 

the robot. The Jacobean matrix of the AdeptThree robot is 

simple to be built by using tool configuration vectors. 

REFERENCES 

[1] Rehiara Adelhard Beni, Smit Wim, Controller Design of a Modeled 

AdeptThree Robot Arm, Proceedings of the 2010 International 

Conference on Modelling, Identification and Control, Japan, July 17-19, 

2010, pp 854-858.  

[2] Mei Li, Chen Chen, Wenlin Liu, Identification Based on MATLAB, 

Proceedings of the 2009 International Workshop on Information 

Security and Application,  November 21-22, 2009, China, pp 523-525. 

[3] Bulent Ozkan, Kemal Ozgoren, Invalid Joint Arrangements and 

Actuator Related Singular Configuration of a System of two 

Cooperating SCARA Manipulator, Journal of Mechatronics, Vol.11, 

2001, pp 491-507. 

[4] Mustafa Nil, Ugur Yuzgec, Murat Sonmez, Bekir Cakir, Fuzzy Neural 

Network Based Intelligent Controller for 3-DOF Robot Manipulator, 

Procedings of Intelligent Manufacturing Systems Symposium, Sakarya 

University Turkey, May 29-31, 2006. 

[5] Rasit Koker, Cemil Oz, Tarik Cakar, Huseyin Ekiz, A Study of Neural 

Network Based Inverse Kinematics Solution for a Three-Joint Robot, 

Journal of Robotics and Autonomous System, Vol.49, 2004, pp 227-234 

[6] Toshio Tsuji, Yoshiyuki Tanaka, On-line Learning of Robot Arm 

Impedance using Neural Network, Journal of Robotics and Autonomous 

System, Vol.52, 2005, pp 257-271. 

[7] Yucai Zhu, Multivariable System Identification for Process Control, 

Elsevier, London, 2001. 

[8] Raymond A. de Callafon, Paul M. J. Van den Hof,  Multivariable 

Feedback Relevant System Identification of a Wafer Stepper System, 

IEEE Transactions on Control Systems Technology, Vol. 9, No. 2, 

March 2001, pp 381-390. 

[9] Ján Mikleš, Miroslav Fikar, Process Modelling, Identification, and 

Control, Springer-Verlag, Berlin, 2007.  

[10] Lennart Ljung, System Identification Toolbox 7 User’s Guides, The 

MathWorks Inc., Natick, 2010. Available at 

http://www.mathworks.com/help/pdf_doc/ident/ident.pdf 

[11] Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah, Robot 

Manipulators Control, Marcel Dekker, Inc., New York, 2006. 

[12] Manjunath T.C., Ardil C., Development of a Jacobean Model for 4-

Axes indigenously developed SCARA System, International Journal of 

Computer and Information Science and Engineering, Vol. 1 No 3, 2007, 

pp 152-158. 

[13] John Faber Archila Diaz, Max Suell Dutra, Claudia Johana Diaz, 

Design and Construction of a Manipulator Type Scara, Implementing a 

Control System, Proceedings of COBEM, 19th International Congress 

of Mechanical Engineering, November 5-9, 2007, Brasília.  

[14] Zomaya A.Y., Smitha H., Olariub S., Computing robot Jacobians on 

meshes with multiple buses, Microprocessors and Microsystems, no. 23, 

1999, pp 309–324. 

 

 

 

Adelhard Beni Rehiara received Bachelor degree in electrical engineering in 

1999 from University of Widyagama, Malang, Indonesia. In 2008, he had 

gained Master degree in control systems engineering from HAN University, 

Arnhem, Netherlands. His main research interests include embedded systems, 

system optimization, modeling and control systems. 

 


