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Abstract— The possibility of making inferences on motor unit 

(MU) recruitment and MU firing rate modulation from the 

analysis of the myoelectric signal recorded non-invasively from 

the skin surface has been variously addressed in the literature, 

sometimes with controversial results. As a matter of fact, it has 

been widely confirmed that some time- or frequency-domain 

parameters extracted from the surface ElectroMyoGram (sEMG) 

are strongly related to some fundamental mechanisms of motor 

control. The Root Mean Square  (RMS) or the MeDian power 

spectral Frequency (MDF) are just two of them. In the last 

decade, improvement of recording techniques allowed a better 

and reliable estimate of the average muscle fiber Conduction 

Velocity (CV) from sEMG. Furthermore, the refinement of non-

linear analysis technique (according to chaos theory) provided a 

further investigation instrument (commonly referred as the 

percentage of determinism, %DET) able to detect the presence of 

repetitive hidden patterns in sEMG which, in turn, senses the 

level of MU synchronization within the muscle. Moreover, new 

non-linear parameters (such as Lyapunov exponents, correlation 

dimension, fractal dimension, and so on) are under investigation 

for their ability to sense new particular aspects of neuromuscular 

mechanisms of movement control. In particular, in this paper 

some results on Lyapunov coefficients are reported.  

 

Index Terms— surface EMG, neuromuscular control, 

chaos theory, percentage of determinism, Lyapunov 

exponents 

I. INTRODUCTION 

 Biomedical signals carrying information about the 

physiological activities of human and animal organisms 

embrace several areas of interest, ranging from gene and 

protein sequences [1], to neural and cardiac rhythms [2], to 

neuromuscular control [3], to tissue and organ images [4], to 

sensory perception, control and coordination [6]. Biomedical 

signal processing aims at extracting significant information 

from biomedical signals. From the historical and conceptual 

point of view, the most important phases, which represent the 

main application of signal processing procedures to the 

investigation of living cells, organs, tissues, system, 

populations, are the direct consequences of the parallel 

computer SW/HW development. It has been possible to 

implement progressively sophisticated algorithms on more and 
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more complicated machine structure in shorter execution 

times. In the next three sections, some of the mathematical 

concepts concerning biomedical signal processing evolution 

will be briefly examined. 

II. TIME- AND FREQUENCY-DOMAIN ANALYSIS 

 

This typical approach, widely used in electronic & 

telecommunication engineering, is based on the common 

(approximate) hypothesis that signals are generated by linear 

and time-invariant systems, for which the superposition 

principle is valid. Mathematically, for a linear system F, 

defined by F(in) = out, where in is some sort of stimulus and 

out is some sort of response, the superposition of several 

stimuli yields a superposition of the respective responses: 

 

 F(in1+in2+...+inQ) = F(in1) + F(in2)+...+F(inQ)   (1) 

 

Moreover, the system permanency asks that a time-translation 

τ at the input provokes an analogous translation τ at the output: 
 

 If  in(t) � out(t) THEN in(t+τ) � out(t+τ), ∀τ    (2) 

 

For systems satisfying eq. (1) and (2), the Fourier Transform 

and the corresponding issues concerning the spectral estimate 

through periodograms, correlograms, ARMA models, Burg-

algorithm, MUSIC or Pisarenko or De Prony approaches, are 

directly applicable. Decades ago, the primary focus of 

biomedical signal processing was on filtering signals to 

remove noise arising from imprecision of instruments and/or 

interference of power lines, or simply due to the biological 

systems themselves under study.  

A fundamental method for noise cancellation analyzes 

the signal spectra and then suppresses undesired frequency 

components. Within this context, if the biomedical signal is 

represented by a mono-dimensional finite-length  real vector 

x(t), the corresponding spectral content is given by the 

frequency-domain complex vector X(f): 

           

In this notation: t denotes the time variable and f the frequency 

dominium of  the spectrum;  F{. } is the Fourier algorithm 

applied from left to right side of notation (3), and, viceversa, 

F-1
{. } represents the opposite inverse operation from 

CHAOS THEORY and sEMG 

G. Filligoi  

       F{. }� 

x(t), t∈[0,T]  <---------> X(f), f∈(-∞,+∞);       (3) 
       F-1

{. }        

 

 with X(f)=Re[X(f)] + j Im[X(f)] 
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frequency- to time-domain. The application of the Fourier 

operator F{. } corresponds to carrying out the inner product 
between the signal and a function ϕ(t) representing the 
complex exponential exp(-j2πft), t∈(-∞,+∞): 

 

X(f) = F{x(t)} ≡ < x(t), ϕ(t)> =∫∫∫∫ [x(t)*exp(-j2πft)]dt  (4) 

 

where the integral is extended to the interval (-∞,+∞ ) by 
assuming that ouside the interval [0,T] of definition of the 

signal x(t), the signal is identically null. The main advantage of 

the frequency- over the time-representation is that it allows a 

clear visualization of the frequency content of the signal 

variance and the enhancement of the periodicities of the signal, 

thus helping, in many cases, to understand underlying physical 

phenomena. On the contrary, there are two main 

disadvantages: a)- Most bio-signals are generated by 

intrinsically non-stationary sources, hence frequency approach 

can be used only in an interval of (approximate) stationarity; 

b)- Since the Fourier Transform is based on comparing the 

signal with complex sinusoids that extend through the whole 

time domain, the information about the time evolution of the 

frequencies is completely lost.  

III. TIME-FREQUENCY DISTRIBUTION & WAVELET TRANSFORM 

 

 For all occasions in which signals have time varying 

features that cannot be resolved with the Fourier Transform, 

the problem is partially resolved by using the Gabor Transform 

Gw(f,t) [8], also called Short-Time Fourier Transform (STFT): 

 

 Gw(f,t) ≡ < x(t), wT(t’-t) exp(-j2πft’)>       (5) 

 

With this approach, the evolution of the frequencies can be 

followed and the stationarity requirement is partially satisfied 

by considering the signals to be stationary in the order of the 

window length. A wider class of (f,t) distributions can be 

obtained (the so-called Generalized Cohen Class t-f 

distributions, [7]) by substituting wT(t) with more generalized 

kernels ξ(t) whose aim is to increase the local convergence of 

the inner product by means of decaying functions. 

 On the other hand, though Gabor Transform gives an 

optimal time-frequency representation, one intrinsic critical 

limitation on data windowing derives from the Uncertainty 

Principle: if the window is too narrow, the frequency 

resolution will be poor, and if the window is too wide, the time 

localization will not be very precise. Data involving slow 

processes will require wide windows and on the other hand, 

for data with fast transients (high frequency components) a 

narrow window will be more suitable. Then, due to its fixed 

window size, Gabor Transform is not suitable for analyzing 

signals involving different range of frequencies in different 

time-windows. To overcome this problem, the Wavelet 

Transform (WT) was introduced in 1984 [9]. The main 

advantage of wavelets is that they have a varying window size, 

being wide for slow frequencies and narrow for the fast ones, 

thus leading to an optimal time-frequency resolution in all the 

frequency ranges (Fig.1). Furthermore, due to the fact that 

windows are adapted to the transients of each scale, wavelets 

lack of the requirement of stationarity. Mathematically, WT is 

the result of the inner product between the signal and a wavelet 

family ψa;b(t). The former set of elemental functions is 

generated by dilations b and translations (a scale parameter, a 

≠ 0) of an admissible mother wavelet ψ(t): 
  

 ψa;b(t)=a
-1/2
 ψ[(t-a)/b]         (6) 

 

As the parameter a increases the wavelet becomes narrower 

and by varying b the mother wavelet is displaced in time. The 

continuous wavelet transform of a signal Wψ,x(a,b) is given by: 

 

 Wψ,x(a,b) = < x(t), ψa;b(t)>         (7)  

 

thus providing a  time-scale representations of the x(t) signal 

content. The correlations in (7) indicate precisely how the 

wavelet function locally fits the signal at every scale a.  

IV. CHAOS THEORY 

 

Chaotic approach to system & signal analysis falls 

within the dynamic non-linear system studies. Accordingly, 

biomedical signals can be to an extent deterministic, random 

or chaotic: a)-deterministic signals have the characteristic of 

predictability, meaning that any future course of the signal 

could be predicted using some linear analysis tools. For them, 

mathematical tools (e.g., Fourier transform) are commonly 

used; b)-random signals are non-deterministic in the sense that 

individual data points of the signal may occur in any order, 

with no predictability on the future course of the signal 

(stochastic processes). Only purely stochastic analytic tools 

can be applied; c)-chaotic signals can be viewed as a 

connecting mesh between deterministic and random signals, 

exhibiting behaviour that is slightly predictable, non-periodic 

or seldom quasi-periodic (e.g., heart beat), and highly sensitive 

to initial conditions.  

 
Fig.1)-Kernels for Fourier, Gabor and Wavelet Transforms 
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Within chaos theory, the system which generates the chaotic 

signals will be represented in the phase-space. It can be 

inferred that the observed signal vector x(n) is a projection of 

the signal generator source, represented by an unknown, but 

underlying multidimensional dynamic state vector. The state 

vector is composed of an unknown number of variables, 

represented through its dimension, called Embedded 

Dimension ED. The transition from a sampled one-

dimensional time-domain signal x(n) to the corresponding 

sampled ED-dimensional state space requires the application 

of Takens Theorem [10]. With this technique, we can 

reconstruct an approximation s(i), i∈[1,..,m]  in ED-

dimensional state space of the unknown dynamic state vector 

by lagging and embedding the observed time-series x(n). This 

reconstructed approximation is the set S(m) of all state vectors 

s(i) in the phase space: 

S(m) = [s(1), s(2),…,s(m)] , m= n – λ (ED-1)       (8) 

each of them composed of ED time-delayed samples of  x(n) , 

where λ represents the time-delay: 

s(i) = [ x(i)  x(i+λ)  …. x(i+λ(ED-1))], i=1,..m     (9) 

 The accurate estimation of ED and λ guarantees through the 
Embedding Theorem [5, 14, 17] that the sequential order of 

the reconstructed state vector s(i)�s(i+1) is topologically 

equivalent to the transition of signal vector generator 

x(i)�x(i+1). Each state space coordinate s(i) constituting a 

component of S(m) defines a point in the state space. As time 

progresses, the dynamic trajectory of each point in time forms 

the so-called orbit or trajectory. An orbit is mathematically 

defined as the numerical trajectory resulting from the solution 

of the autonomous set of differential equations which govern 

the system responsible for the generation of x(n).  

The order of the set of differential equations is strictly 

related to ED, which, in a way, represents its approximation: 

therefore, the more complex is the represented system, the 

higher is that order, and hence ED. The time delay λ is an 
integer multiple of the sampling interval of the signal x(n) 

guaranteeing the extraction of maximal amount of information 

from the system, so that the time-delayed space coordinates 

forming S(m) are independent from each other. The 

independence between two coordinates of the time-delayed 

state space can be assessed either using the first zero of the 

sequence autocorrelation (which guarantees that for that lag j0 

the samples are statistically independent) or the first minimum 

of the mutual information between two s(i) coordinates (e.g., 

x(i) and x(i+λ) ). The former asks for the assessment of the 

discrete autocorrelation Rxx(j) at each lag j for the discrete real 

signal x(n): 

where E[.] means expected value. For finite time-width signals 

x(n), n∈[0,N-1] (hypothesis always valid for recorded 

biomedical signals) the autocorrelation can be equally 

estimated by the biased or unbiased estimators respectively 

given by:  
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Alternatively, the independence of two s(i) coordinates (e.g., 

x(i) and x(i+dλ), ∀ d∈[1,ED]) can be assessed using also the 
mutual information (MI) function. For instance, the MI (for 

d=1) is measured in bits by: 
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where P[x(i),x(i+λ)] is the joint probability density function 
(JPDF) of x(i), and x(i+λ). The average mutual information 

(AMI) of the JPDF of all coordinates is calculated by:
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 The first minimum of the AMI function provides the optimal 

value for the time-delay λ, and assures the independence 
between the coordinates of the multi-dimensional vector s(i).   

Concerning ED evaluation, the signal reconstruction in state 

space requires a dimension that will guarantee no overlap of 

the trajectory of the orbit constituting the phase space. This 

optimal dimension is obtained after calculating the percentage 

of False Nearest Neighbours (FNN) between points in state 

space, while FNN are evaluated using reconstructed state 

space vectors S(m) at different ED, but at constant λ [5, 
11÷14]. It is accepted that when the FNN percentage drops to 

zero, the minimum required dimension to unfold the system 

into its original state around its attractor is reached, which also 

guarantees that the orbit is unique. The FNN calculation 

requires the measurement of the distance between neighbor 

vectors in consecutive ED dimensions. Determining the 

existence of FNN depends on how such distance behaves as 

the calculations progress while ED increases. Referring to Fig. 

2, we may observe that for chaotic systems FNN presents an 

evident knee behavior for certain values of ED (e.g., for the 

chaotic signal in Fig.2 about ED ≅ 12÷15): when FNN 
increases significantly with the ED increment, then the vectors 

are false neighbors, and their closeness results from the 
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Fig.2)-Sample dynamics of t% FNN as a function of the ED for 
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reconstruction dynamics of the system, not from its underlying 

dynamics. If the distance is restricted within a certain threshold 

level close to the state space points, then the state space points 

are real neighbors resulting from the dynamics of the system. 

The embedding dimension that adequately represents the 

system is the dimension that eliminates most of the false 

neighbors, leaving a system whose trajectories are positioned 

in state space due to their underlying dynamics, not to their 

reconstruction dynamics [12-14]. 

V. CHAOTIC APPROACH TO BIOMEDICAL SIGNALS 

Based on the previous general chaotic-theory approach to be 

applied to several scientific fields, advances in computer 

technology allowed studying the behavior of non linear 

systems of differential equations, for which there are solutions 

very difficult to find in a close mathematical form (or, often,  

no solutions at all) [15, 17]. In these cases, the approximate 

discrete solutions are the only ones available.  

Within biomedical signal processing, chaotic dynamics 

provide a possible explanation for the different complex and 

erratic patterns that appear in most bio-signals [16]. In general, 

the range of applications of non-linear techniques applied to 

problems in biomedicine is rapidly expanding and spans from 

studies of brain rhythms [22-25], to heart beat [18-21], from 

blood pressure regulation [37, 38] to neuromuscular system 

[14, 26-36], from breathing system [39] to cardio-respiratory 

coordination [40], from genomic & proteomic sequences (e.g., 

DNA and RNA, proteins) [40, 43] to complexity of the human 

and animal anatomo-physiological systems [41, 42]. 

At this point, an obvious question arises: starting from the 

phase-space representation of the chaotic system responsible 

for the generation of the observed signal, how to represent its 

behaviour? Or, better, which parameters better represent a 

non-linear dynamic system? An exhaustive response to this 

question is beyond the scopes of this paper devoted to the 

application of chaos theory to sEMG (surface EMG).  

VI. NON-LINEAR ANALYSIS OF SEMG  

The sEMG signal is a highly non-stationary signal, 

especially when the limb or the body segment under interest is 

rapidly moving. In fact, in these cases the neuromuscular 

control process works through facilitating or inhibiting feed-

back mechanisms implemented on neuronal circuitry involving 

the Central Nervous System at various cortical or sub-cortical 

levels. Besides, these considerations further encourage the 

adoption of non-linear analysis techniques for taking into 

account for the highly non-linear behavior of such mechanisms 

using muscle receptors (muscle spindle and Golgi Tendon 

Organs which are interlaced in parallel or in series with the 

muscle fibers within the muscle), mechanoreceptors (Pacinian 

corpuscles, Meissner’s corpuscles, Merkel’s disks, Ruffini 

corpuscles), nociceptors, and joint receptors within local 

(spinal) and/or central sensory-motor networks. In our opinion, 

non-linear parameters reveal several hidden mechanisms of 

muscle control that otherwise would be not reflected by 

variability of other “classic” linear parameters, such as RMS 

(Root Mean Square), AVR (Averaged Rectified Value), Mean 

(MNF) and Median frequency (MDF). 

In our concern, two main non-linear parameters are 

described: 

a)-Percentage of determinism (%DET). 

Relative Recurrence Quantification Analysis (RQA) is a 

non-linear sEMG analysis firstly introduced by Webber et al. 

[44] and Nieminen and Takala [45]. RQA, described by 

Eckmann et al. [46], is based on a graphical method originally 

designed to locate recurring patterns (hidden rhythms) and 

non-stationarities (drifts) in experimental data sets. With RQA 

technique, the sEMG signal x(i) is mapped in a bi-dimensional 

space (the recurrence map), thus makings possible to identify 

time-recurrences that are not readily apparent in the original 

recordings, either by qualitative visual inspection or by 

evaluating some specific variables. This method has been 

recently used in some experimental surface EMG studies 

[32÷36] which showed its potential in detecting changes of 

muscle properties due to fatigue. Referring to Fig. 3, after  the 

Embedding Procedure which projects the signal x(i) onto the 

phase-space, a Distance Matrix, which represents the closeness 

of all possible state vectors pairs: 

s(i), s(j), ∀ i, ∀ j, i.,j=1,..m; m= n – λ (ED-1)       (14) 

is introduced. For this purpose, the Euclidean distance between 

them is evaluated: 

 

d(i,j) = [ < (s(i), s(j))
2
> ]

1/2 
        (15) 

In order to make the distance evaluation independent of the 

energy of the observed signal, the usual effective values 

adopted in RQA are either expressed as a percentage of the 

maximal distance (considered as 100) or normalized with 

respect to the average distance between vectors: 
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where the denominator represents the number of distances 

d(i,j). A recurrence plot rp is finally obtained as a map of 

pixels which assume the values ‘0’ or ‘1’ on the basis of a 

threshold set on the Distance Matrix. 
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For this purpose, the following comparison between states is 

accomplished:  

 

IF d(i,j) ≤ threshold THEN   rp(i,j) = ON    (17) 

    ELSE  rp(i,j) = OFF 

and provides the Recurrence Map as the collection of all 

rp(i,j), ∀ i,j.                                     
A representation of all possible recurrence plots (with 1 sec  

epoch lengths), during a 18 sec isometric contraction, is given 

in fig.4. The threshold operation in eq. (17) is conceptually 

equivalent to considering two states of the dynamical system 

as close to each other when the embedded vectors s(i) and s(j) 

are enclosed in an ED-dimensional hyper-sphere with radius 

equal to the selected threshold. Fine tuning of the threshold 

value has to be carried out for all sets of sEMG data 

recorded within an experimental protocol since it is strictly 

related to the variables extracted from the procedure of 

quantifying the Recurrence Map. Figure 5 (to be described 

below in more details) shows an example of recurrence maps 

of synthetic signals. Since recurrence maps contain subtle 

patterns that are often difficult to detect by visual inspection, 

some quantitative descriptors that emphasize different features 

of the map have been introduced (in Fig. 3 four mostly used 

parameters %REC, %REC, TREND, and ENTROPY, are 

considered) [47]. Among them, percentage of determinism 

(%DET) has been widely used by our research group and 

describe the percentage of points that form upward diagonal 

lines (with length greater than a prefixed cut-off value LINE) 

 
Fig.3)- Schematic view of the RQA procedure to get the %REC, %DET, TREND and ENTROPY parameters  
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with respect to the number of pixels ON in the Recurrence 

Map. In particular, we have shown, either based on real sEMG 

or simulated data, that %DET is strictly connected to the level 

of MU synchronization. Referring to Fig. 5, sEMG simulated 

signals generated by a model [48] at 0% or 25% MU 

synchronization level shows an evident increase of the %DET 

parameter while passing from lower (a) to higher (b) levels of  

MU synchronization [33].  Analogously, we may expect that a 

similar strategy will be used by the neuromuscular control 

system when the muscle task asks for the maintenance of the 

effort for a long period of time. Surely, a greater 

synchronization of the MU activation will  help to  satisfy  this 

request, despite the contemporaneously increased fatigue. As a 

matter of fact, this hypothesis is confirmed by the sEMG 

recorded in weight-lifters during a 20 second maximal 

isometric contraction [32]. In Fig. 6, the sEMG recorded  from 

vastus lateralis muscle  during  the first 

Fig.6)- Real sEMG recorded in weight-lifters at the beginning (a) 

and at the end (20 seconds) (b) of a maximal effort at 100% MVC: 

the corresponding power spectra are shown at the center of the 

figure (d) together with the relative recurrence plots (1st second in c 

and 20th second in e). The corresponding values of MDF and %DET 

are also given.[from 32] 

and the last second of muscle task are reported. It is evident 

that, whereas very little differences in the relative spectra are 

reflected also in the MDF parameter weakly sensitive to the 

variation of the muscle status, increasing fatigue phenomena 

ask for a higher level of MU synchronization sensed by a 

parallel increase in the non-linear parameter %DET.  

 Analogously, if we refer to physiological findings 

widely accepted in the literature on the strategies used by the 

neuromuscular system for progressively muscle strength 

increasing [3], we may expect that during an increasing ramp 

the relative timing of the phenomena are:  

• i)-at the beginning of the force ramp, there is an 

increasing level of MU recruitment followed by firing 

rate increase of the active MU;  

• ii)-MU derecruitment will start as soon as the rapid and 

little MU firstly recruited become fatigued; 

•  iii)-the equilibrium between recruitment of the slower 

& bigger MUs and MU derecruitment determines the 

phase called MMUR (Maximal Motor Units 

Recruitment) in the figure which corresponds to the 

highest level of MU active in that muscle;  

• iv)-after that phase, an increase in muscle strength can 

be obtained either by firing rate increase or MU 

synchronization increase.  

The ramp phase is also characterized by a variation of the 

average muscle fibre Conduction Velocity (CV) along the 

course of the whole task. In general, the relative timing 

influencing the characteristics of the sEMG during a 

0÷100%MVC ramp depends either on experimental procedure 

(ramp slope, muscle investigated, etc.) or on subjective 

variables (motivation, level of training, anatomy & physiology 

of the  neuromuscular system investigated, and so on). As a 

matter of fact, while the increase in firing rate operates along 

the whole force ramp [49], the role of MU   
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Fig.7)- Time course of RMS, MDF, FORCE, CV, %DET at 

5%MVCper sec. Data are averages (±SD) of all tests performed by 
all subjects and  normalized to their maximum value (from [34, 35]). 

 

recruitment/derecruitment cannot be ascertained by needle 

EMG either. 

   Considering the results [34, 35] reported in fig. 7 obtained 

during a slowly varying force ramp (at 5% MVC /sec, where 

MVC=Maximal Voluntary Contraction), we may observe that 

both linear and non-linear parameters can help understanding 

some of the control strategies employed by the neuromuscular 

system. In particular: a)-MDF increases up rapidly to a 

maximum due to corresponding increase of fast&little MUs 

early recruited , presumably corresponding to a Maximum MU 

Recruitment (M.M.U.R.) point [49, 50]; b)-the CV increases 

till the end of the ramp phase, since the faster  MUs  are  last  

recruited, according to the “size principle” of Hennemann; c)-

%DET, after a rapid increase, flattens for a long interval at the 

middle of  the  ramp, as a result of the equilibrium between the 

effects of CV increase  (that would decrease %DET [33, 34]) 

and those of increasing MU synchronization, that would tend 

to increase the parameter; d)-RMS increases with the force 

with an exponential fashion. In all our experiments, this 

exponential  growth  is  suddenly  interrupted around a flex 

point and then continues. In the next sub-section, we will  

examine another non-linear parameter.   

b)-Lyapunov exponent of a dynamical system  is a quantity 

that characterizes the rate of separation of infinitesimally close 

trajectories. Quantitatively, two trajectories in phase-space, 

with initial separation ∆Z0, diverge as: 

0)( ZetZ t ∆≈∆ λ
              (18) 

where λ is the Lyapunov exponent.  

The rate of separation can be different for different 

orientations of initial separation vector. Thus, there is a 

spectrum of Lyapunov exponents, equal in number to the 

dimensionality ED of the phase space. The whole set of 

Lyapunov exponents provide: 

- a measure of system chaoticity, e.g., system sensitivity to 

initial condition variations; 

Fig.8)-Force( ◊) and L1 Lyapunov exponent ()  during MVC 

- a convergence/divergence measure between trajectories, 

each of them obtained by joining the points of phase-space 

occupied by the system along its time evolution. 

 

The maximal Lyapunov exponent L1 can be defined as 

follows: 

0
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λ        (19) 

In a way, the L1 exponent supplies a notion of predictability 

for the dynamical system: a positive value is usually taken as 

an indication that the system is chaotic (provided some other 

conditions are met, e.g., phase space compactness). In fig.8, 

the time-course of the Lyapunov exponent L1 during an 

endurance test (i.e., a muscle task where the subject has to 

maintain its MVC for several repeated periods of time, 33 sec 

in the fig) is reported in squares (against the force, in rhombs). 

As expected, chaoticity increases at the beginning of the 

muscle task, as the result of further MUs recruitment, and 

then decreases in presence of fatigue phenomena and MUs 

synchronization. 
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