
1

Abstract—Conventional sorting algorithms make use of such

data structures as array, file and list which define access methods

of the items to be sorted. These traditional methods – exchange

sort, divide and conquer sort, selection sort and insertion sort –

require supervisory control program. The supervisory control

program has access to the items and is responsible for arranging

them in the proper order. This paper presents a different sorting

algorithm that does not require supervisory control program. The

objects sort themselves and they are able to terminate when

sorting is completed. The algorithm also employs parallel

processing mechanisms to increase its efficiency and effectiveness.

The paper makes a review of the traditional sorting methods,

identifying their pros and cons and proposes a different design

based on conceptual combination of these algorithms. Algorithms

designed were implemented and tested in Java desktop

application.

Index Terms—Algorithm, J2SE, Object, Parallel Processing,

Self Sorting

I. INTRODUCTION

onventional sorting algorithms make use of a data

structure to store the items to be sorted. The general data

structures employed are array, file, list or some sort of

collection which defines access methods of the items. The

popular traditional sorting algorithms are grouped as insertion;

divide and conquer; bubble and selection [1], [2], [14], [15].

Insertion sort works by taking elements from the list one by

one and inserting them in their correct position into a new

sorted list [19]. It is relatively efficient for small list and

mostly sorted list [3], [4], [16]. Divide and conquer algorithms

rely on partition operation. The commonest divide and conquer

algorithm is the Quick-sort. Quick-sort selects a pivot element

and uses it to partition the dataset. Elements that are smaller

than the pivot are moved to positions before it and all elements

greater than the pivot element are moved to positions after it.

The most complex issue in quick-sort is choosing a good pivot

element. Consistent poor choices of pivots can result in

drastically slower O(n
2
) performance. If at each step, the

median is chosen as the pivot then the algorithm works in O(n

log n) [1], [3], [5]. Finding the median however, is an O(n)

operation on unsorted list and therefore exerts its own penalty

with the sorting.

Bubble sort is a simple algorithm. The algorithm starts at the

beginning of a dataset. It compares the first two elements and

This work was supported in part by the Department of Software
Engineering, ICT System Solution Center.

The author is with the Computer Science Department, Kumasi Polytechnic,

Postal Code 854, Kumasi, Ghana, West Africa (phone: +233-242-124-291; e-
mail: Samuelk.opoku@kpoly.edu.gh).

if the first is greater than the second, it swaps them. It

continues for each pair of adjacent elements to the end of the

dataset. It then starts again repeating the process until no swap

occurs at the last pass. Average case and worst case are both

O(n
2
) performance. This algorithm is efficiently used on a list

that is already sorted except for a very small number of

elements [1], [6], [7]. For instance, if only one element is not

in order, bubble sort takes only 2n time. For two elements not

in order, it takes 3n time.

Selection sort algorithms are noted for its simplicity [18]. It

finds the minimum value, swaps it with the value in the first

position and repeats these steps for the remainder of the list. It

does no more than n swaps and thus it is useful where

swapping is very expensive. It has O(n
2
) complexity making it

inefficient on large list [1], [8]. Heap sort [3], [8] is a much

efficient version of selection sort. It also works by determining

the largest (or smallest) element of the list placing that at the

end (or beginning) of the list. It then continues with the rest of

the list. The task is efficiently accomplished when a heap data

structure, a special type of binary tree, is used. Using the heap

data structure, finding the next largest element takes O(log n)

time instead of O(n) for a linear scan allowing the heap sort to

run in O(n log n) time [3], [16].

Self sorting algorithm was designed in [9]. The algorithm

was based on bubble sort and quick sort algorithms. The self

sorting algorithm requires that the object knows all the state or

status of the preceding objects and the next objects before it

can determine whether all the objects are sorted or not. It

therefore required finding the first object which is based on

bubble sort algorithm and finding the last object which is based

on quick sort algorithm [1]. The first object is the object whose

reference to the previous object is null whereas the last object

is an object whose reference to the last object is null. This

paper presents self sorting algorithm that does not require

supervisory control program. It also employs parallel

processing mechanism to increase the efficiency and

effectiveness of the algorithm. The algorithm is then

implemented and tested using Java desktop application.

Self-sorting is the ability of objects to find and self-assemble

selectively with their corresponding recognition units [10],

[18]. Self sorting plays important roles in our daily lives from

complex systems, such as DNA replication and transcription,

to simple phenomena, such as oil-water phase separation. A

self sorting object is implemented such that it has a sort

method that allows it to place itself in the correct position with

respect to preceding and following objects. The sorting

algorithm usually employed by self-sorting objects may root

from single or combination of the known conventional sorting

algorithms [9], [20]. A self sorting object has at least three

features [9], [10]:

Parallel Self-Sorting System for Objects

Samuel King Opoku, Member, IEEE

C

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Software Engineering (JSSE), December Edition, 2011

2

• Stores a reference to the preceding object or null if

there is none.

• Stores a reference to the next object or null if there

is none

• Stores a data value to be used as the sort key

A Java desktop application is implemented in Java 2

Standard Edition (J2SE). J2SE describes the Java language and

the basic set of API libraries that are used to create window (or

frame and panel as in Java) and applet applications [11].

Applets are applications that run within web browsers. A

typical architecture of J2SE is illustrated in the figure below:

Fig. 1. J2SE Architecture

Sorting algorithms implemented in J2SE generally require

that objects implement the Comparable interface [12]. The

Comparable interface has just one method; int

compareTo(Object obj). The implementation of the method

returns int less than zero if the object comes before the given

object in some natural order. Zero if the object equals to the

given object and an int more than zero if the object comes after

the given object [11], [12]

A parallel processing refers to the concept of speeding-up

the execution of a program by dividing the program into

multiple fragments that can execute simultaneously. There are

two forms of parallelism [13]. These are transparent or implicit

parallelism and explicit multi-process parallelism. Transparent

parallelism breaks a job into parallel threads without the

intervention of the user whereas explicit multi-process

parallelism requires users to formulate and break job in terms

of both function and data. Parallel processing has the following

characteristics [13], [17], [20]:

• It includes job scheduling and other serial

computation

• A basic loop starts with supervisory scheduling

followed by the computation and inter-threading

message phases

• Synchronization occurs prior to returning to

scheduling the next unit of parallel work.

The figure below illustrates the general overview of the

architecture of parallel processing system.

Fig. 2. Parallel Processing Architecture

II. SYSTEM ALGORITHMS AND DESCRIPTION

This section focuses on designing algorithms needed to

implement parallel self sorting object.

A. Objects’ Architecture

Each object contains two pointers and three buffers. The

pointers are called prevPointer and nextPointer. The

prevPointer points to the preceding or previous object and the

nextPointer points to the next or the following object. The

sorting algorithm forms part of the object’s behaviors (or

methods as used in Java). The sorting algorithm takes as

parameter the sort key. This allows the object to be generalized

and adaptive to different situations. With many attributes of the

object, any of the attributes can be used as a sort key. The sort

key is passed from one object to another object which

automatically triggers the sorting behavior of the object as

soon as it receives the sort key. The figure below shows the

architecture of two objects in a sorting list. Sorting list refers to

the set of objects to be sorted. Sorting list must contain at least

two objects before sorting can take place

3

 Fig. 3. Overview of Object’s Architecture

 The three buffers, in this work, are called prevBuffer,

posBuffer and nextBuffer. Their functions in the objects are

described as:

• prevBuffer: contains true when the object is sorted

with the preceding or previous object based on the

sort key value otherwise it contains false.

• posBuffer: contains the position of the object in the

sorting list. This is updated any time the object

changes position to reflect its current position. This is

done by swapping the values in these buffers of the

objects whose positions are changed. Initial position

is assigned to an object when it is added to the sorting

list.

• nextBuffer: contains true when the object is sorted

with the next or the following object based on the

sort key value otherwise it contains false.

The object automatically stops sorting when both

prevBuffer and nextBuffer contains true. However, if a

neighboring object is unsorted and wants to change position

with an object which has both prevBuffer and nextBuffer

true, should that happen, it passes the sort key and its

identity which triggers sorting, by setting one of the Buffers

to false, in that object and both objects interchange

positions. Interchanging position automatically triggers the

others to compare their sort key values with their new

neighbors to check for the possibility of resorting.

Eventually sorting is completed when all prevBuffers and

nextBuffers are set to true.

B. Description of System Algorithm

The self-sorting object algorithm is said to be parallel since

each object initiates a thread to get itself into the correct

position. The algorithm can be considered as divide and

conquer algorithm such that every two adjacent objects can be

considered as being partitioned with any one assumed as the

pivot element. Combing a number of these divide and conquer

objects together to get the overall list sorted describes the

algorithm as Merge sort algorithm. Bubble sort concept is also

said to be employed in that an object compares itself with the

next object and swaps positions when needed. The object after

swapping also compares itself with the next object and if

required, it repeats the swapping process. Hence the parallel

self-sorting algorithm implemented in this work combines

concepts from different conventional sorting algorithms.

C. Parallel Self-Sorting Design

 Every object is seen as a constituent of attributes (data

fields) and behaviors (methods). These attributes and behaviors

are described in terms of characters. Group of character sets

together form string which can be manipulated and compared.

An impulse from the surrounding environment (as part of the

program when implemented in a software system) initiates

sorting of the objects in the sorting list. The attribute or data

field required as sort key is also provided by the impulse. The

sort key is compared with the attribute list. If it exists, then

sorting can be started otherwise ignore trigger. Every object

starts its thread and calls its connectTo() behavior or method.

The thread loops indefinitely waiting for a connection from the

next or the following object in the sorting list. The Java-like

algorithm for the part of the implementation of the thread is

illustrated below:

4

Fig. 4. Overview of Connection Thread

The ConnectionHandler (conn) opens a new thread which

communicates with the connected object. They exchange their

sort key values and such other parameters as the value in the

posBuffer later in the communication. The object also uses the

connectTo() method to connect to the preceding object in the

sorting list and check whether the sort key value of the

preceding object is greater than its sort key value. Each object

thus acts as a server and a client. If the two connected objects

are not following the natural order based on their sort key

values, they interchange the values in their posBuffer’s and

then use these values to interchange positions. The figure

below demonstrates a Java-like algorithm for the general

overview of the implementation:

Fig. 5. General Overview of Implementation

When the object under consideration, based on the sort key

value, is less than the preceding object and also greater than

the next object, the value in the posBuffer received from the

preceding object is given to the next object as the value from

the object and also gives the value in the posBuffer received

from the next object to the preceding object as the value from

the object. This allows the neighboring objects of the object

under consideration to swap leaving the object under

consideration in its correct position. The figure below

illustrated the phenomenon with an example:

Fig. 6. Example of Swapping Non-Adjacent Objects

Swapping ensures that the new connecting neighbors update

themselves to reflect the status of their neighbors in the sorting

list. Take for example, a sorting list consisting of A, B, C, D, E

in that order. If C and D are swapped, adjacent objects, B and

E also need to update themselves. However, when B and D are

5

swapped, non-adjacent objects, then A, C and E also need to

update themselves. The Java-like algorithm that illustrates how

objects manipulate sort key values is shown below:

Fig. 7. Preceding Object Manipulation of Sort Key Values

Fig. 8. Next Object Manipulation of Sort Key Values

Consider an interesting scenario. Imagine that objects in a

sorting list have the following sort key values in order: 6, 5, 4

and 3. The object with a sort key value 5 will initiate swapping

between object with the sort key value 6 and the object with

the sort key value 4. Similarly, the object with the sort key

value 4 will also initiate swapping between the object with the

sort key value 5 and the object with the sort key value 3. This

situation is called deadlock. Deadlock prevents swapping from

taking place. swapObject(movedToPositon) method is

implemented such that deadlock situations are handled

successfully. The Java-like algorithm shown below illustrates

part of the swapObject(movedToPosition) implementation

6

Fig. 9. Part Implementation of swapObject

III. SYSTEM IMPLEMENTATION AND TESTING

The system was implemented and tested in various

scenarios. A typical scenario in which the parallel self-sorting

was used is described.

A. Self-Sorting Implementation

The main class for implementing self-sorting object is

shown in the figure below. The figure ignores data fields and

private methods

Fig. 10. Overview of Self-Sorting Object’s Architecture

The object to be sorted inherits the SubjectParticulars.java

class. Each object has a set of subjects and therefore the

various subjects for each object is stored using arraylist, a data

structure that behaves like an array but can have varying size.

The figure below demonstrates the implementation of the

SubjectParticulars.java class ignoring all the data fields

Fig. 11. Overview of SubjectParticulars.java

B. Implementation of Testing System

The self-sorting object is implemented as part of

SMSYSTEM for testing. SMSYSTEM is a system developed

to support academic institutions in carrying their daily

activities. SMSYSTEM represents School Management

System. The system generates functionalities that include:

terminal report, transcript, continue assessment, terminal

summary report, terminal detailed report, issue students’

7

school bill and payment statement. Self-sorting object was

implemented as part of the detailed report processing. The

activities in processing detailed report involve: fetching names;

various subjects; class continuous assessment marks obtained

through exercises, quizzes, projects and tests and exam marks

from a database. All the fields of the database are string data

types since a mark could contain dash (-). The system then

computes the end of term or semester mark for each subject;

each student’s average mark; each student’s position. The

output involved student ID, name, subjects which are divided

into core and elective, total subjects taken by each student,

average mark and position of each student. The output is either

formatted by names or positions. The figure below illustrates

the interface needed to initiate detailed report processing.

Fig. 12. Interface for Producing Detailed Report

Depending on the choice of the user, the output of the

detailed report is displayed using Jasper Report. The figure

below illustrates portion of the report displayed using position

as a sort key.

Fig. 13. Position Sort Key Sample of Detailed Report

8

C. Analysis of the Implemented System

At the baseline, the efficiency of the system when

implemented as software depends on the capacity of the

memory and the processing power of the system. However, if

an object with one attribute is implemented and compared with

the conventional sorting algorithms whose concepts were

employed, the parallel self-sorting system proposed in this

research, in the best case, works at the speed of O(n log n).

Concerning the worst case, on the other hand, the algorithm

has O(n) complexity.

The system is very effective in sorting objects when it was

tested in the software implementation. Regardless of the

number of attributes for different objects, the system only

requires that all the objects to be sorted should have a common

sort key to be used.

IV. CONCLUSION

In this paper, the researcher outlined the various techniques

required to implement a parallel sorting system whose concept

is based on the combination of concepts from the conventional

sorting algorithms. The effectiveness and efficiency of the

proposed system were verified through the use of different

objects with variable attributes and behaviors. Testing results

show that the system is effective regardless of different number

of attributes. Its efficiency, however, depends on the capacity

of the memory and processing when used in software

environment.

The system serves as a basis for designing and

implementing self sorting applications in sensitive situations

such as arrangement of linear sequence communicating nodes

to provide optimal performance and arrangement of

autonomous systems, environment sensors or intelligent agents

in a particular order to perform designated functions.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, S. Clifford, “Introduction
to Algorithms”, Second Edition, MIT Press and McGraw-Hill. ISBN 0-

262-03293-7, 2001

[2] M. T. Goodrich, R. Tamassia, "Algorithm Design: Foundations,
Analysis, and Internet Examples", John Wiley & Sons. pp. 241–243,

2002

[3] Y. Han, "Deterministic Sorting in Time and Linear Space" Proceedings
of the thirty-fourth annual ACM symposium on Theory of computing,

Montreal, Quebec, Canada, p.602-608, 2002.

[4] A. Doroshenko, M. Kotyuk, S. Nikolayev, G. Tseytlin, O. Yatsenko,
"Developing Parallel Programs with Algebra of Algorithms and

Heuristic Facilities", Proc. Int. Workshop CS&P 2009, Kraków-

Przegorzaly, Poland, pp. 142-153, 28–30 September 2009
[5] M. Lagoudakis, M. Littman, R. Parr, "Selecting the Right Algorithm", In

Proceedings of the AAAI Fall Symposium Series: Using Uncertainty

within Computation, 2001
[6] D.E. Knuth, "The Art of Computer Programming: Sorting and

Searching", Volume 3, Addison-Wesley, 1981
[7] M. Thorup, "Randomized Sorting in Time and Linear Space Using

Addition, Shift, and Bit-wise Boolean Operations", Journal of

Algorithms, Volume 42, Number 2, pp. 205-230, February 2002
[8] Y. Han, M. Thorup, "Integer Sorting in Expected Time and Linear

Space" In Proceedings of the 43rd Symposium on Foundations of

Computer Science, FOCS, IEEE Computer Society, Washington, DC, pp
135-144, 2002

[9] S. D. Bergmann, "Self-Sorting Objects", OOPSLA '08, Rowan

University, 2008
[10] C. Burd and M. Weck, "Self-Sorting in Polymers", American Chemical

Society, Macromolecules Vol. 38, No. 17, pp 7225-7230, 2005

[11] L. Doug, "Java All-in-One Desk Reference for Dummies", Wiley
Publishing Inc, ISBN-13: 978-0-7645-8961-4, pp 65-70, 2005

[12] N. Duchon, "Java Interfaces – Part 2 The Vector Class, Sorting, and

Collections", Version 1.1, July 2007
[13] G. Bell, "The Outlook for Scalable Parallel Processing", Spectrum

Information Systems Industry, Decision Resources Inc. vol 59. pp 1-14,

June 21 1994.
[14] L. M. Surhone, M. T. Timpledon, S. F. Marseken, "Sorting Algorithm",

2nd Edition, BetaScript Publishing, ISBN: 978-6130335250, pp 50-120,

2010
[15] F. P. Miller, A. F. Vandome, J. McBrewster, "Bucket Sorting", 1st

Edition, AlphaScript Publishing, ISBN: 978-6130767365, pp 34-67,

2010.
[16] G. T. Heineman, G. Pollice, S. Selkow, "Algorithms in a Nutshell, A

Desktop Quick Reference", 1st Edition, O'Reilly Media Inc., ISBN: 978-

0-596-51624-6, pp 57-98, 2008
[17] X. Hongwei, X. Yafeng, "An Improved Parallel Sorting Algorithm for

Odd Sequence", International Conference on Advanced Computer

Theory and Engineering, pp 356 - 360, 2008
[18] M. Zhou, H. Wang, "An Efficient Selection Sorting Algorithm for Two-

Dimensional Arrays", Fourth International Conference on Genetic and

Evolutionary Computing (ICGEC), pp 853 - 855, 2010
[19] T. Tiwari, S. Singh, R. Srivastava, N. Kumar, "A Bi-Partitioned Insertion

Algorithm for Sorting", 2nd IEEE International Conference on Computer
Science and Information Technology, pp 139 - 143, 2009

[20] X. Qian; J. Xu, "Optimization and Implementation of Sorting Algorithm

Based on Multi-core and Multi-thread", IEEE 3rd International
Conference on Communication Software and Networks (ICCSN), pp 29 -

32, 2011

