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Abstract—In the management of Internet Protocol networks, 

the number of flows is an important performance metric because it 

has useful applications in areas such as port scan detection, 

denial-of-service detection, and traffic analysis.  Real-time 

counting of flows is particularly important because network 

operators can take immediate actions against detected network 

anomalies or performance degradation.  This paper presents a 

method that enables real-time counting of flows classified by 

application.  More useful information for network management 

can be obtained by counting classified flows.  For example, the 

proposed method is helpful in determining the type of attacks or 

victim services for attack detection.  

The algorithm for counting classified flows is developed using 

the timestamp vector algorithm.  This paper first explores a naïve 

method that has as many timestamp vector mechanisms as the 

application classes.  However, this method is disadvantageous 

because it consumes a very large memory space.  To avoid this 

problem, a new method that considerably decreases memory 

consumption is proposed.  In addition, we also investigate 

techniques for improving measurement accuracy.  The 

effectiveness of the proposed method is evaluated for real-world 

network data. 

 
Index Terms—application, flows, internet protocol, 

performance, traffic  

 

I. INTRODUCTION 

N the management of internet protocol (IP) networks, the 

number of flows is an important performance metric because 

it has useful applications in areas such as port scan detection, 

denial-of-service detection, and traffic analysis [1]−[3].  In IP 

networks, a flow is identified by a flow identifier that is often 

defined as a five-tuple of source address, destination address, 

protocol, source port, and destination port in the packet 

header [2].  Flow counting is defined as a procedure that 

determines number of different flow identifiers existing in a 

packet stream.  

The number of flows is measurable in a real-time, online 

manner, while some other flow metrics must be analyzed  
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offline [4]−[6].  This real-time nature of flow counting is 

particularly significant because network operators can take 

immediate actions against anomalies found by irregular flow 

behavior. 

Several flow-counting techniques have been 

proposed [1]−[3].  The number of flows is sometimes counted 

using a hash function with a bit vector or a Bloom filter [1], [3].  

The timestamp vector (TV) algorithm, which also uses a hash 

function, does not employ a bit vector [2].  Instead, the method 

uses a TV whose elements show the times of packet arrival.  

Reference [2] reported that the TV algorithm achieves better 

accuracy than the method used in [1]. 

Another important aspect of network measurement is the 

classification of traffic by the application that generates the 

traffic [7]−[10]. The advantage of real-time flow counting is 

enhanced by classifying flows according to the application and 

then estimating the number of classified flows.  By counting 

classified flows, network operators can determine the most 

popular services and those that mostly impact network 

performance.  In the case of intrusion and denial-of-service 

detection applications, which depend on flow counting, the 

number of classified flows provides valuable information for 

identifying the types of attacks or victim services.  Therefore, it 

is important to combine flow counting with traffic classification. 

This paper presents a method that enables real-time counting 

of flows classified by application.  The number of classified 

flows can be easily measured by using as many flow counting 

mechanisms as applications and inputting classified traffic.  

However, such a naïve method is impractical because of 

excessive memory space consumption.  To avoid this problem, 

this paper proposes a method that requires smaller memory 

space.  In exchange for memory space savings, the output of the 

proposed method may include errors induced by the collisions 

among hash function outputs.  However, the errors caused by 

the collisions are very small.  In the proposed method, errors 

may also occur by the mechanism that identifies flow 

termination.  This paper examines an improved method that 

judges flow termination more accurately than the existing 

method.  The effectiveness of the proposed method is evaluated 

through an experiment that uses real-world network data. 

The rest of this paper is organized as follows.  Section II 

presents a literature review.  Section III identifies the objective 

of this study.  The proposed method is based on the TV 

algorithm [2].  This basic algorithm is explored in Section IV.  
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Then, the proposed method is detailed in Section V.  Section VI 

presents some accuracy improvement techniques.  The 

proposed method is evaluated using real-world network data in 

Section VII.  Finally, we present the conclusions in Section 

VIII.  

 

II. RELATED WORK 

Previous studies have examined methods for counting the 

number of flows [1]−[3].  Some methods [1], [3] use a hash 

function and a bitmap.  This approach is advantageous because 

it conserves storage space.   The virtual map concept requires an 

extremely small storage space [1].  This concept enables the 

bitmap to be stored in high-speed SRAM.  However, [2] 

indicates that the method in [1] is not accurate.  As an alternative 

method, [2] presents the TV algorithm and demonstrates its 

superiority. 

Another important field of network measurement is the 

classification of traffic by application [7]−[10].  A simple 

method for classifying traffic is the identification of port 

numbers found in packets [7].  More sophisticated methods are 

found in, for example, [8]−[10]. These methods include 

machine learning-based approaches [8], [9] and signature-based 

approaches [10]. These approaches classify the traffic more 

precisely than the port number-based method.  However, it 

should be noted that some of these approaches are developed for 

offline operation and are too complex to be applied to real-time 

applications.  As an alternative method, a hardware based 

classification is also available [11].   

It is expected that more significant management information 

will be available if real-time flow counting is combined with 

traffic classification.  However, so far, there have been no 

studies that agree with this viewpoint. 

 

III. OBJECTIVE 

We develop an algorithm that executes the following 

processes. 

- First, the packets flowing on the monitored link are 

classified into multiple streams, each of which is generated by a 

particular application.  

- For each classified packet stream, the algorithm counts the 

number of flows in real-time.  

Each flow is identified as a five-tuple of source address, 

destination address, protocol, source port, and destination port 

that are stored in the packet header [2].  In other words, the 

algorithm estimates the number of concurrent sockets that are 

open for each application at a particular instant.  

The classified flows are counted periodically at time t1, t2,… 

Let ∆t denote the interval of measurement.  That is,  

∆t = ti − ti − 1. (1) 

The interval ∆t is a constant and is set at 1 s in this paper.  Let 

[ti − 1, ti) denote the duration of time t such that }|{ 1 ii ttttt <≤∈ − . 

In this paper, the number of flows to be estimated at time ti 

refers to the number of existing flows in the duration [ti − 1, ti). 

Note that some flows may be inactive and will not issue any 

packets in [ti − 1, ti). Meanwhile, if a flow begins before ti − 1 and 

ends after ti, it certainly exists in [ti − 1, ti).  Thus, such a flow is 

counted even if it does not generate any packets in [ti − 1, ti).  This 

is necessary because the number of inactive, low rate flows may 

be relevant for network management.  In addition, this study 

assumes that the flows at time ti include the flows terminated 

during [ti − 1, ti).  Otherwise, the significant information of the 

short term flows that begin after ti − 1 and end before ti will be 

lost.  Fig. 1 illustrates which flows are counted at time ti. 

: Packets : First Packets : Last Packets

ti – 1 ti

Flow #1

Flow #2

Flow #3

Flow #4

Flows Counted at ti

∆t = 1 s
 

Fig. 1.  Flows to be counted at time ti. 

The aim of this study is to derive a method that requires a 

small memory space and provides an accurate estimation.  The 

developed method works in real-time.  Because of this, the 

method will be applicable to automatic management that 

requires immediate actions against the anomalies or degradation 

of network performance. 

 

IV. BASIC ALGORITHM 

The proposed method relies on the real-time flow counting 

method called the TV algorithm [2].  This algorithm is useful to 

count flows in real-time.  The method is based on two 

mechanisms: a TV (v0, v1, …, vb–1) and a hash function that maps 

the flow identifier (protocol, source/destination address, 

source/destination port) to integers 0, 1,…, b − 1.  The TV 

algorithm utilizes the timeout concept to judge the termination 

of flows.  Let To denote the timeout period in seconds.  Then, the 

algorithm considers a flow to exist if it generates packets for the 

last To.  Using these concepts, the algorithm can be summarized 

as follows: 

1. For each packet arrival, compute the hash function output 

h from the flow identifier.  Then, set vh to the arrival time. 

2. Execute the following periodically at t1, t2, … with a fixed 

interval ∆t. 
- Obtain the updated value c, which is the number of vector 

elements vi , for the last To.  

- Compute the number of flows, denoted as n, by 

cb

b
bn e −

= log . (2)  

The TV algorithm is based on the linear counting algorithm, 

which is comprehensively analyzed in [12].  The derivation 

of  (2) is found in [2], [12]. 
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V. COUNTING OF CLASSIFIED FLOWS 

This section describes how the TV algorithm is modified to 

count flows classified by application.  The classified flows can 

be easily counted using a naïve method, described in the next 

section, which employs as many flow counting mechanisms as 

the application classes.  However, this naïve method is 

impractical because it consumes a very large storage space.  To 

overcome this difficulty, we present an improved method. 

This study employs a simple method based on port numbers 

shown in packet headers for traffic classification [7].  

Complicated classification methods are not appropriate for 

real-time implementation, and thus, are not discussed. 

Nevertheless, the port based classification technique is not 

essential for the proposed method.  The method can count flows 

from a packet stream even if packets are classified by other 

approaches.  Thus, the proposed method may be combined with 

an approach such as the machine-learning-based classification 

[8], [9] or the signature-based classification [10], if it performs 

in real-time. A hardware-based classification [11] will also be 

usable with the proposed method.  

A. Naïve Method 

Assume that each packet arriving at the monitored link is 

classified by application.  In addition, assume that there are m 

applications a1, a2, …, am.  Let ni ( mi ≤≤1 ) be the number of 

flows that belong to application ai.  

The flow numbers n1, n2, …, nm are counted by employing m 

distinct TVs v1, v2, …, vm, each of which is associated with an 

application.  For a packet whose application is classified as ai 

( mi ≤≤1 ), the hash output h is computed and then the h-th 

element of vi, which is denoted as vi, h, is updated.  By counting 

ci, the number of elements updated for the last To in vi, and 

using  (2), ni is represented by 

i
ei

cb

b
bn

−
= log . (3)  

We will refer to this method as the “naïve method” hereafter.  

The disadvantage of the naïve method is its excessive 

consumption of memory space.  The TV size b must be very 

large in order to achieve accurate estimation.  Meanwhile, the 

naïve method requires m times more space to store timestamps 

compared to the original TV algorithm.  This is particularly 

critical if it is necessary to distinguish among many types of 

applications. 

B. k-Vector Method 

The memory required for counting classified flows is 

considerably decreased by the following method.  

The method uses k TVs v1, v2, …, vk ( mk ≤≤1 ) as well as 

additional k vectors s1, s2, …, sk.  Both vector vj and additional 

vector sj ( kj ≤≤1 ) have b elements (vj, 1, vj, 2, …, vj, b −1 and sj, 0, 

sj, 1, …, sj, b–1, respectively).  The element sj, h shows which 

application updates the associated TV vj, h.  Thus, let us refer to 

vectors s1, s2, …, sk as “application vectors.”  Using these 

vectors, the flow number for each application is computed as 

follows:  

1. For each packet arrival, compute the hash function output 

h from the flow identifier and identify its application a.  If 

there exists an index j that satisfies sj, h = a, then set vj, h to 

the arrival time.  Otherwise, find the TV element vj, h that 

stores the smallest (i.e., the oldest) value among v1, h, 

v2, h, …, vk, h.  Then, set vj, h to the arrival time and set sj, h to 

a.  

2.  Periodically at t1, t2, …, obtain value ci, which is the 

number of indices (j, h), such that 

- vj, h is updated for the last To  

- sj, h is ai.  

Then, compute ni, the number of flows for application ai, 

using (3).  

Since this method employs k timestamp and application 

vectors, it will be referred to as the “k-vector method” hereafter.  

Fig. 2 compares the (a) naïve method with the (b) “k-vector” 

method.  

v1 vk

. . .

. . .

. . .

s1 sk

k (k = 2 or 3) Timestamp/Application Vectors

13:54:39

…

Arrival Time

… …
…

ai
Application

m Timestamp Vectors

. . .

v1 v2 vm

.  .  .

vi

13:54:39

Application ai

…
…

. . .

. . .

. . .

Arrival Time

0
1

b – 1 

. . .

0
1

b – 1 

. . .

(a) Naïve Method

(b) k-Vector Method
 

Fig. 2.  Data structures for (a) the naïve method and (b) the k-vector method. 

If k is set smaller than m, the memory space used by the 

k-vector method becomes smaller than that used by the naïve 

method, although the application vectors s1, s2, …, sk for the 

proposed method are introduced in the k-vector method. 

C. Collision Error 

If k < m, the proposed k-vector method may yield an 

estimation error.  This error is generated when the same hash 

output is obtained from the flow identifiers of k + 1 or more 

applications.  In such a case, an application vector element 

updated by a flow of an application ai may be overwritten by 

that of another application aj ( mjiji ≤≤≠ ,1  , ).  Then, the 

element update made by ai is not recognized by the algorithm.  

Therefore, ci and ni will be underestimated.  We refer to this 

type of error as a “collision error” because it is caused by 

collisions among hash outputs. 

The collision error can be decreased for a larger value of k.  



 

25 

 

This is shown by the following simple analysis. 

Let Pcoll(k) denote the probability that a particular hash output 

value h is obtained from the flow identifiers of k + 1 or more 

applications.  Thus, Pcoll(k) represents the probability that the 

collision error occurs for the flows associated with the hash 

output h.  Assume that there are m applications and n flows 

existing for each application.  That is, for simplicity we assume 

that every application is holding the same number of flows. 

Then, assuming that the hash function distributes the flow 

identifier to integers 0, 1, …, b − 1 uniformly, the output of the 

hash value h from one or more flows of an application has the 

following probability Ph. 

bn

n

h e
b

P /1
1

11 −−≈







−−= . (4)  

Then, Pcoll(k) is represented with Ph as follows. 

( )∑
+=

−−
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ki

im
h

i
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i

m
kP

1

coll 1)(  (5) 

It is easy to compute Pcoll(k) by the relations, 

0)(coll =mP , (6) 

( ) 11
collcoll 1

1
)1()(

−−+ −








+
++= km

h
k
h PP

k

m
kPkP . (7)  

According to (7), Pcoll(k) is larger than Pcoll(k + 1).  Therefore, 

Pcoll(k) decreases for a larger k.  This is confirmed by Fig. 3. The 

figure plots Pcoll(k) computed by (4), (6), and (7) against k for 

the case of b = 10000, 20000, 50000, and 100000. In the figure, 

n was set at 1000 while m was set at 8.  The figure clearly shows 

that Pcoll(k) decreases as k increases.  As the figure shows, the 

probability of the collision error occurrence becomes 10
2
 to 10

3
 

times smaller by increasing k from 1 to 3.  This implies that the 

collision error will be negligibly small for a moderate value of k.  

This characteristic is further confirmed through an experiment. 
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Fig. 3.  The probability of a collision error occurrence versus k. 

D. Collision Error Evaluation 

The analysis described in Section V.C is useful to understand 

the basic nature of a collision error occurrence.  However, it 

does not present the actual error volume in the output of the 

k-vector method.  To clarify this point, the output of the 

proposed method was compared with that of the naïve method 

for real-world network data.  For this purpose, the naïve method 

and the proposed method were implemented using programs 

running on a Linux OS and written in the C language.  These 

programs identify seven applications by using the port number 

shown in the packet header.  The classified applications 

(protocols) included world wide web (HTTP), secure web 

(HTTPS), secure shell (SSH), mail (SMTP), domain name 

system (DNS), Squid web proxy (Squid), and mail/post office 

(POP Version3).  The employed port numbers are: 

80 (world wide web), 

443 (secure web), 

22 (secure shell), 

25 (mail), 

53 (domain name system), 

3128 (Squid web proxy), and 

110 (mail/post office). 

For the proposed method and the naïve method, the same 

modulo-based hash function was used consistently for all 

applications.  The function is defined as follows.  Let ms and md 

denote the source and destination addresses and ns and nd denote 

the source and destination port numbers, respectively.  Assume 

that we are monitoring an IP version 4 packet stream.  Then, 

integers ms and md are four octets long while ns and nd are two 

octets long.  In addition, let p be the protocol field value that is 

one-octet long.  Then, for flow identifier x = (p, ms, md, ns, nd), 

the function h(x) is 

bnnmmpxh dsds mod)2()( 16 ⊕⊕⊕⊕= , (8) 

where b is set to a prime number. 

The programs output the number of classified flows for each 

application every 1 s.  The programs were built using the pcap 

library [13] and can monitor live traffic in real-time and can 

read tcpdump-format files.  The effectiveness of the proposed 

method was evaluated by running these programs.  The input for 

the programs was real-world network data available from the 

MAWI database of the WIDE project [14].  From the database, 

a part of the data taken at a sample point F on April 13, 2010 

was employed.  From the original data file we extracted four 1-h 

IP version 4 and TCP packet dump files, each of which was 

created by combining four 15-min files.  For these input files, 

because the programs output the flow numbers every 1 s, 14400 

sets of flow numbers were obtained.  Then, the root mean 

squared error was computed between the outputs of the 

proposed method and those of the naïve method.  Fig. 4 shows 

the result for the case when the application is world wide web. 

In the figure, the vector size b was set to 80021,120011, and 

200003.  Similarly, Figs. 5 and 6 show the results for the secure 

shell and mail applications for the same input data. 

Figs. 4−6 show that the error decreases by increasing k as 

predicted by the analysis.  In fact, the error is negligible, even if 

k is as small as 2.  This implies that compared to the naïve 

method, the proposed method can efficiently save memory 

space without decreasing accuracy.  The figure also shows that 
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the error decreases by increasing b.  This is because the 

probability of the element update is smaller for a larger value of 

b. 
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Fig. 4.  Root mean squared error of the proposed method for the world wide 

web (HTTP) application. 
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Fig. 5.  Root mean squared error of the proposed method for the secure shell 

(SSH) application. 
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Fig. 6.  Root mean squared error of the proposed method for the mail (SMTP) 

application. 

E. Computational Time 

The proposed method employs a smaller number of time 

stamp vectors compared to the naïve method.  This means that 

the number of vector elements that must be checked is smaller 

for the proposed method than for the naïve method.  Therefore, 

the proposed method is also advantageous from the viewpoint of 

computational time. 

 

VI. ACCURACY IMPROVEMENT 

As shown in the previous section, the collision error of the 

k-vector method can be made almost negligible by setting k to 2 

for a large value of b.  However, the output of the algorithm still 

includes errors resulting from the timeout-based detection of 

terminated flows.  As seen in Section IV, the mechanism 

considers the flows to be terminated if no packets are issued for 

the last To seconds.  This means that the mechanism considers 

the flows that are terminated for the last To seconds to exist.  

Because of this erroneous termination detection, the algorithm 

overestimates the number of flows.  This overestimation 

becomes more critical for a large value of To.  Meanwhile, if the 

interval between successive packets of a flow is larger than To, 

the detection mechanism considers the flow to be terminated.  In 

this case, the flow is not counted and the total number of flows is 

underestimated.  To avoid this underestimation, the value of To 

must be sufficiently large.  This means that the value of To must 

be carefully determined by considering a trade-off between 

overestimation and underestimation.  Unfortunately, it is not 

easy to select an optimal value of To, which avoids both 

overestimation and underestimation, for any traffic condition. 

For TCP flows, the overestimation caused by the 

timeout-based mechanism is efficiently decreased by 

considering TCP FIN/RST messages [2], [15].  In a normal 

operation, a TCP connection is terminated by sending a FIN 

message.  Otherwise, an RST message terminates the TCP 

connection.  Thus, the number of terminated TCP flows can be 

found by counting the flows that issued FIN/RST messages.  Let 

nF denote the number of flows that issued FIN/RST messages 

during the last To.  Then, the correct number of flows is obtained 

by subtracting nF from the flow number estimated by the 

k-vector (or naïve) method.  However, even if the RST/FIN 

messages are utilized, estimation errors are unavoidable.  These 

errors include the overestimation caused by one-packet flows 

and the underestimation caused by retransmitted FIN messages.  

In addition, some flows are terminated without issuing any 

FIN or RST messages.  For those flows, the termination must be 

decided with the timeout.  Thus, it is important to decide the To 

value adequately.  In fact, the optimal value of To differs 

depending on the application because of the difference in packet 

intervals.  This means that it is necessary to set To at a different 

value for each application. 

A. One-Packet Flows 

Fig. 7 plots the secure shell (SSH) flow number obtained by 

the proposed k-vector method against time.  The figure also 
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shows the correct flow number, which was obtained by 

analyzing the output of the tcptrace program [16] in the 

manner described in the Appendix.  The data was taken for a 

part of the packet dump file recorded at the sample point F on 

April 13, 2010.  For the proposed method, we set k = 2 and To = 

7 s.  The figure shows that the proposed method considerably 

overestimates the number of flows at the pulse-shaped peak 

period.  By screening the tcptrace output, we found many 

TCP SYN packets without any response during the period.  In 

particular, many flows that issue only one TCP SYN packet 

exist during the period.  We call such a flow a “one-packet” flow.  

Obviously, the termination of one-packet flows cannot be 

detected by FIN or RST messages.  Therefore, the termination 

can be only judged by the timeout for these flows.  Thus, the 

algorithm considers a one-packet flow to exist for To although it 

is actually terminated within the transfer time of one packet.  

This causes overestimation.  A similar phenomenon was 

observed for flows with only two packets. 
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Fig. 7.  Overestimation found in the secure shell (SSH) flow numbers of the 

sample point F data. 

In the case shown in Fig. 7, the number of one-packet flows is 

smaller than 5/s before and after the peak period.  The number 

of one-packet flows suddenly increases to 28,696/s and 

29,241/s at 4:12:18 and 4:12:19, respectively.  Since the 

terminations of these flows are not detected for the timeout 

period, 57,937 (= 28,696 + 29,241) flows are incorrectly 

counted in the interval.  This explains the characteristics shown 

in Fig. 7 very well. 

It is uncertain why one-packet flows increased so rapidly.  

However, this behavior indicates unusual activities in the peak 

period.  Thus, the detection of such a peak will be very 

significant for network management. 

In real-world networks, one-packet flows are considered 

common.  Such flows will be easily generated if a host tries to 

make a TCP connection to a nonexistent host or an incorrect 

address.  TCP SYN flood attacks may also generate such flows.  

Therefore, to further improve accuracy, a mechanism for 

avoiding overestimation caused by one-packet flows should be 

added to the algorithm. 

The overestimation for one-packet (or two-packets) flows is 

eliminated by additional k vectors u1, u2,…, uk, which indicate 

the number of timestamp updates.  Thus, we define these vectors 

as “update-count” vectors.  At the start of the algorithm, the 

update-count vectors u1, u2,…, uk are initialized to 0.  Then, the 

vector element ui, h is incremented by 1 for each packet arrival, 

which is associated with a hash value h and the i-th TV.  For 

each periodical calculation of flow number, if the value of 

element ui, h is 1, the associated flow may be a one-packet flow.  

If a large value of To is applied to this one-packet flow, the flow 

number will be overestimated, as shown in Fig. 7.  Thus, a very 

short timeout period, denoted by To, 1, is applied to vi, h if ui, h = 1.  

Similarly, a short time period To, 2 is used if ui, h is 2.  For ui, h > 2, 

the timeout period is set to a large value To.  If the TV element 

vi, h is not updated for the timeout period, ui, h is reset to 0.  With 

this method, since we can set a sufficiently large timeout value 

in the case of ui, h > 2, it is possible to avoid underestimation for 

low packet rate flows as well as overestimation for one-packet 

flows. 

As shown in the above procedure, it is unnecessary for ui, h to 

count values larger than 3.  This means that the memory size 

required for ui, h is as small as 2 bits.  Therefore, increase in the 

memory consumption, by employing the update-count vectors, 

is very limited. 

Fig. 8 shows the effectiveness of using the update-count 

vectors u1, u2,…, uk.  In the figure, the characteristic was 

obtained for the same data as in Fig. 7.  The timeout periods To, 1, 

To, 2, and To were set to 1, 8, and 100 s, respectively.  Fig. 8 

shows that overestimation is completely eliminated by 

employing the update-count vectors. 
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Fig. 8.  Elimination of overestimation by update-count vectors. 

B. FIN Message Retransmission 

When a host closes its TCP connection in a real network, its 

peer host often does not respond to a FIN message.  For this case, 

the FIN message is retransmitted several times during a 

considerably long period.  Fig. 9 shows an example of the 

packet sequence of a TCP connection found in the data from the 

MAWI database.  In this example, the FIN message was 

retransmitted 13 times and then the connection was terminated 

with an RST message.  For this case, suppose that the algorithm 
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considers the flow to be terminated at the arrival of the first FIN 

message sent at 0:42:04.712712.  Then, the flow is not counted 

after 0:42:05 even though the connection was not actually 

terminated. This causes the underestimation of flows. 

0:38:41.330393 Host A > Host B TCP SYN

0:42:04.712712 Host A > Host B FIN

0:42:05.696046 Host A > Host B FIN

0:49:32.615160 Host A > Host B FIN

0:50:36.741771 Host A > Host B RST

. 
. 

.
. 

. 
.

11 Packets

13 FIN Messages

 

Fig. 9.  An example of packet sequence. 

Fig. 10 compares the true value of the web proxy (squid) flow 

number with the value measured by the proposed method with 

the FIN/RST based termination detection.  The figure clearly 

shows that the number of flows is underestimated.  In the figure, 

153 flows exist at 0:15:00. Among them, 19 flows transmit four 

or more FIN messages.  Possibly, the algorithm considered 

these flows to be terminated before 0:15:00 by the first FIN 

message.  Therefore, it is likely that the main cause of the 

underestimation is the retransmission of FIN messages. 
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Fig. 10.  The underestimation caused by the FIN/RST based termination 

detection and the retransmission of FIN messages. 

The underestimation caused by the FIN message 

retransmission is improved by adding vectors that count the 

number of FIN messages.  These “FIN-count” vectors f1, f2, …, 

fk are associated with the timestamp vectors v1, v2, …, vk.  The 

FIN-count vectors act in a similar way as the update-count 

vectors.  Suppose that a FIN packet arrives and the timestamp 

vector element vi, h is updated.  Then, the associated FIN-count 

vector element fi, h is incremented by one.  Each FIN-count 

vector element is reset to 0 by a timeout.  In the flow counting 

process, if fi, h is smaller than 3, the algorithm considers the 

flows associated with vi, h to be terminated.  Otherwise, the 

algorithm considers that the FIN message is being retransmitted 

and the flows are not terminated.  That is, for fi, h > 2, the 

termination is detected by the timeout period To. If the arrival 

packet is an RST message, fi, h is set to 1, and thus, the flow is 

judged to be terminated at the packet arrival time. 

Clearly, it follows from the above procedure that each vector 

element does not need to count a number that is larger than 3.  

Thus, the memory space increase by adding these vectors is 

small. 

Obviously, this method does not strictly avoid the problem.  

Nevertheless, experimental results confirm that the method is 

considerably effective.  Fig. 11 shows the characteristic of the 

termination detection method improved by the FIN-count 

vectors for the same data as in Fig. 10.  The figure clearly shows 

that the underestimation observed in Fig. 10 is successfully 

removed by employing the FIN-count vectors. 
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Fig. 11.  Characteristic of the FIN/RST based termination detection method 

improved by employing FIN-count vectors. 

C. Timeout Period Setting for Applications 

Fig. 12 compares the output of the proposed method with the 

true number of flows for the Secure Shell (SSH) application.  

Meanwhile, Fig. 13 shows the output of the proposed method 

and the true value for the Secure Web (HTTPS) application. In 

both figures, the timeout period for To was set at 60 s.  The 

figures indicate quite different characteristics.  That is, the 

number of flows is overestimated for the SSH case while it is 

underestimated for the HTTPS case.   
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Fig. 12.  Secure Shell (SSH) flow number measured by setting To at 60 s. 

It is impossible to determine the termination of some flows 

through the FIN or RST messages.  Since the termination must 

be found by timeout for those flows, the decision of the To value 

is important.  As stated before, the To value must be larger than 

the packet interval of a flow to avoid underestimation.  
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However, if the value is too large, overestimation will occur. 

Meanwhile, the packet interval may not be the same for different 

applications.  Thus, Figs. 12 and 13 imply that the To value 

(60 s) is too large for the SSH flows and is too small for the 

HTTPS flows. 
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Fig. 13.  Secure Web (HTTPS) flow number measured by setting To at 60 s. 

The above implication is confirmed through Fig. 14.  The 

figure plots the cumulative percentage of the SSH and HTTPS 

flows against the average packet interval.  The average interval 

was computed from the duration time and the number of packets 

indicated in the tcptrace output. The figure clearly shows 

that the distribution of the interval greatly differs depending on 

the application.  From the figure, we observe that most SSH 

flows have short intervals; the average packet interval is smaller 

than 4 s for 99% of flows.  By contrast, a considerable number 

of HTTPS flows have longer intervals; the average interval 

value that contains 99% of flows is as large as 32 s.  Thus, it is 

necessary to set To at a smaller value for SSH and at a larger 

value for HTTPS.  Actually, the overestimation shown in 

Fig. 12 and the underestimation shown in Fig. 13 greatly 

decrease by setting To at 15 s for SSH and at 120 s for HTTPS. 
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Fig. 14.  Cumulative percentage of HTTPS and SSH flows versus average 

packet interval. 

VII. EVALUATION 

The proposed k-vector method with the techniques described 

in Section VI was implemented using programs written in C 

language and run on a Linux OS.  The method was tested for 

real-world network data, which is available in the MAWI 

database. 

First, the memory usage of the proposed method was 

compared with that of the naïve method.  The memory usage 

was measured by executing the “top” command while running 

each program.  The vector size b was set at 120011.  The 

measured memory usage is depicted in Fig. 15.  

Fig. 15 shows that the memory usage of the proposed method 

increases as k increases.  Nevertheless, even if k = 3, the 

memory usage of the proposed method is only 42.1 % of that of 

the naïve method.  For k = 2, the memory usage of the proposed 

method further decreases to 29.5 % of that of the naïve method.  

Therefore, it is concluded that the proposed method 

successfully saves memory space. 
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Fig. 15.  Memory usage of the naïve method and the proposed method. 

The computational time advantage of the proposed method 

was also assessed through an experiment.  The programs were 

executed for the 1-h packet dump file created from the MAWI 

data taken at a sample point F on April 13, 2010, and the 

computational time was measured by the time command.  

Fig. 16 shows the result.  As the figure shows, for k = 3, the 

computational time taken by the proposed method was 34.0 % 

of that taken by the naïve method.  For k = 2, the time taken by 

the proposed method further decreased to 27.9 % of that taken 

by the naïve method.  This confirms the computational time 

superiority of the proposed method. 
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Fig. 16.  Computational time of the naïve method and the proposed method. 

Next, the accuracy of the proposed k-vector method was 

examined for four 1-h packet dump files, each of which were 

created by combining four 15-min MAWI database files taken 

at sample point F on April 13, 2010.  As described in Section V, 
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IP version 4 and TCP packets were extracted from the original 

data file.  The vector size b was set at 120011 and k was set at 2.  

For one-packet and two-packet flows, the timeout parameters 

To, 1, and To, 2 were set at 1 and 8 s, respectively.  For other flows, 

the timeout period To must be set at different values for 

applications as shown in Section VI.C.  Thus, To was set at 110, 

55, 120, 40, 70, 40, and 15 s for DNS, HTTP, HTTPS, POP3, 

SMTP, SQUID, and SSH, respectively, to minimize the error. 

The true number of flows was obtained by the method described 

in the Appendix. 

Figs. 17–23 compare the number of flows estimated by the 

proposed method with the true value obtained from the 

tcptrace output against time for the data from 0:00:00 to 

1:00:00.  The figures present the characteristics for the DNS, 

HTTP, HTTPS, POP3, SMTP, Squid, and SSH flows, 

respectively. As the figures show, the estimation by the 

proposed method almost coincides with the true value though 

the characteristics of flows greatly differ among applications. In 

addition, the time dependency of the flow number is accurately 

determined when using the proposed method.  Therefore, it is 

expected that anomalies or degradation of the network are 

successfully detected by the output of the proposed method.   
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Fig. 17.  Domain name system (DNS) flow number estimated by the proposed 

method for the data from 0:00:00 to 1:00:00. 
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Fig. 18.  Web (HTTP) flow number estimated by the proposed method for the 

data from 0:00:00 to 1:00:00. 
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Fig. 19.  Secure web (HTTPS) flow number estimated by the proposed method 

for the data from 0:00:00 to 1:00:00. 
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Fig. 20.  Mail/post office (POP Ver.3) flow number estimated by the proposed 

method for the data from 0:00:00 to 1:00:00. 
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Fig. 21.  Mail (SMTP) flow number estimated by the proposed method for the 

data from 0:00:00 to 1:00:00.  
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Fig. 22.  Web proxy (Squid) flow number estimated by the proposed method 

for the data from 0:00:00 to 1:00:00.  
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Fig. 23.  Secure shell (SSH) flow number estimated by the proposed method 

for the data from 0:00:00 to 1:00:00.  

To confirm the effectiveness under different traffic 

conditions, the performance of the proposed method was also 

evaluated for other three 1-h data files, which start at 6:00:00, 

12:00:00, and 18:00:00, respectively.  Figs. 24–26 show the 

results for the HTTP flows while Figs. 27–29 show the results 

for the HTTPS flows.  These figures clarify that the estimation 

by the proposed method is close to the true value in most cases 

in various time periods, where the traffic load may be very 

different. This result confirms the reliability of the measurement 

by the k-vector algorithm improved with the techniques 

described in Section VI. The only exception is shown in Fig. 27, 

where the flow number is substantially underestimated.  This 

underestimation resulted from the termination detection 

mechanism of the algorithm.  That is, the packet interval of the 

HTTPS flows became temporarily large for this period and the 

To value was too small.  Nevertheless, since the time 

dependency of the flow number is found exactly in Fig. 27 as 

well as in the other figures, useful management information is 

also obtainable through the measurement by the proposed 

method for this case. 
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Fig. 24.  Web (HTTP) flow number estimated by the proposed method for the 

data from 6:00:00 to 7:00:00. 
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Fig. 25.  Web (HTTP) flow number estimated by the proposed method for the 

data from 12:00:00 to 13:00:00. 
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Fig. 26.  Web (HTTP) flow number estimated by the proposed method for the 

data from 18:00:00 to 19:00:00. 
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Fig. 27.  Secure web (HTTPS) flow number estimated by the proposed method 

for the data from 6:00:00 to 7:00:00. 
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Fig. 28.  Secure web (HTTPS) flow number estimated by the proposed method 

for the data from 12:00:00 to 13:00:00. 
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Fig. 29.  Secure web (HTTPS) flow number estimated by the proposed method 

for the data from 18:00:00 to 19:00:00. 

Finally, the adequateness of setting k at 2 in the above 

evaluation is assessed.  Fig. 30 compares the estimation 

obtained by setting k at 1 and 2 by using the naïve method.  

There is no visible difference between the result for k = 3 and 

that for the naïve method. Thus, the result for k = 3 was omitted 

from the figure.  The figure shows that the estimation for k = 1 is 

substantially smaller than that for the naïve method because of 

the collision error. However, the difference is negligibly small 

between the proposed method with k = 2 and for the naïve 

method.  Thus, it is adequate to set k at 2 for a sufficiently small 

collision error.  
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Fig. 30.  Outputs of the naïve method and the proposed method with k = 2 and 

k = 1. 

VIII. CONCLUSION 

This paper first explored a naïve method for counting flows 

classified by application.  Then, the paper proposed a method 

that employs a smaller number of TVs together with application 

vectors.  The proposed method was compared with the naïve 

method, which uses as many TVs as applications.  As a result, it 

was confirmed that the proposed method effectively saves 

memory usage without compromising accuracy.  In addition, we 

also examined techniques that avoid the overestimation for 

one-packet flows, the underestimation caused by FIN message 

retransmission and the errors caused by the difference in the 

optimal timeout periods among applications. Through an 

experiment, it was confirmed that the proposed method 

accurately estimates the number of the classified flows. 

APPENDIX 

In this study, the true number of flows was estimated as 

follows.  The packet dump file to be tested is first inputted to the 

tcptrace program [16]. The output of the program is stored 

to a text file in the long format.  This output file contains 

comprehensive information of all flows observed in the dump 

file.  The information includes the arrival times of the first and 

last packets of a flow.  Thus, the duration of a flow is obtained as 

the period from the first packet to the last packet.  Then, the true 

number of flows at ti is obtained by counting the flows such that 

the first packet arrives before ti and the last packet arrives after 

ti − 1.  A Perl script was written to extract the first and last packet 

time information from the tcptrace output file and count the 

number of flows that should be measured at ti.  It is needless to 

say that this method cannot be applied to real-time measurement 

because tcptrace is a very slow and memory consuming 
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program. 
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