

22

Abstract—In the management of Internet Protocol networks,

the number of flows is an important performance metric because it

has useful applications in areas such as port scan detection,

denial-of-service detection, and traffic analysis. Real-time

counting of flows is particularly important because network

operators can take immediate actions against detected network

anomalies or performance degradation. This paper presents a

method that enables real-time counting of flows classified by

application. More useful information for network management

can be obtained by counting classified flows. For example, the

proposed method is helpful in determining the type of attacks or

victim services for attack detection.

The algorithm for counting classified flows is developed using

the timestamp vector algorithm. This paper first explores a naïve

method that has as many timestamp vector mechanisms as the

application classes. However, this method is disadvantageous

because it consumes a very large memory space. To avoid this

problem, a new method that considerably decreases memory

consumption is proposed. In addition, we also investigate

techniques for improving measurement accuracy. The

effectiveness of the proposed method is evaluated for real-world

network data.

Index Terms—application, flows, internet protocol,

performance, traffic

I. INTRODUCTION

N the management of internet protocol (IP) networks, the

number of flows is an important performance metric because

it has useful applications in areas such as port scan detection,

denial-of-service detection, and traffic analysis [1]−[3]. In IP

networks, a flow is identified by a flow identifier that is often

defined as a five-tuple of source address, destination address,

protocol, source port, and destination port in the packet

header [2]. Flow counting is defined as a procedure that

determines number of different flow identifiers existing in a

packet stream.

The number of flows is measurable in a real-time, online

manner, while some other flow metrics must be analyzed

Manuscript received November 27, 2011.

S. Zhu is with the Department of Information Systems Engineering, the

Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa,

Imizu-shi, Toyama 939-0398, Japan (e-mail: shanzhu06@hotmail.com).

S. Ohta is with the Department of Information Systems Engineering, the

Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa,

Imizu-shi, Toyama 939-0398, Japan (phone: +81-768-56-7500; fax:

+81-768-56-6172; e-mail: ohta@pu-toyama.ac.jp).

offline [4]−[6]. This real-time nature of flow counting is

particularly significant because network operators can take

immediate actions against anomalies found by irregular flow

behavior.

Several flow-counting techniques have been

proposed [1]−[3]. The number of flows is sometimes counted

using a hash function with a bit vector or a Bloom filter [1], [3].

The timestamp vector (TV) algorithm, which also uses a hash

function, does not employ a bit vector [2]. Instead, the method

uses a TV whose elements show the times of packet arrival.

Reference [2] reported that the TV algorithm achieves better

accuracy than the method used in [1].

Another important aspect of network measurement is the

classification of traffic by the application that generates the

traffic [7]−[10]. The advantage of real-time flow counting is

enhanced by classifying flows according to the application and

then estimating the number of classified flows. By counting

classified flows, network operators can determine the most

popular services and those that mostly impact network

performance. In the case of intrusion and denial-of-service

detection applications, which depend on flow counting, the

number of classified flows provides valuable information for

identifying the types of attacks or victim services. Therefore, it

is important to combine flow counting with traffic classification.

This paper presents a method that enables real-time counting

of flows classified by application. The number of classified

flows can be easily measured by using as many flow counting

mechanisms as applications and inputting classified traffic.

However, such a naïve method is impractical because of

excessive memory space consumption. To avoid this problem,

this paper proposes a method that requires smaller memory

space. In exchange for memory space savings, the output of the

proposed method may include errors induced by the collisions

among hash function outputs. However, the errors caused by

the collisions are very small. In the proposed method, errors

may also occur by the mechanism that identifies flow

termination. This paper examines an improved method that

judges flow termination more accurately than the existing

method. The effectiveness of the proposed method is evaluated

through an experiment that uses real-world network data.

The rest of this paper is organized as follows. Section II

presents a literature review. Section III identifies the objective

of this study. The proposed method is based on the TV

algorithm [2]. This basic algorithm is explored in Section IV.

Real-Time Measurement of Flows Classified

According to their Application for IP Networks

Shan Zhu and Satoru Ohta

I

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), December Edition, 2011

23

Then, the proposed method is detailed in Section V. Section VI

presents some accuracy improvement techniques. The

proposed method is evaluated using real-world network data in

Section VII. Finally, we present the conclusions in Section

VIII.

II. RELATED WORK

Previous studies have examined methods for counting the

number of flows [1]−[3]. Some methods [1], [3] use a hash

function and a bitmap. This approach is advantageous because

it conserves storage space. The virtual map concept requires an

extremely small storage space [1]. This concept enables the

bitmap to be stored in high-speed SRAM. However, [2]

indicates that the method in [1] is not accurate. As an alternative

method, [2] presents the TV algorithm and demonstrates its

superiority.

Another important field of network measurement is the

classification of traffic by application [7]−[10]. A simple

method for classifying traffic is the identification of port

numbers found in packets [7]. More sophisticated methods are

found in, for example, [8]−[10]. These methods include

machine learning-based approaches [8], [9] and signature-based

approaches [10]. These approaches classify the traffic more

precisely than the port number-based method. However, it

should be noted that some of these approaches are developed for

offline operation and are too complex to be applied to real-time

applications. As an alternative method, a hardware based

classification is also available [11].

It is expected that more significant management information

will be available if real-time flow counting is combined with

traffic classification. However, so far, there have been no

studies that agree with this viewpoint.

III. OBJECTIVE

We develop an algorithm that executes the following

processes.

- First, the packets flowing on the monitored link are

classified into multiple streams, each of which is generated by a

particular application.

- For each classified packet stream, the algorithm counts the

number of flows in real-time.

Each flow is identified as a five-tuple of source address,

destination address, protocol, source port, and destination port

that are stored in the packet header [2]. In other words, the

algorithm estimates the number of concurrent sockets that are

open for each application at a particular instant.

The classified flows are counted periodically at time t1, t2,…

Let ∆t denote the interval of measurement. That is,

∆t = ti − ti − 1. (1)

The interval ∆t is a constant and is set at 1 s in this paper. Let

[ti − 1, ti) denote the duration of time t such that }|{ 1 ii ttttt <≤∈ − .

In this paper, the number of flows to be estimated at time ti

refers to the number of existing flows in the duration [ti − 1, ti).

Note that some flows may be inactive and will not issue any

packets in [ti − 1, ti). Meanwhile, if a flow begins before ti − 1 and

ends after ti, it certainly exists in [ti − 1, ti). Thus, such a flow is

counted even if it does not generate any packets in [ti − 1, ti). This

is necessary because the number of inactive, low rate flows may

be relevant for network management. In addition, this study

assumes that the flows at time ti include the flows terminated

during [ti − 1, ti). Otherwise, the significant information of the

short term flows that begin after ti − 1 and end before ti will be

lost. Fig. 1 illustrates which flows are counted at time ti.

: Packets : First Packets : Last Packets

ti – 1 ti

Flow #1

Flow #2

Flow #3

Flow #4

Flows Counted at ti

∆t = 1 s

Fig. 1. Flows to be counted at time ti.

The aim of this study is to derive a method that requires a

small memory space and provides an accurate estimation. The

developed method works in real-time. Because of this, the

method will be applicable to automatic management that

requires immediate actions against the anomalies or degradation

of network performance.

IV. BASIC ALGORITHM

The proposed method relies on the real-time flow counting

method called the TV algorithm [2]. This algorithm is useful to

count flows in real-time. The method is based on two

mechanisms: a TV (v0, v1, …, vb–1) and a hash function that maps

the flow identifier (protocol, source/destination address,

source/destination port) to integers 0, 1,…, b − 1. The TV

algorithm utilizes the timeout concept to judge the termination

of flows. Let To denote the timeout period in seconds. Then, the

algorithm considers a flow to exist if it generates packets for the

last To. Using these concepts, the algorithm can be summarized

as follows:

1. For each packet arrival, compute the hash function output

h from the flow identifier. Then, set vh to the arrival time.

2. Execute the following periodically at t1, t2, … with a fixed

interval ∆t.
- Obtain the updated value c, which is the number of vector

elements vi , for the last To.

- Compute the number of flows, denoted as n, by

cb

b
bn e −

= log . (2)

The TV algorithm is based on the linear counting algorithm,

which is comprehensively analyzed in [12]. The derivation

of (2) is found in [2], [12].

24

V. COUNTING OF CLASSIFIED FLOWS

This section describes how the TV algorithm is modified to

count flows classified by application. The classified flows can

be easily counted using a naïve method, described in the next

section, which employs as many flow counting mechanisms as

the application classes. However, this naïve method is

impractical because it consumes a very large storage space. To

overcome this difficulty, we present an improved method.

This study employs a simple method based on port numbers

shown in packet headers for traffic classification [7].

Complicated classification methods are not appropriate for

real-time implementation, and thus, are not discussed.

Nevertheless, the port based classification technique is not

essential for the proposed method. The method can count flows

from a packet stream even if packets are classified by other

approaches. Thus, the proposed method may be combined with

an approach such as the machine-learning-based classification

[8], [9] or the signature-based classification [10], if it performs

in real-time. A hardware-based classification [11] will also be

usable with the proposed method.

A. Naïve Method

Assume that each packet arriving at the monitored link is

classified by application. In addition, assume that there are m

applications a1, a2, …, am. Let ni (mi ≤≤1) be the number of

flows that belong to application ai.

The flow numbers n1, n2, …, nm are counted by employing m

distinct TVs v1, v2, …, vm, each of which is associated with an

application. For a packet whose application is classified as ai

(mi ≤≤1), the hash output h is computed and then the h-th

element of vi, which is denoted as vi, h, is updated. By counting

ci, the number of elements updated for the last To in vi, and

using (2), ni is represented by

i
ei

cb

b
bn

−
= log . (3)

We will refer to this method as the “naïve method” hereafter.

The disadvantage of the naïve method is its excessive

consumption of memory space. The TV size b must be very

large in order to achieve accurate estimation. Meanwhile, the

naïve method requires m times more space to store timestamps

compared to the original TV algorithm. This is particularly

critical if it is necessary to distinguish among many types of

applications.

B. k-Vector Method

The memory required for counting classified flows is

considerably decreased by the following method.

The method uses k TVs v1, v2, …, vk (mk ≤≤1) as well as

additional k vectors s1, s2, …, sk. Both vector vj and additional

vector sj (kj ≤≤1) have b elements (vj, 1, vj, 2, …, vj, b −1 and sj, 0,

sj, 1, …, sj, b–1, respectively). The element sj, h shows which

application updates the associated TV vj, h. Thus, let us refer to

vectors s1, s2, …, sk as “application vectors.” Using these

vectors, the flow number for each application is computed as

follows:

1. For each packet arrival, compute the hash function output

h from the flow identifier and identify its application a. If

there exists an index j that satisfies sj, h = a, then set vj, h to

the arrival time. Otherwise, find the TV element vj, h that

stores the smallest (i.e., the oldest) value among v1, h,

v2, h, …, vk, h. Then, set vj, h to the arrival time and set sj, h to

a.

2. Periodically at t1, t2, …, obtain value ci, which is the

number of indices (j, h), such that

- vj, h is updated for the last To

- sj, h is ai.

Then, compute ni, the number of flows for application ai,

using (3).

Since this method employs k timestamp and application

vectors, it will be referred to as the “k-vector method” hereafter.

Fig. 2 compares the (a) naïve method with the (b) “k-vector”

method.

v1 vk

. . .

. . .

. . .

s1 sk

k (k = 2 or 3) Timestamp/Application Vectors

13:54:39

…

Arrival Time

… …
…

ai
Application

m Timestamp Vectors

. . .

v1 v2 vm

. . .

vi

13:54:39

Application ai

…
…

. . .

. . .

. . .

Arrival Time

0
1

b – 1

. . .

0
1

b – 1

. . .

(a) Naïve Method

(b) k-Vector Method

Fig. 2. Data structures for (a) the naïve method and (b) the k-vector method.

If k is set smaller than m, the memory space used by the

k-vector method becomes smaller than that used by the naïve

method, although the application vectors s1, s2, …, sk for the

proposed method are introduced in the k-vector method.

C. Collision Error

If k < m, the proposed k-vector method may yield an

estimation error. This error is generated when the same hash

output is obtained from the flow identifiers of k + 1 or more

applications. In such a case, an application vector element

updated by a flow of an application ai may be overwritten by

that of another application aj (mjiji ≤≤≠ ,1 ,). Then, the

element update made by ai is not recognized by the algorithm.

Therefore, ci and ni will be underestimated. We refer to this

type of error as a “collision error” because it is caused by

collisions among hash outputs.

The collision error can be decreased for a larger value of k.

25

This is shown by the following simple analysis.

Let Pcoll(k) denote the probability that a particular hash output

value h is obtained from the flow identifiers of k + 1 or more

applications. Thus, Pcoll(k) represents the probability that the

collision error occurs for the flows associated with the hash

output h. Assume that there are m applications and n flows

existing for each application. That is, for simplicity we assume

that every application is holding the same number of flows.

Then, assuming that the hash function distributes the flow

identifier to integers 0, 1, …, b − 1 uniformly, the output of the

hash value h from one or more flows of an application has the

following probability Ph.

bn

n

h e
b

P /1
1

11 −−≈

−−= . (4)

Then, Pcoll(k) is represented with Ph as follows.

()∑
+=

−−

=

m

ki

im
h

i
h PP

i

m
kP

1

coll 1)((5)

It is easy to compute Pcoll(k) by the relations,

0)(coll =mP , (6)

() 11
collcoll 1

1
)1()(

−−+ −

+
++= km

h
k
h PP

k

m
kPkP . (7)

According to (7), Pcoll(k) is larger than Pcoll(k + 1). Therefore,

Pcoll(k) decreases for a larger k. This is confirmed by Fig. 3. The

figure plots Pcoll(k) computed by (4), (6), and (7) against k for

the case of b = 10000, 20000, 50000, and 100000. In the figure,

n was set at 1000 while m was set at 8. The figure clearly shows

that Pcoll(k) decreases as k increases. As the figure shows, the

probability of the collision error occurrence becomes 10
2
 to 10

3

times smaller by increasing k from 1 to 3. This implies that the

collision error will be negligibly small for a moderate value of k.

This characteristic is further confirmed through an experiment.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 4 6 8

C
o

ll
is

io
n

 E
rr

o
r

P
ro

b
a

b
il

it
y

Number of Timestamp Vectors, k

b = 10000

b = 20000

b = 50000

b = 100000

Fig. 3. The probability of a collision error occurrence versus k.

D. Collision Error Evaluation

The analysis described in Section V.C is useful to understand

the basic nature of a collision error occurrence. However, it

does not present the actual error volume in the output of the

k-vector method. To clarify this point, the output of the

proposed method was compared with that of the naïve method

for real-world network data. For this purpose, the naïve method

and the proposed method were implemented using programs

running on a Linux OS and written in the C language. These

programs identify seven applications by using the port number

shown in the packet header. The classified applications

(protocols) included world wide web (HTTP), secure web

(HTTPS), secure shell (SSH), mail (SMTP), domain name

system (DNS), Squid web proxy (Squid), and mail/post office

(POP Version3). The employed port numbers are:

80 (world wide web),

443 (secure web),

22 (secure shell),

25 (mail),

53 (domain name system),

3128 (Squid web proxy), and

110 (mail/post office).

For the proposed method and the naïve method, the same

modulo-based hash function was used consistently for all

applications. The function is defined as follows. Let ms and md

denote the source and destination addresses and ns and nd denote

the source and destination port numbers, respectively. Assume

that we are monitoring an IP version 4 packet stream. Then,

integers ms and md are four octets long while ns and nd are two

octets long. In addition, let p be the protocol field value that is

one-octet long. Then, for flow identifier x = (p, ms, md, ns, nd),

the function h(x) is

bnnmmpxh dsds mod)2()(16 ⊕⊕⊕⊕= , (8)

where b is set to a prime number.

The programs output the number of classified flows for each

application every 1 s. The programs were built using the pcap

library [13] and can monitor live traffic in real-time and can

read tcpdump-format files. The effectiveness of the proposed

method was evaluated by running these programs. The input for

the programs was real-world network data available from the

MAWI database of the WIDE project [14]. From the database,

a part of the data taken at a sample point F on April 13, 2010

was employed. From the original data file we extracted four 1-h

IP version 4 and TCP packet dump files, each of which was

created by combining four 15-min files. For these input files,

because the programs output the flow numbers every 1 s, 14400

sets of flow numbers were obtained. Then, the root mean

squared error was computed between the outputs of the

proposed method and those of the naïve method. Fig. 4 shows

the result for the case when the application is world wide web.

In the figure, the vector size b was set to 80021,120011, and

200003. Similarly, Figs. 5 and 6 show the results for the secure

shell and mail applications for the same input data.

Figs. 4−6 show that the error decreases by increasing k as

predicted by the analysis. In fact, the error is negligible, even if

k is as small as 2. This implies that compared to the naïve

method, the proposed method can efficiently save memory

space without decreasing accuracy. The figure also shows that

26

the error decreases by increasing b. This is because the

probability of the element update is smaller for a larger value of

b.

0.01

0.1

1

10

100

1000

0 1 2 3 4

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Timestamp/Application Vectors, k

b = 80021

b = 120011

b = 200003

Fig. 4. Root mean squared error of the proposed method for the world wide

web (HTTP) application.

0.01

0.1

1

10

100

1000

0 1 2 3 4

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Timestamp/Application Vectors, k

b = 80021

b = 120011

b = 200003

Fig. 5. Root mean squared error of the proposed method for the secure shell

(SSH) application.

0.01

0.1

1

10

100

1000

0 1 2 3 4

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Timestamp/Application Vectors, k

b = 80021

b = 120011

b = 200003

Fig. 6. Root mean squared error of the proposed method for the mail (SMTP)

application.

E. Computational Time

The proposed method employs a smaller number of time

stamp vectors compared to the naïve method. This means that

the number of vector elements that must be checked is smaller

for the proposed method than for the naïve method. Therefore,

the proposed method is also advantageous from the viewpoint of

computational time.

VI. ACCURACY IMPROVEMENT

As shown in the previous section, the collision error of the

k-vector method can be made almost negligible by setting k to 2

for a large value of b. However, the output of the algorithm still

includes errors resulting from the timeout-based detection of

terminated flows. As seen in Section IV, the mechanism

considers the flows to be terminated if no packets are issued for

the last To seconds. This means that the mechanism considers

the flows that are terminated for the last To seconds to exist.

Because of this erroneous termination detection, the algorithm

overestimates the number of flows. This overestimation

becomes more critical for a large value of To. Meanwhile, if the

interval between successive packets of a flow is larger than To,

the detection mechanism considers the flow to be terminated. In

this case, the flow is not counted and the total number of flows is

underestimated. To avoid this underestimation, the value of To

must be sufficiently large. This means that the value of To must

be carefully determined by considering a trade-off between

overestimation and underestimation. Unfortunately, it is not

easy to select an optimal value of To, which avoids both

overestimation and underestimation, for any traffic condition.

For TCP flows, the overestimation caused by the

timeout-based mechanism is efficiently decreased by

considering TCP FIN/RST messages [2], [15]. In a normal

operation, a TCP connection is terminated by sending a FIN

message. Otherwise, an RST message terminates the TCP

connection. Thus, the number of terminated TCP flows can be

found by counting the flows that issued FIN/RST messages. Let

nF denote the number of flows that issued FIN/RST messages

during the last To. Then, the correct number of flows is obtained

by subtracting nF from the flow number estimated by the

k-vector (or naïve) method. However, even if the RST/FIN

messages are utilized, estimation errors are unavoidable. These

errors include the overestimation caused by one-packet flows

and the underestimation caused by retransmitted FIN messages.

In addition, some flows are terminated without issuing any

FIN or RST messages. For those flows, the termination must be

decided with the timeout. Thus, it is important to decide the To

value adequately. In fact, the optimal value of To differs

depending on the application because of the difference in packet

intervals. This means that it is necessary to set To at a different

value for each application.

A. One-Packet Flows

Fig. 7 plots the secure shell (SSH) flow number obtained by

the proposed k-vector method against time. The figure also

27

shows the correct flow number, which was obtained by

analyzing the output of the tcptrace program [16] in the

manner described in the Appendix. The data was taken for a

part of the packet dump file recorded at the sample point F on

April 13, 2010. For the proposed method, we set k = 2 and To =

7 s. The figure shows that the proposed method considerably

overestimates the number of flows at the pulse-shaped peak

period. By screening the tcptrace output, we found many

TCP SYN packets without any response during the period. In

particular, many flows that issue only one TCP SYN packet

exist during the period. We call such a flow a “one-packet” flow.

Obviously, the termination of one-packet flows cannot be

detected by FIN or RST messages. Therefore, the termination

can be only judged by the timeout for these flows. Thus, the

algorithm considers a one-packet flow to exist for To although it

is actually terminated within the transfer time of one packet.

This causes overestimation. A similar phenomenon was

observed for flows with only two packets.

0

10000

20000

30000

40000

50000

60000

70000

80000

4:12:15 4:12:19 4:12:24 4:12:28

N
u

m
b

e
r

o
f

S
e

cu
re

 S
h

e
ll

 (
S

S
H

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method (Original)

Fig. 7. Overestimation found in the secure shell (SSH) flow numbers of the

sample point F data.

In the case shown in Fig. 7, the number of one-packet flows is

smaller than 5/s before and after the peak period. The number

of one-packet flows suddenly increases to 28,696/s and

29,241/s at 4:12:18 and 4:12:19, respectively. Since the

terminations of these flows are not detected for the timeout

period, 57,937 (= 28,696 + 29,241) flows are incorrectly

counted in the interval. This explains the characteristics shown

in Fig. 7 very well.

It is uncertain why one-packet flows increased so rapidly.

However, this behavior indicates unusual activities in the peak

period. Thus, the detection of such a peak will be very

significant for network management.

In real-world networks, one-packet flows are considered

common. Such flows will be easily generated if a host tries to

make a TCP connection to a nonexistent host or an incorrect

address. TCP SYN flood attacks may also generate such flows.

Therefore, to further improve accuracy, a mechanism for

avoiding overestimation caused by one-packet flows should be

added to the algorithm.

The overestimation for one-packet (or two-packets) flows is

eliminated by additional k vectors u1, u2,…, uk, which indicate

the number of timestamp updates. Thus, we define these vectors

as “update-count” vectors. At the start of the algorithm, the

update-count vectors u1, u2,…, uk are initialized to 0. Then, the

vector element ui, h is incremented by 1 for each packet arrival,

which is associated with a hash value h and the i-th TV. For

each periodical calculation of flow number, if the value of

element ui, h is 1, the associated flow may be a one-packet flow.

If a large value of To is applied to this one-packet flow, the flow

number will be overestimated, as shown in Fig. 7. Thus, a very

short timeout period, denoted by To, 1, is applied to vi, h if ui, h = 1.

Similarly, a short time period To, 2 is used if ui, h is 2. For ui, h > 2,

the timeout period is set to a large value To. If the TV element

vi, h is not updated for the timeout period, ui, h is reset to 0. With

this method, since we can set a sufficiently large timeout value

in the case of ui, h > 2, it is possible to avoid underestimation for

low packet rate flows as well as overestimation for one-packet

flows.

As shown in the above procedure, it is unnecessary for ui, h to

count values larger than 3. This means that the memory size

required for ui, h is as small as 2 bits. Therefore, increase in the

memory consumption, by employing the update-count vectors,

is very limited.

Fig. 8 shows the effectiveness of using the update-count

vectors u1, u2,…, uk. In the figure, the characteristic was

obtained for the same data as in Fig. 7. The timeout periods To, 1,

To, 2, and To were set to 1, 8, and 100 s, respectively. Fig. 8

shows that overestimation is completely eliminated by

employing the update-count vectors.

0

5000

10000

15000

20000

25000

30000

35000

40000

4:12:15 4:12:19 4:12:24 4:12:28

N
u

m
b

e
r

o
f

S
e

cu
re

 S
h

e
ll

 (
S

S
H

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method (Improved)

Fig. 8. Elimination of overestimation by update-count vectors.

B. FIN Message Retransmission

When a host closes its TCP connection in a real network, its

peer host often does not respond to a FIN message. For this case,

the FIN message is retransmitted several times during a

considerably long period. Fig. 9 shows an example of the

packet sequence of a TCP connection found in the data from the

MAWI database. In this example, the FIN message was

retransmitted 13 times and then the connection was terminated

with an RST message. For this case, suppose that the algorithm

28

considers the flow to be terminated at the arrival of the first FIN

message sent at 0:42:04.712712. Then, the flow is not counted

after 0:42:05 even though the connection was not actually

terminated. This causes the underestimation of flows.

0:38:41.330393 Host A > Host B TCP SYN

0:42:04.712712 Host A > Host B FIN

0:42:05.696046 Host A > Host B FIN

0:49:32.615160 Host A > Host B FIN

0:50:36.741771 Host A > Host B RST

.
.

.
.

.
.

11 Packets

13 FIN Messages

Fig. 9. An example of packet sequence.

Fig. 10 compares the true value of the web proxy (squid) flow

number with the value measured by the proposed method with

the FIN/RST based termination detection. The figure clearly

shows that the number of flows is underestimated. In the figure,

153 flows exist at 0:15:00. Among them, 19 flows transmit four

or more FIN messages. Possibly, the algorithm considered

these flows to be terminated before 0:15:00 by the first FIN

message. Therefore, it is likely that the main cause of the

underestimation is the retransmission of FIN messages.

0

100

200

300

400

500

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

W
e

b
 P

ro
xy

 (
S

q
u

id
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Original FIN/RST Based Method

Fig. 10. The underestimation caused by the FIN/RST based termination

detection and the retransmission of FIN messages.

The underestimation caused by the FIN message

retransmission is improved by adding vectors that count the

number of FIN messages. These “FIN-count” vectors f1, f2, …,

fk are associated with the timestamp vectors v1, v2, …, vk. The

FIN-count vectors act in a similar way as the update-count

vectors. Suppose that a FIN packet arrives and the timestamp

vector element vi, h is updated. Then, the associated FIN-count

vector element fi, h is incremented by one. Each FIN-count

vector element is reset to 0 by a timeout. In the flow counting

process, if fi, h is smaller than 3, the algorithm considers the

flows associated with vi, h to be terminated. Otherwise, the

algorithm considers that the FIN message is being retransmitted

and the flows are not terminated. That is, for fi, h > 2, the

termination is detected by the timeout period To. If the arrival

packet is an RST message, fi, h is set to 1, and thus, the flow is

judged to be terminated at the packet arrival time.

Clearly, it follows from the above procedure that each vector

element does not need to count a number that is larger than 3.

Thus, the memory space increase by adding these vectors is

small.

Obviously, this method does not strictly avoid the problem.

Nevertheless, experimental results confirm that the method is

considerably effective. Fig. 11 shows the characteristic of the

termination detection method improved by the FIN-count

vectors for the same data as in Fig. 10. The figure clearly shows

that the underestimation observed in Fig. 10 is successfully

removed by employing the FIN-count vectors.

0

100

200

300

400

500

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00
N

u
m

b
e

r
o

f
W

e
b

 P
ro

x
y

 (
S

q
u

id
)

Fl
o

w
s

Time (hh:mm:ss)

True Value

Improved FIN/RST Based Method

Fig. 11. Characteristic of the FIN/RST based termination detection method

improved by employing FIN-count vectors.

C. Timeout Period Setting for Applications

Fig. 12 compares the output of the proposed method with the

true number of flows for the Secure Shell (SSH) application.

Meanwhile, Fig. 13 shows the output of the proposed method

and the true value for the Secure Web (HTTPS) application. In

both figures, the timeout period for To was set at 60 s. The

figures indicate quite different characteristics. That is, the

number of flows is overestimated for the SSH case while it is

underestimated for the HTTPS case.

0

1000

2000

3000

4000

5000

6000

7000

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 S
h

e
ll

 (
S

S
H

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Timeout Period: 60s

Fig. 12. Secure Shell (SSH) flow number measured by setting To at 60 s.

It is impossible to determine the termination of some flows

through the FIN or RST messages. Since the termination must

be found by timeout for those flows, the decision of the To value

is important. As stated before, the To value must be larger than

the packet interval of a flow to avoid underestimation.

29

However, if the value is too large, overestimation will occur.

Meanwhile, the packet interval may not be the same for different

applications. Thus, Figs. 12 and 13 imply that the To value

(60 s) is too large for the SSH flows and is too small for the

HTTPS flows.

0

100

200

300

400

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 W
e

b
 (

H
T

T
P

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Timeout Period: 60s

Fig. 13. Secure Web (HTTPS) flow number measured by setting To at 60 s.

The above implication is confirmed through Fig. 14. The

figure plots the cumulative percentage of the SSH and HTTPS

flows against the average packet interval. The average interval

was computed from the duration time and the number of packets

indicated in the tcptrace output. The figure clearly shows

that the distribution of the interval greatly differs depending on

the application. From the figure, we observe that most SSH

flows have short intervals; the average packet interval is smaller

than 4 s for 99% of flows. By contrast, a considerable number

of HTTPS flows have longer intervals; the average interval

value that contains 99% of flows is as large as 32 s. Thus, it is

necessary to set To at a smaller value for SSH and at a larger

value for HTTPS. Actually, the overestimation shown in

Fig. 12 and the underestimation shown in Fig. 13 greatly

decrease by setting To at 15 s for SSH and at 120 s for HTTPS.

50

60

70

80

90

100

0 10 20 30

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

 (
%

)

Average Packet Interval (s)

Secure Web (HTTPS)

Secure Shell (SSH)

Fig. 14. Cumulative percentage of HTTPS and SSH flows versus average

packet interval.

VII. EVALUATION

The proposed k-vector method with the techniques described

in Section VI was implemented using programs written in C

language and run on a Linux OS. The method was tested for

real-world network data, which is available in the MAWI

database.

First, the memory usage of the proposed method was

compared with that of the naïve method. The memory usage

was measured by executing the “top” command while running

each program. The vector size b was set at 120011. The

measured memory usage is depicted in Fig. 15.

Fig. 15 shows that the memory usage of the proposed method

increases as k increases. Nevertheless, even if k = 3, the

memory usage of the proposed method is only 42.1 % of that of

the naïve method. For k = 2, the memory usage of the proposed

method further decreases to 29.5 % of that of the naïve method.

Therefore, it is concluded that the proposed method

successfully saves memory space.

0

5

10

15

20

Naïve Method Proposed
Method
k = 1

Proposed
Method
k = 2

Proposed
Method
k = 3

M
e
m
o
ry
 U
s
a
g
e
 (
M
B
)

Fig. 15. Memory usage of the naïve method and the proposed method.

The computational time advantage of the proposed method

was also assessed through an experiment. The programs were

executed for the 1-h packet dump file created from the MAWI

data taken at a sample point F on April 13, 2010, and the

computational time was measured by the time command.

Fig. 16 shows the result. As the figure shows, for k = 3, the

computational time taken by the proposed method was 34.0 %

of that taken by the naïve method. For k = 2, the time taken by

the proposed method further decreased to 27.9 % of that taken

by the naïve method. This confirms the computational time

superiority of the proposed method.

0

10

20

30

40

50

60

70

Naïve Method Proposed
Method
k = 1

Proposed
Method
k = 2

Proposed
Method
k = 3

C
o
m
p
u
ta
ti
o
n
a
l
T
im
e
 (
s
)

Fig. 16. Computational time of the naïve method and the proposed method.

Next, the accuracy of the proposed k-vector method was

examined for four 1-h packet dump files, each of which were

created by combining four 15-min MAWI database files taken

at sample point F on April 13, 2010. As described in Section V,

30

IP version 4 and TCP packets were extracted from the original

data file. The vector size b was set at 120011 and k was set at 2.

For one-packet and two-packet flows, the timeout parameters

To, 1, and To, 2 were set at 1 and 8 s, respectively. For other flows,

the timeout period To must be set at different values for

applications as shown in Section VI.C. Thus, To was set at 110,

55, 120, 40, 70, 40, and 15 s for DNS, HTTP, HTTPS, POP3,

SMTP, SQUID, and SSH, respectively, to minimize the error.

The true number of flows was obtained by the method described

in the Appendix.

Figs. 17–23 compare the number of flows estimated by the

proposed method with the true value obtained from the

tcptrace output against time for the data from 0:00:00 to

1:00:00. The figures present the characteristics for the DNS,

HTTP, HTTPS, POP3, SMTP, Squid, and SSH flows,

respectively. As the figures show, the estimation by the

proposed method almost coincides with the true value though

the characteristics of flows greatly differ among applications. In

addition, the time dependency of the flow number is accurately

determined when using the proposed method. Therefore, it is

expected that anomalies or degradation of the network are

successfully detected by the output of the proposed method.

0

50

100

150

200

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

D
o

m
a

in
 N

a
m

e
 S

y
st

e
m

(D
N

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 17. Domain name system (DNS) flow number estimated by the proposed

method for the data from 0:00:00 to 1:00:00.

0

2000

4000

6000

8000

10000

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

W
e

b
 (

H
T

T
P

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 18. Web (HTTP) flow number estimated by the proposed method for the

data from 0:00:00 to 1:00:00.

0

100

200

300

400

500

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 W
e

b
 (

H
T

T
P

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 19. Secure web (HTTPS) flow number estimated by the proposed method

for the data from 0:00:00 to 1:00:00.

0

2

4

6

8

10

12

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

P
o

st
 O

ff
ic

e
 (

P
O

P
3

)
F

lo
w

s

Time (hh:mm;ss)

True Value

Proposed Method

Fig. 20. Mail/post office (POP Ver.3) flow number estimated by the proposed

method for the data from 0:00:00 to 1:00:00.

0

100

200

300

400

500

600

700

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

M
a

il
 (

S
M

T
P

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 21. Mail (SMTP) flow number estimated by the proposed method for the

data from 0:00:00 to 1:00:00.

31

0

100

200

300

400

500

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

W
e

b
 P

ro
x

y
 (

S
q

u
id

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 22. Web proxy (Squid) flow number estimated by the proposed method

for the data from 0:00:00 to 1:00:00.

0

1000

2000

3000

4000

5000

6000

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 S
h

e
ll

 (
S

S
H

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 23. Secure shell (SSH) flow number estimated by the proposed method

for the data from 0:00:00 to 1:00:00.

To confirm the effectiveness under different traffic

conditions, the performance of the proposed method was also

evaluated for other three 1-h data files, which start at 6:00:00,

12:00:00, and 18:00:00, respectively. Figs. 24–26 show the

results for the HTTP flows while Figs. 27–29 show the results

for the HTTPS flows. These figures clarify that the estimation

by the proposed method is close to the true value in most cases

in various time periods, where the traffic load may be very

different. This result confirms the reliability of the measurement

by the k-vector algorithm improved with the techniques

described in Section VI. The only exception is shown in Fig. 27,

where the flow number is substantially underestimated. This

underestimation resulted from the termination detection

mechanism of the algorithm. That is, the packet interval of the

HTTPS flows became temporarily large for this period and the

To value was too small. Nevertheless, since the time

dependency of the flow number is found exactly in Fig. 27 as

well as in the other figures, useful management information is

also obtainable through the measurement by the proposed

method for this case.

0

2000

4000

6000

8000

10000

12000

6:00:00 6:15:00 6:30:00 6:45:00 7:00:00

N
u

m
b

e
r

o
f

W
e

b
 (

H
T

T
P

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 24. Web (HTTP) flow number estimated by the proposed method for the

data from 6:00:00 to 7:00:00.

0

2000

4000

6000

12:00:00 12:15:00 12:30:00 12:45:00 13:00:00

N
u

m
b

e
r

o
f

W
e

b
 (

H
T

T
P

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 25. Web (HTTP) flow number estimated by the proposed method for the

data from 12:00:00 to 13:00:00.

0

2000

4000

6000

18:00:00 18:15:00 18:30:00 18:45:00 19:00:00

N
u

m
b

e
r

o
f

W
e

b
 (

H
T

T
P

)
F

lo
w

s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 26. Web (HTTP) flow number estimated by the proposed method for the

data from 18:00:00 to 19:00:00.

32

0

100

200

300

400

6:00:00 6:15:00 6:30:00 6:45:00 7:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 W
e

b
 (

H
T

T
P

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 27. Secure web (HTTPS) flow number estimated by the proposed method

for the data from 6:00:00 to 7:00:00.

0

200

400

600

800

1000

12:00:00 12:15:00 12:30:00 12:45:00 13:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 W
e

b
 (

H
T

T
P

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 28. Secure web (HTTPS) flow number estimated by the proposed method

for the data from 12:00:00 to 13:00:00.

0

200

400

600

800

18:00:00 18:15:00 18:30:00 18:45:00 19:00:00

N
u

m
b

e
r

o
f

S
e

cu
re

 W
e

b
 (

H
T

T
P

S
)

F
lo

w
s

Time (hh:mm:ss)

True Value

Proposed Method

Fig. 29. Secure web (HTTPS) flow number estimated by the proposed method

for the data from 18:00:00 to 19:00:00.

Finally, the adequateness of setting k at 2 in the above

evaluation is assessed. Fig. 30 compares the estimation

obtained by setting k at 1 and 2 by using the naïve method.

There is no visible difference between the result for k = 3 and

that for the naïve method. Thus, the result for k = 3 was omitted

from the figure. The figure shows that the estimation for k = 1 is

substantially smaller than that for the naïve method because of

the collision error. However, the difference is negligibly small

between the proposed method with k = 2 and for the naïve

method. Thus, it is adequate to set k at 2 for a sufficiently small

collision error.

2000

2200

2400

2600

2800

3000

3200

0:10:00 0:12:00 0:14:00 0:16:00 0:18:00 0:20:00

T
h

e
 N

u
m

b
e

r
o

f
W

e
b

 (
H

T
T

P
)

F
lo

w
s

Time (hh:mm:ss)

Naïve Method

Proposed Method: k = 1

Proposed Method: k = 2

Fig. 30. Outputs of the naïve method and the proposed method with k = 2 and

k = 1.

VIII. CONCLUSION

This paper first explored a naïve method for counting flows

classified by application. Then, the paper proposed a method

that employs a smaller number of TVs together with application

vectors. The proposed method was compared with the naïve

method, which uses as many TVs as applications. As a result, it

was confirmed that the proposed method effectively saves

memory usage without compromising accuracy. In addition, we

also examined techniques that avoid the overestimation for

one-packet flows, the underestimation caused by FIN message

retransmission and the errors caused by the difference in the

optimal timeout periods among applications. Through an

experiment, it was confirmed that the proposed method

accurately estimates the number of the classified flows.

APPENDIX

In this study, the true number of flows was estimated as

follows. The packet dump file to be tested is first inputted to the

tcptrace program [16]. The output of the program is stored

to a text file in the long format. This output file contains

comprehensive information of all flows observed in the dump

file. The information includes the arrival times of the first and

last packets of a flow. Thus, the duration of a flow is obtained as

the period from the first packet to the last packet. Then, the true

number of flows at ti is obtained by counting the flows such that

the first packet arrives before ti and the last packet arrives after

ti − 1. A Perl script was written to extract the first and last packet

time information from the tcptrace output file and count the

number of flows that should be measured at ti. It is needless to

say that this method cannot be applied to real-time measurement

because tcptrace is a very slow and memory consuming

33

program.

REFERENCES

[1] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting

active flows on high speed links,” in Proc. IMC '03, Miami Beach, FL,

USA, 2003, pp. 153−166.

[2] H. A. Kim and D. R. O’Hallaron, “Counting network flows in real time,”

in Proc. GLOBECOM 2003, San Francisco, 2003, pp. 3888−3893.

[3] K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-time

summaries of Internet traffic,” in Proc. SIGMETRICS '05, Banff, Alberta,

Canada, 2005, pp. 85−96.

[4] K. C. Claffy and H. W. Braun, “A parameterizable methodology for

Internet traffic flow profiling,” IEEE J. on Selected Areas in Communs.,

vol. SAC-13, Oct. 1995, pp. 1481−1494.

[5] M. S. Kim, Y. J. Won, H. J. Lee, J. W. Hong, and R. Boutaba,

“Flow-based characteristic analysis of Internet application traffic,” in

Proc. E2EMON, San Diego, California, USA, 2004, pp. 62−67.

[6] T. Mori, T. Takine, J. Pan, R. Kawahara, M. Uchida, and S. Goto,

“Identifying heavy-hitter flows from sampled flow statistics,” IEICE

Trans. on Commun., vol. E90-B, Nov. 2007, pp. 3061−3072.

[7] S. McCreary and K. Claffy, “Trends in wide area IP traffic patterns - A

view from Ames Internet Exchange,” in Proc. ITC Specialist Seminar,

Monterey, CA, USA, 2000.

[8] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification

and application identification using machine learning,” in Proc. LCN '05,

Sydney, 2005, pp. 250−257.

[9] D. Rossi and S. Valenti, “Fine-grained traffic classification with netflow

data,” in Proc. IWCMC '10, Caen, France, 2010, pp. 479−483.

[10] H. Dahmouni, S. Vaton, and D. Rossé, “A markovian signature-based

approach to IP traffic classification,” in Proc. MineNet '07, San Diego,

CA, USA, 2007, pp. 29−34.

[11] Endace, Capture network packet device. Available:

http://www.endace.com/endace-dag-high-speed-packet-capture-cards.ht

ml

[12] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time

probabilistic counting algorithm for database applications,” ACM

Transactions on Database Systems, vol. 15, June 1990, pp. 208−229.

[13] TCPDUMP/LIBPCAP Repository. Available: http://www.tcpdump.org/

[14] Wide: WorkingGroup MAWI. Available:

http://www.wide.ad.jp/project/wg/mawi.html

[15] S. Zhu and S. Ohta, “Fast and accurate flow counting algorithm for the

management of IP networks,” in Proc. NOMS 2010, Osaka, Japan, 2010,

pp. 918−921.

[16] tcptrace - Official Home Page. Available: http://www.tcptrace.org/

Shan Zhu received the B.E. degree from the Liaoning University of China in

2005 and the M.E degree from the Northeastern University of China in 2008.

She entered Toyama Prefectural University in 2008 and is now a doctor

course student.

Ms. Zhu is a student member of the IEICE.

Satoru Ohta received the B.E., M.E., and Dr. Eng. degrees from the Tokyo

Institute of Technology, Tokyo, Japan, in 1981, 1983, and 1996, respectively.

In 1983, he joined NTT, where he worked on the research and development

of cross-connect systems, broadband ISDN, network management, and

telecommunication network planning. Since 2006, he has been a professor in

the Department of Information Systems at Toyama Prefectural University,

Imizu, Japan. His current research interests are network performance

evaluation and power management of network systems.

Dr. Ohta is a member of the IEEE, IEICE and ECTI. He received the

Excellent Paper Award in 1991 from IEICE.

