
 1 

A New Configuration of Two-Wheeled Inverted 
Pendulum: A Lagrangian-Based Mathematical 

Approach  
K M Goher 1 and M O Tokhi 2 

1Department of Mechanical and Industrial Engineering 
College of Engineering, Sultan Qaboos University, Oman, e-mail: kgoher@squ.edu.om 

2Department of Automatic Control and Systems Engineering, 
The University of Sheffield, United Kingdom 

 
 

Abstract— This work presents a novel design of two-wheeled 

vehicles. The proposed design provides the vehicle with more 

flexibility in terms of the increased degrees of freedom which 

enable the vehicle to enlarge its working space. The additional 

translational degree of freedom (DOF), offered by the linear 

actuator, assists any attached payload to reach higher levels as 

and when required.  The model of the system mimics the 

scenario of double inverted pendulum on a moving base. 

However, it is further complicated due to the addition of a one 

more (DOF). As adding more degrees of freedom to the system 

increases the degree of complexity, Lagrangian dynamic 

formulation is used, due to its relative simplicity, to derive the 

system dynamics. The new developed configurations is of great 

importance in various applications including self balance 

robots, wheelchairs on two wheels, stability analysis of multi 

segment gaits and multi links cranes etc. In order to maintain 

the system nonlinear characteristics, the system model is 

derived with the consideration of the joints friction based on 

the Coulomb friction model. An investigation is carried out on 

the impact of the joints damping on the stability of the system.    

Keywords- Lagrangian formulation, modelling and 

simulation , double inverted pendulum. 

I.  INTRODUCTION 

Inverted pendula are currently used as teaching aids and 
research experiments. Quanser (2004), a supplier of 
educational and research based equipment produce modular 
systems which can be configured as single or double inverted 
pendula. Their range offers both a rotary and a linear version. 
Many researchers have also built their own inverted 
pendulum systems (Åström and Furuta, 1996; Brockett & 
Hongyi, 2003; Rubi, 2002) to suit their investigations.  

Theoretically, any number of links can be mounted on 
the cart or rotor and successfully held in the all-up 
configuration (Cazzolato, 2004). The most reported to have 
been successfully balanced is four (Googol, 2004). Video 
footage of this feat can be viewed at the Googol website. 
Three link systems (triple inverted linear pendulum) have 
been observed as demonstrated by the Max Plank Institute 
(2004) and Quanser (2004). For all of these systems, each 
link (including the rotary link or cart) has only one degree of 
freedom. 

The concept of balancing robot is based on the inverted 
pendulum model. This model has been widely used by 
researches around the world, [1], [3], [4] and [5], in 
controlling a system not only in designing wheeled robot but 
also other types of robots as well as legged robots. The 

inverted pendulum problem is common in the field of control 
engineering. The uniqueness and wide application of 
technology derived from this unstable system has drawn 
interest of many researches, [2], [6], [8] and [9], and robotics 
enthusiasts around the world. In recent years, researchers 
have applied the idea of a mobile inverted pendulum model 
to various applications including the design of walking gaits 
for humanoid robots, robotic wheelchairs [7] and personal 
transport systems [10]. 

In this paper, due to the highly nonlinearity 
characteristics of the multi-inputs multi-outputs (MIMO) 
two-wheeled system, mathematical model using Lagrangian 
approach has been developed considering all possible system 
parameters maintaining system nonlinearities and 
complexity. Special concern is paid to the damping 
characteristics of the joints as well as the dynamics of the 
overall centre of mass (COM) of the system. Further 
investigation will focus on the impact of the lower parts 
inertia and size; wheels mass and size, counter weights to 
maintain balance and overall dimensions of lower parts of 
the vehicle.  

II. SYSTEM DESCRIPTION  

The vehicle considered in this work, shown in Figure 1, 
comprises a rod on an axle incorporating two wheels as 
described in Figures 1.  The intermediate body (IB) of the 
vehicle encompasses two segments; link 1 and link 2, where 
the second link is a set of two coaxial-parts connected by a 
linear drive to actuate the upper part and the attached 
payload. The vehicle is driven by four driving direct motors 
(DC); two motors drive the vehicle wheels and in turn the 
entire system, a motor driving link 2 and a linear actuator 
between the two parts of link 2.  The two wheels driving 
motors along with the motor driving link 2 help the system 
to be stabilized at the up right position or at any angular 
position as required by the system control strategy. Using 
the linear actuator increases the system degrees of freedom 
by allowing the second link to extend the second to achieve 
further levels of height.  

The angular positions of link 1 and link 2; 
1θ  and 

2θ , are 

measured from the positive vertical Z axis. The linear 
displacement of the payload; Q, is measured, from 
position 2O , along link 2.  In order to achieve a certain 

angular position from the upright vertical axis, the vehicle is 
linearly moved in the XY plane undergoing a planar motion 
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in both directions. The motion of the vehicle in the XY 
plane relies, generally, on the degree of actuation of the 
wheels driving motors and hence on the control signals in 
correspondence to the pre-assigned angular position of the 
IB.  

Upon receiving the corresponding signal from the 
controllers, the wheels start to respond, independently, by 
rotating with the appropriate speed and in a direction 
relative to the nature of the received signals to the 
corresponding controller.  The linear actuator is working to 
activate the upper part of link 2 and the attached payload to 
extend in accordance to the position measurement, as 
required, of the payload.    

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Two-wheeled vehicle with an extended rod 

 

Fig. 2 Positions of vehicle main parts and Com 
 

III. LAGRANGIAN MODELING APPROACH  

Application of the Euler-Lagrange equations leads to a 
set of coupled second-order ordinary differential equations 
and provides a formulation of the dynamic equations of 
motion equivalent to those derived using Newton’s 
formulation. However, the Lagrangian approach is 

advantageous for complex systems such as multi-link 
systems.    

TABLE I.  PARAMETERS LABEL AND DESCRIPTION 

Terminology Description Units 

LM(t) Distance to the COM of the payload m 

L2u(t) Distance to the COM of the upper part of link 

2 

m 

La Position of the linear actuator m 

Ll Half length of link 1 m 

2L1 Length of link 1 m 

H Distance between wheels, along X axis m 

Q Displacement of the linear actuator  m 

M1 Mass of link 1 kg 

Mm Mass of motor driving link 2 kg 

M2l Mass of the lower part of link 2 kg 

Ma Mass of the linear actuator  kg 

M2u Mass of the upper part of link 2 kg 

M Payload mass  kg 

TR, TL Wheels driving torques  kg 

Tm Motor torque  N.m 

Fa Linear actuator force N 

Ff Frictional force in the linear actuator  N 

Fd External disturbance force  N 

1θ  Angular position of link 1 to the positive Z axis rad 

2θ  Angular position of link 2 to the positive Z axis rad  

 
 
There are several reasons for using Lagrangian approach. 

First, the derivation is based on energy calculations of the 
physical system. As energy calculations are independent of 
vectors representation, the derivation is simple in compared 
to Newton-Euler formulation. Calculation of the system 
energy is of great importance for power consumptions by the 
system and designing the appropriate actuators to derive the 
system.    

Second, using generalized coordinates to describe the 
system degrees of freedom simplifies and describes more 
naturally the situation using more sensible coordinates. 
Another advantage of Lagrange's dynamic is the method of 
Lagrangian multipliers. That method is usable when you do 
not know the nature of some force during constrained 
motion.  Lagrangian Dynamics is derived from Newton’s 
Laws and so has the same restrictions as those laws.  

Using Lagrange dynamic formulation for the system 
dynamics, the following dynamic equation can be expressed 
for an n degrees of freedom (DOF) system 
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=T  System kinetic energy, and  
=V  System potential energy 

 

A. System Energy Requirements 

Since Lagrangian technique consider the system energy, 
consisting of Kinetic and Potential energy, thus the total 
energy,  U of the two-wheeled wheelchair can be described 
as the sum of the kinetic energy,   T , and potential energy, 

  V ,  of the system components; wheel, lower and upper 
parts of links and the payload as: 
 

  V TU +=                                                                        (2)                                                                                                                                                                                      

Mualmv,φc TTTTTTT TT +++++++= 221
                   (3)                                                                            
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where 
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The pendulum kinetic energy can be expressed as the 
sum of its translational energy and rotational energy; 
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where

lJ , 
aJ ,

uJ  and 
MJ are the mass moments of inertia 

of the lower rod, linear actuator, upper rod  and the payload 
respectively around the IB centre of mass. 

Since there is no motion for the vehicle in the Z direction 
as the wheels remain in full contact with the 
ground; 0  R === OL ZZZ &&&&&& , there is no potential energy for 

the cart in the  Z  direction.  The potential energy of various 
components can be expressed as: 

1111 cos θgLMV =                                    (13) 

( ) 11 cos2 θLgMV mm =                                   (14) 

( )221122 coscos2 lll LθLgMV +=        (15) 

( )2211 cos2cos2 laa LθLgMV +=                                     (16) 

( )2)(21122 cos2cos2 tuuu LθLgMV +=       (17) 

( )2)(11 cos2cos2 tMM LθLMgV +=        (18) 

Where 
)(2 tuL  and  

)( tML  are the positions of the centre of 

mass of upper part of link 2 and the payload respectively. 
Both variables are time dependent, in correspondence to the 
displacement caused by the linear actuator, and can be 
expressed as:   
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QLLL ultM ++= 22)( 22                                                     (20) 

 
Manipulating the above equations yield the following 

two expressions for the total kinetic and total potential 
energies respectively of the system; 
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IV. VEHICLE   DYNAMICS 

The Lagrangian equation of motion is represented as, 
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where iq represents a particular generalized coordinate, 

and  

dt

dq
q i
i =&         (23) 

The overall motion of the system can be described using 
Eq. (3) according to separate each generalized coordinate in 
a system. For example, in this case, there are five generalized 
coordinates taking part in the system motion, thus, the 
generalized coordinates of the system are chosen as   

[ ]Tiq Q             21RL θθδδ=                      (24) 

The generalized force is expressed as, 
[ ]TaTMTRTLTi    FTT TQ    0      =        (25) 

Where the generalized forces and moments are expressed 
as follows: 

fLLLT TTT −=                                                                   (26) 

fRRRT TTT −=                                                                   (27) 
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A. Joints friction effects  

Based on the Coulomb’s friction model and assuming the 
same frictional coefficients at all the joints, the frictional 
moments and forces are expressed as the following: 
 

LcLvfL ccT δδ && sin+=                                                      (30)

    

RcRvfR ccT δδ && sin+=                                                       (31)

   

22 sin θθ &&
cvfM ccT +=                                                       (32) 
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Where

fLT , 
fRT  and 

fMT  are the frictional moments at the 

left and right wheels joints and the intermediate joint 
between link 1 and link 2 respectively and 

faF is the 

frictional force exist in the linear actuator. vc and cc are the 

viscous and Coulomb friction coefficients at the vehicle 
joints respectively. 

Lδ& and 
Rδ& are the rate of angular rotations 

at the left and right wheels respectively. 
2θ&  is the rate of the 

angular position of link 2 and Q&  is the velocity of the 

attached payload. 

B. Lagrangian formulation  

The Lagrangian function of the system; L can be 
expressed as the difference between the system kinetic and 
potential energy as the following:  
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The Lagrangian equations of motion of the vehicle can be 

represented as: 
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C. Vehicle dynamic equations 

The system is described by a set of  Manipulating the 
above expressions yields the following five highly non-linear 
differential equations describing the vehicle dynamics 
alongside the driving moments and an external disturbance 
force as: 

 

fLL

WWW

WW
RL

TTQQ

QQC
R

C
R

C
R

R
CL

R
CCC

−=−+−+

+++−

+−+

2
2
2222

2
22

22822102
2
210

1191
2
1192221

sincossincos

2
cos

2
sin

2

cos
2

sin
2

2

θθθθθθθ

θθθθθθ

θθθθδδ

&&&&&

&&&&&&&

&&&&&&&

       (40) 

 

fRR

WWW

WW
LR

TTQQ

QQC
R

C
R

C
R

R
CL

R
CCC

−=−+−+

+++−

+−+

2
2
2222

2
22

22822102
2
210

1191
2
1192221

sincossincos

2
cos

2
sin

2

cos
2

sin
2

2

θθθθθθθ

θθθθθθ

θθθθδδ

&&&&&

&&&&&&&

&&&&&&&

           (41) 

 

( )

( ) ( )( ( ) ( )

( )( )( )
( )( ) ( ) ( )( ) )

( ) ( ) ( ) 0sinsin2sin
2

coscossincos

coscossinsin22

sin2sin
2

cos
2

2

13212181011119

12211121088

2121210882828

211210812119

11922118

=−−++++

−+−+++

+++++++++

−−+−+−

+++

θθθθθθδδθ

θθθθθθ

θθθθθθθ

θθθθθδδθ

θδδδθ

gCQCCLL
R

C

CCQC

CCQCQCQC

CCLL
R

C

L
R

CCC

RL
W

RL
W

RL
W

L

&&&&&

&&&

&&&&&&&&&

&&&&&

&&&&&&&&

(42) 

 
( ) ( )( )( )
( ) ( )( )

( )( )( ) ( )
( ) ( )( )( )

( )( )( )

( )

( ) ( ) ( ) ( )
ddfmm

W

RL
W

RL
W

RL

W

FLTT

QCCCCL

QCgQCCQ
R

C

QCCL

QCCCLQQCL

QC
R

CCQC
R

QC
R

QQCQC

CCLQCQCC

−−=

−+−−++

+







+++

−+++

−+++++

++++++









+−+++

+++++++

2121810211081

28281528

222821021

1182108112281

821088

228812

221211081
2

81220

sinsin2

cossin
2

sincos2

sincos2222

2
cos

2

sin1
2

2

coscossinsin2

θθθθθθ

θθθ

θθθθθ

θθθθθθ

δδδδθ

θθδδ

θθθθθ

&&

&&

&&&

&&&&&&&

&&&&&&&

&&&&&

&&

    (43) 

 

( ) ( )
( )

faa

RL
W

FFgCCL

C
R

QCCQC

−=+−−

+−+−

28212181

228
2
28128

coscos2

cos
2

2
2

1

θθθθθ

θδδθθ

&&

&&&&&&                          (44) 

D. Intermediate body centre of mass (COM) 

Calculating of the IB centre of mass is of great 
importance, the following equations describe how the COM 
of the intermediate body is calculated. Considering the 
moments of the vehicle main parts around the position of the 
COM in two mutually perpendicular directions;  X  and Z  
yields the following expressions: 
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where 

gL is  a two dimensional vector in the XZ  plane 

with a length represents the position of centre of mass 
(COM) of the intermediate body, and it is a time-dependent 
varying with the angular positions of link 1 and link 2 and 
the linear displacement of the attached payload and can be 
calculated using;  
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Manipulating the above equations yields the calculation 

of the angular position of COM in the XZ  plane as follows: 
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The equation of motions derived were constructed in the 

Simulink environment for testing with conventional PID 
controller. 

V. CONTROL STRATEGY  

The strategy to control the system depends on developing 
a feedback control strategy of five control loops as shown in 
Figure 3. In order to drive the vehicle to undergo a specific 
planar motion in the XY plane, two feedback loops are 
developed. The input to the both control loops is the error in 
the angular position of each wheel which measures the 
difference between the desired and actual angular position of 
the corresponding wheel. The angular position of the 
intermediate body is controlled by the measurement of the 
error in the position of link 1 and link 2. In order to control 
the position of the attached payload, a feedback control loop 
is developed with the error in the payload position as an 
input and the actuation force as the output of the control 
loop.  

The system of vehicle considered in this paper is a multi 
input multi output (MIMO) system characterized by its high 
nonlinearity and the highly coupled dynamics. The inputs to 
the system are the main motors driving torques; 

LT  and 
rT , 

torque driving the motor activating link 2; 
mT , the linear 

actuator force; 
aF and an external disturbance force; 

dF . The 

system posses five outputs; the angular positions of the left 
and right wheels; 

Lδ  and 
Rδ  respectively, the angular 

positions of the IB segments; 
1θ  and 

2θ  and the displacement 

of the payload; Q. 

The developed control strategy is implemented on the 
system model with the full results to be presented and 
discussed in the full paper.   

 

 

+ 

- 
Ldδ  

d2θ  

dF  

mT
 

- 

d1θ
 
+ 

- 

Lδ  

Rδ  

1θ  

2θ  

Q  

  C1 

C2 
- 

Rdδ  
+ 

+ 

  C3 

- 

- 

LT
 

RT  

+ 

C4 
+ 

C5 
dQ  

aF
 

X  

Payload 

2θ
 

1θ
 

Y  

Z  Q  

 

 

Figure 1.  Schematic description of the control strategy 
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