

67

Abstract—This paper proposes a protocol proxy scheme that

can emulate the open shortest path first (OSPF) protocol in an

effective and flexible manner. It is implemented in our developed

network emulator, which is used to test network controllers for IP

optical network management. In the protocol scheme, OSPF

protocol emulation is achieved by combining an OSPF protocol

proxy (introduced here) and an OSPF peer state manager based on

existing OSPF protocol software. The protocol proxy produces

OSPF packets holding link state advertisements with customized

extensions including MPLS and GMPLS, while the OSPF peer

state manager implements neighbor establishment via the proxy.

The protocol proxy has two main functions: rewrite OSPF packets

originated by the OSPF peer state manager and generate OSPF

packets to inform the updated topology to the network controller.

To implement the customized OSPF extensions, only the protocol

proxy software need be modified; the existing OSPF software for

the OPSF peer state manager is not touched. This makes the

implementation of the OSPF emulation easy and flexible.

Furthermore, the protocol proxy obtains the network topology

information from the resource simulator, which is managed in a

centralized manner. This reduces the amount of processing

resources required and is scalable in terms of network size. We

develop a prototype of the network emulator including OSPF

protocol emulation with the protocol proxy scheme. The

effectiveness of the protocol proxy scheme is confirmed by an

experiment on 40 nodes.

Index Terms—OSPF, emulation, protocol proxy

I. INTRODUCTION

arious types of applications are likely to appear and their

traffic demands are difficult to predict. Applications that

require large bandwidth and high quality, such as

high-definition television, video streaming, and high-speed data

transfer, place high demands on network resources. The future

backbone network is required to support various service

networks and must be implemented in a timely manner to satisfy

customer demands. In addition, the network resources need to

be efficiently utilized in a dynamic manner.

To achieve these requirements, ``network virtualization'' was

presented in [1],[2]. Network virtualization creates multiple

Manuscript received August 26, 2011. This work was supported in part by

the National Institute of Information and Communications Technology, Japan

and the Strategic Information and Communications R&D Promotion Program

of the Ministry of Internal Affairs and Communications, Japan.

Shunichi Tsunoda, Nattapong Kitsuwan and Eiji Oki are with Department

of Information and Communication Engineering, the University of Electro

Communications, Tokyo Japan. (e-mail: {t0610143, kitsuwan, oki}

@ice.uec.ac.jp)

Takashi Miyamura and Kouhei Shiomoto are with NTT Network Service

Systems Laboratories, NTT Corporation, Tokyo Japan.

service networks by overlaying IP networks on top of a single

optical network. An IP optical Traffic Engineering (TE) server,

which is currently under development [1], determines the

resource assignments of those service networks with some

appropriate optimization algorithm [3]-[5]. The IP optical TE

server has two main functions. First, it collects information of

network topology, network resources, and traffic. Second, it

controls elements such as network paths, links, and bandwidth

according to the traffic demands, traffic characteristics, and

quality-of-service requirements

To develop a truly practical IP optical TE server, the IP

optical TE server's functions and performance must be

confirmed for a large-scale network with more than one hundred

nodes. To ensure a rigorous examination, the large-scale

network must support various topologies and traffic

characteristics. However, preparing an actual IP optical network

of this scale is not feasible. In addition, it is difficult to generate

various traffic streams in an experimental network. Accordingly,

it is difficult to achieve these requirements in any experiment on

an actual network. Though, it must be used to establish a

scalable experimental environment to advance the development

of IP optical TE server. A device that emulates an actual

network's behavior is needed to confirm the validity and

performance of the developed IP optical TE server. This device

is called a network emulator.

Several available network simulators are available such as

ns-2 [6], ns-3 [7] and OPNET [8]. These simulators provide

simulated results to network designers based on the configured

network and given traffic conditions, but they do not have

sufficient router interfaces to permit the IP optical TE server to

behave as in an actual network. The interfaces include CLI

(command line interfaces) via telent, SNMP (Simple Network

Management Protocol) [9], OSPF (Open Shortest Path First)

[10], [11].

An architecture of a network emulator for IP optical network

management was presented in [12], [13]. The network emulator

mainly consists of three modules: a router interface module, a

resource simulator, and a traffic generator. The router interface

module supports several protocols, such as telnet, SNMP, OSPF.

Each router interface in the network is implemented as a virtual

node in the router interface module. The resource simulator

module simulates the network resources based on requests of

path setups and releases triggered by the IP optical TE server

via the router interface module; it judges if the requests can be

accepted. The traffic generator creates traffic information,

which is retrieved from the IP optical TE server via SNMP, such

as traffic volume passing through each link interface [14]. The

Protocol Proxy for OSPF Emulation

Shunichi Tsunoda, Nattapong Kitsuwan, Eiji Oki, Takashi Miyamura, and Kohei Shiomoto

V

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), August Edition, 2011

68

network emulator provides an experimental environment for IP

optical network management [15], and allows a variety of

network control actions to be examined under the various traffic

characteristics expected of a large-scale network.

OSPF protocol emulation is a key function in the network

emulator. This emulation must meet several requirements as

follows. Customized OPSF extensions including

MPLS/GMPLS ones [11], [16] should be supported for IP

optical network management. Processing resources should be

efficiently used to emulate large-scale IP optical networks. In

addition, the protocol emulation software should be

implemented in a flexible and timely manner. Unfortunately,

implementation of an OSPF protocol emulation that can satisfy

these requirements for the network emulator presented in [12]

remains an open issue.

This paper proposes a protocol proxy scheme, which

emulates the OSPF protocol in the network emulator and meets

our objectives. In the protocol scheme, OSPF protocol

emulation is achieved by combining an protocol proxy that we

introduce here and an OSPF peer state manager based on

existing OSPF protocol software. The protocol proxy produces

OSPF packets of link state advertisements with customized

extensions including MPLS and GMPLS, while the OSPF peer

state manager realizes neighbor establishment via the proxy.

The protocol proxy has two functions: rewrite OSPF packets

originated by the OSPF peer state manager and generate OSPF

packets to inform the updated topology to the IP optical TE

server. Implementation of the OPSF customized extensions

requires modification of only the protocol proxy software, the

existing OSPF software for the OPSF peer state manager is no

touched. This makes the implementation of the OSPF emulation

easy and flexible. Furthermore, the protocol proxy obtains the

network topology information from the resource simulator,

which is managed in a centralized manner. This reduces the

amount of processing resources required and is scalable in terms

of network size. We develop a prototype of the network

emulator that includes OSPF protocol emulation via the

protocol proxy scheme. The effectiveness of the protocol proxy

scheme is confirmed by an experiment on a network with 40

nodes.

The remainder of this paper is organized as follows. Section

II describes the network emulator. Section III explains the

requirements faced when implementing OSPF emulation.

Section IV describes OSPF implementation based on existing

schemes. Section V proposes OSPF implementation based on

the protocol proxy scheme. Section VI introduces the

implementation and the result gained. Section VII presents our

conclusions.

II. NETWORK EMULATOR

A scalable network emulator architecture that supports the

development of the IP optical server was presented in [12], [13].

The network emulator uses the same router interfaces to

communicate with the IP optical TE server as the actual IP

optical network, and behaves as an actual IP optical network

between the interfaces. Moreover, the network emulator

provides a variety of customizable traffic environments.

Figure 1(a) shows a test conducted on an actual network; its

cost is excessive and it is difficult to generate realistic traffic due

to its unpredictability. The IP optical TE server uses OSPF to

collects the topology and resource information. Each

OSPF-router exchanges information with neighboring OSPF

routers. The IP optical TE server running OSPF has a neighbor

relationship with at least one router in the network from which,

gets the information necessary. Note that the IP optical TE

server does not need to have an OSPF neighbor relationship

with all routers in the network. Moreover, it setups or releases a

path via CLI in response to a request. Figure 1(b) shows a test

conducted on the network emulator, which behaves as the test

with actual network.

The network emulator mainly consists of three modules,

which are a router interface module, a resource simulator

module, and a traffic generator module, and several databases,

as shown in Fig. 2. The databases are one TE database (DB) for

each service network, one TE DB for the optical network, and

the traffic DB. The functions of these modules for the network

emulator are as follows.

The router interface module communicates with the IP

optical TE server and replicates the behavior of one or more

routers. This module consists of N sub-modules for Command

Line Interface (CLI)/SNMP, where N is the number of routers in

the emulated service/optical network [1], and one sub-module

for OSPF. Sub-modules for CLI/SNMP, which are denoted as

virtual nodes 1,…, N, are prepared for all routers, which

correspond to the emulated network. These sub-modules

communicate with the IP optical TE server, to update the router

configurations including path setup and release information and

Fig. 1. Comparison of test environments for IP optical server.

69

to collect traffic information. Virtual node R uses OSPF to

exchange topology information with the IP optical TE server. If

the topology information is updated, the resource simulator

notifies the update to virtual node R, which then sends it to the

IP optical TE server. Since the IP optical TE server uses OSPF

to get the topology information from virtual node R, the OSPF

configuration from virtual nodes 1 to N is not required. Virtual

node R behaves as a neighbor node in the actual network.

Although each router runs OSPF in the actual network, it does

not use OSPF to communicate with the IP optical TE server with

OSPF, only its neighboring router. Therefore, in the network

emulator, OSPF communication between the IP optical TE

server and virtual node R is enough. Using virtual node R

reduces the complexity of the resource simulator. If all virtual

nodes speak OSPF, the resource simulator has to control all

virtual nodes. If the network emulator must emulate a

large-scale network, it would become to complex. It is more

practical if the resource simulator controls only the virtual node

R since R aggregates the OSPF information.

The resource simulator module emulates the statuses of the

emulated network, such as path setup and release and resource

management so as to ensure compliance with MPLS/GMPLS

protocols [10], [11], [17]. When the IP optical TE server

requests path setup via CLI to the router interface module, the

resource simulator module judges whether the path setup

request should be accepted or rejected according to the current

available resources, the requested bandwidth, and the route. The

TE databases are used by the resource simulator to keep the

updated topology information.

The traffic generator module generates traffic information to

reflect various traffic characteristics with consideration given to

the unpredictability of traffic fluctuations [18]. The information

so generated is used by the resource simulator and the IP optical

TE server via SNMP. The generated traffic information is kept

in the traffic DB, which is managed by the traffic generator.

Each virtual node communicates with the resource simulator

module and traffic generator modules. In addition, the resource

simulator module communicates with the traffic generator

module. To make the network emulator scalable, these

communications are performed via TCP/IP. Therefore, the

proposed architecture allows modules/sub-modules to be

apportioned among different computers, so network emulation

can be performed in a distributed manner. This makes the

network emulator scalable in terms of network size.

III. REQUIREMENTS OF OSPF EMULATION IN NETWORK

EMULATOR

The network emulator is mainly used to test the functioning

of the IP optical TE server as an alternative to creating an actual

network as the test environment. OSPF protocol emulation must

inform the network topology and resource information to test

the functioning of the IP optical TE server. OSPF protocol

emulation is provided by virtual node R in the network

emulator. Virtual node R obtains the updated topology

information from the resource simulator and communicates with

the IP optical TE server using OSPF. For OSPF protocol

emulation, there are three main requirements. First, customized

OPSF extensions, including MPLS/GMPLS extensions, should

be easily supported. Second, processing resources should be

efficiently used to allow the emulation of large-scale IP optical

networks. Third, the protocol emulation software should be

implemented in a flexible and timely manner.

The key OSPF functions are neighbor establishment with

another OSPF peer and link state advertisement. Figure 3 shows

the functions required for OSPF protocol emulation.

IV. CONVENTIONAL APPROACHES

To emulate the OSPF protocol, there are two conventional

approaches. One is to modify an existing OSPF emulator [19],

which may be a commercial one, and the other is to modify

existing OSPF software.

In the first approach, an existing commercial OSPF emulator,

which has limited interfaces, supports various networks and

some extensions with MPLS/GMPLS by setting pre-defined

configurations. Figure 4 shows a schematic view of the first

approach. Whenever the network status is changed, the

configurations need to be updated. However, existing

commercial OSPF emulators are not easily accept the addition

of customized extensions that are not supported. In addition, as

Fig. 2. Scalable network emulator architecture.

Fig. 3. OSPF function model.

70

the interfaces of existing commercial OSPF emulators available

for updating network configurations are limited, it is difficult to

ensure integration with the other modules in our network

emulator. In the network emulator, the resource simulator

module requires virtual node R to access the configuration file

via TCP/IP.

In the second approach, an OSPF peer that uses existing

OSPF software, for example Quagga [20], is processed at each

emulated router. Figure 5 shows a schematic view of the second

approach. As processing resources are required in proportion to

the number of nodes in the emulated network, it is not scalable

in terms of network size. In addition, to adding customized

OSPF extensions, we have to modify the existing OSPF

protocol, which requires substantial development efforts

including software debugging.

V. PROTOCOL PROXY SCHEME

We propose the protocol proxy scheme that meets our

requirements. Figure 6 shows a schematic view of the protocol

proxy scheme. This scheme achieves OSPF protocol emulation

by combining the protocol proxy that we introduced and an

OSPF peer state manager based on existing OSPF protocol

software, which remains unmodified. The protocol proxy is

inserted between the IP optical TE server and the OSPF peer

state manager. The protocol proxy produces OSPF packets of

link state advertisements using customized extensions including

MPLS and GMPLS, while the OSPF peer state manager realizes

neighbor establishment via the proxy.

The protocol proxy has two main functions. The first one is to

rewrite OSPF packets originated by the OSPF peer, and the

second one is to generate OSPF packets to inform the updated

topology to the IP optical TE server. The topology information

is configured and updated by the resource simulator via TCP/IP.

To implement the OPSF customized extensions, only the

protocol proxy software is modified, the existing OSPF

software for the OPSF peer state manager remains unmodified.

This makes the implementation of the OSPF emulation easy and

flexible. Furthermore, the protocol proxy obtains the network

topology information from the resource simulator module,

which is managed in a centralized manner.

Figure 7 shows an example of the behaviors of the protocol

proxy. The protocol proxy captures all OSPF packets that are

exchanged between the OSPF peer state manager and the IP

optical TE server, and relays the captured packets to the other

side. The protocol proxy rewrites each captured packet before

forwarding them to the destination.

First, the OSPF protocol exchanges hello packets between

each router. At virtual node R, a hello packet is generated by the

OSPF peer state manager. The protocol proxy relays the hello

packet between the OSPF peer state manager and the IP optical

TE server. After exchanging the hello packets, the OSPF

protocol determines the adjacency relationships. A database

description (DD) packet is used to establish each adjacency

relationship, such as neighbor establishment. The DD packet

has the neighbor information gained from already established

router. A router exchanges the information with its neighbors

via DD packets. The protocol proxy captures the DD packets

from the OSPF peer state manager, and rewrites the topology

information in the DD packet according to the resource

simulator status. The protocol proxy sends the rewritten DD

packet to the IP Optical TE server. The DD packet from the IP

optical TE server, is checked the status by protocol proxy, and

relays the DD packet to the OSPF peer state manager. After

neighbor establishment is achieved, virtual node R notifies the

resource information using link state (LS)

update/request/acknowledge including MPLS/GMPLS

extensions. LS update is used to inform other routers of the new

information, LS request is used to get the information from

other router, and LS acknowledge is used to confirm the packet.

Fig. 4. Approach using OSPF emulator.

Fig. 6. Concept of protocol proxy scheme.

Fig. 5. Approach using existing OSPF software.

71

The protocol proxy generates LS packets including

MPLS/GMPLS extensions using the resource simulator's

output.

The protocol proxy offers two advantages. First, the existing

software used to implement extended OSPF functions does not

need to be modified. The protocol proxy provides the basic

OSPF functions to establish adjacency relations and extended

functionally to notify the resource information. The basic OSPF

functions are provided by the existing OSPF software, but the

extended functions are provided by the protocol proxy. The

protocol proxy scheme can implement the extended functions

by modifying the protocol proxy. Second, the protocol proxy

scheme reduces the complexity of the resource simulator. In

using the existing OSPF software scheme, the resource

simulator has to control status of all OSPF nodes to pass the

OSPF information to the IP optical TE server. In contrast, the

protocol proxy scheme aggregates the OSPF information of all

virtual nodes at the protocol proxy. Hence, the resource

simulator controls only the protocol proxy.

The network emulator does not support the emulation of

convergence time. Convergence time is time taken for all router

to recognize the information representing a change in network

topology. Since the emulation of convergence time is not

supported, some topology characteristics, such as link delay, are

omitted. The convergence time is generally needed for

performance testing. Since the purpose of the network emulator

is to test functions of the IP optical TE server, the convergence

time is not necessary in OSPF protocol emulation. To obtain the

convergence time via emulation, setting some packet delay at

the protocol proxy is one candidate.

VI. IMPLEMENTATION AND RESULTS

A. Behavior of network emulator

 We developed a prototype to confirm the effectiveness of the

protocol proxy scheme. Figure 8 shows the prototype of our

developed network emulator; the number of emulated nodes is

40. Three computers were used to implement the network

emulator. Each computer was equipped with Software “Xen”

[21] was used to realize the VMs. 20 virtual nodes for

CLI/SNMP were installed on computers 1 and 2. Virtual node

R, resource simulator, and databases were installed on

computer 3. Virtual node R consists of our developed protocol

proxy and the OSPF peer, where Quagga [20] is the existing

OSPF software. Quagga is a routing software suite: General

Public License (GPL) licensed IPv4/IPv6 routing software.

Our goal is to test the functions of the IP optical TE server in

a network with several hundred nodes. In general, one machine

can be dedicated as a router to implement a virtual node that

speaks CLI/SNMP/OSPF. However, this approach is not

cost-effective, so we employ the virtual machine (VM)

approach. VM technology allows multiple machines to run

independently on one computer. This means that we do not take

the other approach, which integrates the resource simulator and

traffic generator with the virtual nodes. This is because the VM

technology enables us to develop the network emulator more

easily, a significant benefit since router interfaces are frequently

upgraded. Our approach allows the use of several available

software packages as the required protocol suites. However,

using VM technology prevents the direct emulation of the

propagation delay. Because the virtual nodes work in the same

computer, they are unable to replicate the real delay in the

network.

Figure 9 shows captured packets passed between the IP

optical TE server and the protocol proxy. We confirmed that the

OSPF protocol was successfully emulated by the protocol

proxy.

Figure 10 shows an example of path setup. In Fig. 10, the

Fig. 9. Packet capture.

Fig. 8. Prototype of network emulator.

Fig. 7. An example of behaviors of protocol proxy scheme.

72

network emulator has two planes. One is the control and

management plane. This plane connects to the IP optical TE

server, and provides the CLI and OSPF interface. This plane is

visible to the IP optical TE server. The other one is the internal

plane. The internal plane is used for communication among the

modules in the network emulator. The internal plane is invisible

to the IP optical TE server. Table I shows the interface IP

addresses in the network emulator. The address of Table I (a)

represents the connection the control and management plane.

M1 to M40 is the router interface for CLI of the IP optical TE

server. C1 is the OSPF interface for the IP optical TE server.

The address of Table I (b) represents the connection to the

internal plane. I1 to I40 is the virtual node's interface that

communicates with the resource simulator. PP is the protocol

proxy's interface which communicates with the resource

simulator. RS is the resource simulator's interface that

communicates with the virtual node and the protocol proxy.

OP1 and OP2 are particular interfaces. They are invisible and

are not connected to any plane. Instead, they are to provide the

basic OSPF functions. We demonstrated optical path setup and

release in the optical network. The procedure for optical path

setup on the network emulator as follows.

 Step 1: The IP optical TE server makes the adjacency

relation with virtual node R via interface

C1(10.0.0.254).

 Step 2: The protocol proxy receives the topology and

resource information from the resource simulator via PP

(192.168.1.50) interface and RS (192.168.1.60)

interface.

 Step 3: The protocol proxy informs the topology and

resource information to the IP optical TE server via C1

interface.

 Step 4: The IP optical TE server logins to the virtual nodes,

which correspond to ingress and egress router interfaces

such as M1 (10.0.0.1) to M40 (10.0.0.40), using CLI

over telnet. The IP optical TE server sends a path-setup

request to the ingress and egress virtual nodes. This

emulates the router configurations. The path-setup

request information includes several attributes such as

interfaces with physical ports and IP addresses, required

bandwidth, required route, and switch type. The

received information is saved at the ingress and egress

virtual nodes.

 Step 5: After the received information is confirmed, the

virtual nodes activate the configurations by sending the

received information to the resource simulator module

from I1 (192.168.1.1) to I40 (192.168.1.40) interface to

RS (192.168.1.60) interface.

 Step 6: The resource simulator judges if the path setup

request can be accepted by comparing the requested

attributes to the available resources in the associated TE

DB.

 Step 7: If the path-setup request is accepted by the resource

simulator, the associated TE DBs are updated based on

the newly accepted path attributes. The acceptance is

notified to the ingress and egress virtual nodes by the

resource simulator. The information updated at the TE

DBs is notified to virtual node R. Otherwise, the

resource simulator notifies the rejection to the ingress

and egress virtual nodes.

 Step 8: The ingress and egress virtual nodes notify the

acceptance or rejection to the IP optical TE server via

M1 interface to M40 interface.

 Step 9: If network topology or resource information is

changed, the resource simulator sends the updated

topology or resource information to the protocol proxy

from the resource simulator via RS interface to PP

interface.

 Step 10: When the protocol proxy receives the

information, the protocol proxy informs the topology

and resource information to the IP optical TE server by

OSPF via C1 interface.

B. Effects of protocol proxy scheme

The protocol proxy makes the implementation of the OSPF

emulation easy and flexible, and reduces the amount of

processing resources required.

First, we examine the effectiveness of the protocol proxy

scheme in terms of the software development time. It is difficult

to quantify how much the developing time is reduced.

Therefore, the number of lines in the source code is considered

to be an indication of development time. Figure 11 compares the

number of lines in the source codes needed to implement the

protocol proxy scheme to that in the existing OSPF software of

Quagga. There are 74,000 lines, approximately, in the existing

OSPF software. While the source code of the protocol proxy has

only 1,000 lines, 74 times fewer lines. In the protocol proxy

scheme, we do not need to touch the Quagga source code. Since

the protocol proxy is modified to implement extended functions,

the modification of Quagga's source code is not required. This

means that the protocol proxy scheme reduces the code needed

to implement some functions. Therefore, it is expected that the

development time is reduced. Furthermore, if the Quagga's

source code is modified, we have to confirm that the

modification satisfies the standard RFC.

The protocol proxy does not work by its self. To establish

adjacency relation, the protocol proxy still needs an OSPF peer

state manager such as Quagga. Therefore, the advantage of the

TABLE I

IP ADDRESS FOR EACH INTERFACE IN NETWORK EMULATOR.

(a) Visible to

IP optical TE server

 (b) Invisible to

IP optical TE server

Interface IP Address Interface IP Address

M1 10.0.0.1 I1 192.168.1.1

M2 10.0.0.2 I2 192.168.1.2

… … … …

M40 10.0.0.40 I40 192.168.1.40

C1 10.0.0.254 PP 192.168.1.50

 RS 192.168.1.60

 OP1 192.168.2.1

 OP2 192.168.2.2

73

protocol proxy is that modification of the Quagga in the

protocol proxy scheme is not required. Hence, we do not need to

test the functions provided by Quagga. This is because it is

guaranteed to offer the standardized functions specified in RFC

[10]. Quagga is used to establish the adjacency relation. If

Quagga is modified, the standardized functions provided by the

modified Quagga must be tested.

Second, we examine the processing time on the protocol

proxy. We measure the packet rewriting time and LS packet

generating time. The packet rewriting time starts from when the

protocol proxy receives a packet that needs rewriting, and stops

when the modified packet is sent out. The packet generating

time starts when the protocol proxy receives the information

from the resource simulator, and stops when the packet is sent

out. To measure the processing time, we use the getrusage()

function, a system call, provided by the Linux operating system.

The getrusage() function returns the CPU processing time in

millisecond.

The processing time of the protocol proxy is less than one

milli-second. This means that the processing time of the

protocol proxy has little impact on the network emulator. We

note that the processing time of the protocol proxy is not related

to network size, because the protocol proxy supports only

packet rewriting and generation. It takes less than one

millisecond from receiving the information to rewrite and

generate the packet. In the protocol proxy scheme, the resource

simulator manages the OSPF information. When the network

emulator emulates large-scale network, the processing time of

the resource simulator is significant. In contrast, the protocol

proxy takes less than one millisecond. This means that the

protocol proxy is not a bottleneck in the network emulator.

Third, we examine the reduction in the amount of processing

resources required. In the conventional approach based on

existing OSPF software, all virtual nodes have to install the

OSPF software. The existing OSPF software approach demands

that the processing resources must be proportional to the

number of nodes. On the other hand, the protocol proxy scheme

needs only one OSPF peer to perform neighbor establishment.

Thus the superiority of the protocol proxy scheme relative to the

existing OSPF software approach increases with network size.

Figure 12 compares the used memory amount of the protocol

scheme with that of the conventional approach. In Figure 12, the

used memory of the conventional approach is proportional to

the number of nodes. The conventional approach requires

2.3MB memories per node, where OSPF processes run. On the

other hand, the protocol proxy scheme requires only 2.8MB

memories for a network, which does not depend on the number

of nodes in the network. The breakdown is OSPF peer 2.3MB

and protocol proxy 0.5MB. This result shows the protocol

proxy scheme reduces the required memory amount. We also

investigated the required CPU resource by using a command of

“pidstat”, which is included in “sysstat version 8”. However, the

CPU resource was not measurable, because it is too small. This

means that the CPU resource is not a bottleneck for the network

emulator.

Fig. 11. Comparison of program lines.

Fig. 10. Illustrative example of path setup.

74

VII. CONCLUSIONS

This paper proposed a protocol proxy scheme to emulate the

OSPF protocol in an effective and flexible manner. The

protocol proxy scheme reduces the processing resource

requirements as well as development time. The protocol proxy

scheme realizes OSPF emulation by combining the protocol

proxy and OSPF peer state management.

The protocol proxy emulates the OSPF protocol including

customized extensions. In implementing the OSPF peer state

manager, the existing OSPF software does not need to be

modified. The protocol proxy captures packets that are

transmitted between the OSPF peer state manager and IP optical

TE server.

We developed a prototype of the network emulator. The

effectiveness of the protocol proxy scheme reduces the

development time. The protocol proxy does not need Quagga to

be modified to implement the extended functions. Hence, the

standardized functions specified in RFCs provided by Quagga

are guaranteed without testing. Moreover, the processing time

of the protocol proxy has little impact on the performance of the

network emulator.

REFERENCES

[1] K. Shiomoto, I. Inoue, and E. Oki, “Network virtualization in high-speed

huge-bandwidth optical circuit switching network,” High-Speed

Networks 2008 (HSN 2008), IEEE INFOCOM 2008, Apr. 2008.

[2] K. Matsui, M. Kaneda, and K. Matsuda, “Evaluation of a Server-based

Traffic Engineering Architecture Suitable for Large-Scale MPLS

Networks,” in Proc. 8th Asia-Pacific Symposium on Information and

TelecommunicationTechnologies (APSITT), 2010.

[3] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M.

Murata, “Stability of virtual network topology control for overlay routing

services,” Journal of Optical Networking, vol. 7, no. 7, pp. 704-719, Jul.

2008.

[4] K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka,

“Distributed Virtual Network Topology Control Mechanism in

GMPLS-Based Multi-Region Networks,” IEEE Journal on Selected

Areas in Communications, vol. 21, no. 8, pp. 1254-1262, Oct. 2003.

[5] E. Oki, K. Shiomoto, D. Shimazaki, N. Yamanaka, W. Imajuku, and Y.

Takigawa, “Dynamic Multilayer Routing Schemes in GMPLS-based

IP+Optical Networks,” IEEE Commun. Mag., pp. 108-114, vol. 43, no. 1,

Jan. 2005.

[6] http://nsnam.isi.edu/nsnam/, 2011.

[7] http://www.nsnam.org/, 2011.

[8] http://www.opnet.com/, 2011.

[9] D. Harrington, D. Harrington, and B. Wijnen, “An Architecture for

Describing Simple Network Management Protocol (SNMP) Management

Frameworks,” RFC 3411, Dec. 2002.

[10] J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998.

[11] D. Katz, K. Kompella, and K. Kompella, “Traffic Engineering (TE)

Extensions to OSPF Version 2,” RFC 3630, Sep. 2003.

[12] E. Oki, N. Kitsuwan, S. Tsunoda, T. Miyamura, A. Masuda, and K.

Shiomoto, “Scalable Network Emulator Architecture to Support

IP+Optical Network Management,” IEEE/IFIP Network Operations and

Management Symposium (NOMS 2010), Apr. 2010.

[13] E. Oki, N. Kitsuwan, S. Tsunoda, T. Miyamura, A. Masuda, and K.

Shiomoto, “Scalable Network Emulator Architecture for IP Optical

Network Management,” IEICE Transactions on Communications, vol.

E93-B, no. 7, pp. 1931-1934, Jul. 2010.

[14] C. Srinivasan, A. Viswanathan, and T. Nadeau, “Multiprotocol Label

Switching (MPLS) Traffic Engineering (TE) Management Information

Base (MIB),” RFC 3812, Jun. 2004.

[15] E. Oki, T. Takeda, JL. Le Roux, A. Farrel, "Framework for PCE-Based

Inter-Layer MPLS and GMPLS Traffic Engineering," RFC 5623, Aug.

2009.

[16] E. Mannie (Ed.), “Generalized Multi-Protocol Label Switching (GMPLS)

Architecture,” RFC 3795, Oct. 2004.

[17] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,

“RSVP-TE: Extensions to RSVP for LSP Tunnels,” RFC 3209, Dec.

2001.

[18] E. Oki and A. Iwaki, “Load-Balanced IP Routing Scheme Based on

Shortest Paths in Hose Model,” IEEE Trans. Commun., vol. E93-B, no. 5,

pp. 31180-1189, May. 2010.

[19] M. Nathansen, B. Stilling, “Emulation of routing and signaling processes

in automatically switched optical networks,” in Proc. Optical Fiber

Communication Conference and Exhibit, 2002. (OFC 2002), 2002.

[20] http://www.quagga.net/, 2011.

[21] http://www.xen.org/, 2011.

Shunichi Tsunoda received B.E. ain Information and Communications

Engineering from The University of Electro-Communications, Tokyo Japan, in

2009. He is with the Department of Communication Engineering and

Informatics, Graduate School of Informatics and Engineering, The University

of Electro-Communications.

Nattapong Kitsuwan received the B.E. and M.E. degree in Electrical

Engineering (Telecommunication) from Mahanakorn University of

Technology, King Mongkut's institute of Technology, Ladkrabang, Thailand,

and a Ph.D. in Information and Communication Engineering from the

University of Electro-Communications, Japan, in 2000, 2004, and 2011

respectively. From 2002 to 2003, he was an exchange student at the University

of Electro-Communications, Tokyo Japan, where he did a research about

optical packet switching. From 2003 to 2005, he worked for ROHM Integrated

Semiconductor, Thailand, as an Information System Expert. His research focus

is on IP optical network, optical burst switching, optical packet switching, and

scheduling algorithms.

Eiji Oki is an Associate Professor of The University of

Electro-Communications, Tokyo Japan. He received the B.E. and M.E. degrees

in instrumentation engineering and the Ph.D. degree in electrical engineering

from Keio University, Yokohama, Japan, in 1991, 1993, and 1999, respectively.

In 1993, he was with Nippon Telegraph and Telephone (NTT) Corporation

Communication Switching Laboratories, Tokyo, Japan, where he was engaged

in research in developing high-speed optical IP backbone networks. From 2000

to 2001, he was a Visiting Scholar at the Polytechnic University, Brooklyn, NY,

where he was involved in designing tera-bit switch/router systems. He is the

coauthor of two books Broadband Packet Switching Technologies (Wiley,

2001) and GMPLS Technologies (CRC Press, 2005). His research interests

include multimedia-communication network architectures based on

asynchronous transfer mode (ATM) techniques, traffic-control methods, and

high-speed switching systems. Dr. Oki was the recipient of the 1998 Switching

System Research Award and the 1999 Excellent Paper Award presented by the

Institute of Electronics, Information and Communications Engineers, and the

2001 Asia-Pacific Outstanding Young Researcher Award presented by IEEE

Communications Society, for his contribution to broadband network, ATM,

and optical IP technologies.

Fig. 12. Illustrative example of path setup.

75

Takashi Miyamura graduated from Osaka University in 1997 and obtained a

master's degree in operations research in 1997 He is currently research engineer

at NTT network service systems labs. His main interests are with the

management and engineering of Future Networks. He is thus concerned with

issues like new routing and transport network architecture, network

virtualization, autonomic network control and design in the framework of

future networks.

Kohei Shiomoto is a Senior Research Engineer, Supervisor, Group Leader at

NTT Network Service Systems Laboratories, Tokyo, Japan. He joined the

Nippon Telegraph and Telephone Corporation (NTT), Tokyo, Japan in April

1989. He has been engaged in R\&D of high-speed networking including ATM,

IP, (G)MPLS, and IP+Optical networking in NTT labs. From August 1996 to

September 1997 he was a visiting scholar at Washington University in St. Louis,

MO, USA. Since April 2006, he has been leading the IP Optical Networking

Research Group in NTT Network Service Systems Laboratories. He received

the B.E., M.E., and Ph.D degrees in information and computer sciences from

Osaka University, Osaka in 1987 1989, and 1998, respectively. He is a Fellow

of IEICE, a member of IEEE, and ACM.

