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Abstract— Wavelets and other tight frames have been used for 

numerous signal and image processing applications. These 

transforms consist of two or more filters that are applied in 

“analysis” and “synthesis” operators. In general, these operators 

are designed such that perfect reconstruction is preserved. 

This paper introduces mismatched wavelets, in which analysis 

and synthesis operators do not form a perfect reconstruction 

system. Rather than minimize the errors introduced by such a 

system, we study and exploit these errors. These structured errors 

are far from random, preserving much of the informational 

structure of the image. Two applications, data hiding and edge 

detection, are shown that can effectively exploit these errors. 

Computer simulations show promise compared to several 

common techniques. These errors can also be used in a variety of 

applications, including copyright protection for digital media, 

content authentication, media forensics, data binding covert 

communications, and other image processing fields. 

 
Index Terms—Wavelets, mismatched wavelets, visual 

similarity, edge detection, information hiding 

 

I. INTRODUCTION 

avelets and, more recently tight frames, have become 

powerful tools for the advancement of many areas in 

signal and image processing. The multiresolution structure of 

the discrete wavelet transform (DWT) coupled with the 

existence of fast implementations make the DWT an excellent 

tool for many tasks. [1]-[3] In general a wavelet or framelet 

based signal or image processing system consists of 3 stages, 

1) the forward transform, 2) some processing on the 

coefficients, and 3) the inverse transform; along with ancillary 

pre- and post-processing stages. For example, a wavelet based 

edge detection algorithm can be created by  (1) Perform full 

forward transform, (2) Delete lowpass wavelet coefficients, (3) 
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Perform inverse transform, and (4) Use thresholding to remove 

remaining highpass noise. 

A simple technical description of a wavelet can be found in 

the two channel filterbank representation. In this form, the 

wavelet transform is performed by two orthogonal filters 

applied in a cascade of decimation and filter stages. By 

tradition these have been called the “scaling” and “wavelet” 

filters, or “father” and “mother” wavelets. These filters are 

used in both the forward and inverse wavelet transforms, 

known as “analysis” and “synthesis” operators. For a perfect 

reconstruction system, the analysis and synthesis operators use 

the same set of filters.  

In the biorthogonal wavelet transform, non-orthogonal 

wavelet filters are used for highpass and lowpass components. 

To preserve perfect reconstruction, the analysis and synthesis 

operators are changed, but still related to one [1] A tight frame 

based system is again similar, but not restricted to two 

channels. These are again applied using analysis and synthesis 

operators that preserve perfect reconstruction. For an overview 

of these applications see [4]-[7]. 

Over the years several techniques have been developed for 

the design of near-perfect reconstruction filter banks [8]. In the 

mid-1990s Nguyen proposed the near-perfect reconstruction 

filterbank[9]. The goal of this research was to construct a 

pseudo-quadrature mirror filterbank that trades perfect 

reconstruction (PR) for better stop band attenuation, 

improving filter quality while minimizing errors introduced. 

[8]-[13]. By relaxing the PR requirements, nearly perfect 

reconstruction filter banks can be designed with less 

complexity and more selectivity [13] as well as for 

performance in specialized applications [14].   

In this paper we present a variation on the wavelet transform 

called mismatched wavelets. We partner analysis and synthesis 

steps into a non-perfect reconstruction (NPR) system and 

rather than minimize the errors, we study and exploit the errors 

introduced. Far from being random, these errors have 

properties that are useful in two major applications, 

information hiding and edge detection. The first application is 

data hiding in digital images. In data hiding applications there 

are two primary practical considerations: security and 

embedding efficiency. To address these two issues, this 

approach uses the errors introduced by mismatched wavelets 

to locate areas of an image in which embedding information 

will preserve the visual and statistical properties of the image. 

This approach is novel and shows potential for high data rate,  
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Figure 1, Wavelet transform, analysis and synthesis stages 

 

secure embedding. Several examples are shown including 

comparative results. 

The second application is a fundamental problem in image 

processing, the detection of edges. Edges are discontinuities in 

intensity due to changes in image information. One of the 

major goals of edge detection is to capture the information in 

the image in as compact a form as possible. This is typically 

done using an estimate of a gradient followed by a 

thresholding operation to isolate the edges of an image. This 

paper introduces a novel edge detector based on the 

information-preserving errors introduced by mismatched 

wavelets. This approach is different from typical wavelet-

based edge detectors and can outperform these and other 

methods. Several comparative examples are shown in both 

qualitative and quantitative experiments. The authors believe 

that non-perfect reconstruction errors can further be used in a 

variety of applications, including copyright protection for 

digital media, content authentication, media forensics, covert 

communications, and other image processing fields.  

In the Section II, we formally treat wavelets and the 

description of the mismatched wavelets, including the 

definition of distance between two wavelet filters and 

definition of the subclass of visually-similar mismatched 

wavelets. The following sections, III and IV, will demonstrate 

the use of mismatched wavelets for two applications, data 

hiding and edge detection, including comparative simulations. 

Finally, we close with some general conclusions and remarks. 

II. MISMATCHED WAVELETS 

In this section mismatched wavelets are introduced. We begin 

by reviewing the basics of orthogonal, biorthogonal, and frame 

based wavelets. Based on this reference a measure is defined 

to quantify the distance between two wavelets. Mismatched 

wavelets are then introduced with a number of examples. We 

observe when filter pairs are “close” to one another, the 

changes made by this NPR system maintain the structure of the 

image. For smaller and smaller “distances”, i.e. as the filters 

approach PR, the changes approach negligible levels. Using 

this property, we define visually similar mismatched wavelets. 

A. Orthogonal, Biorthogonal, and Tight Frames 

As discussed by Mallat and others, frame theory is the 

theory that analyzes discrete signal representations. A frame is 

a family of vectors,  
nn  on a possibly infinite index set  , 

that characterizes any signal f  using its inner products 

 
nnf , .  

All wavelets including orthogonal and biorthogonal 

wavelets are tight frames, but not all tight frames are 

orthonormal wavelets. Of orthogonal, biorthogonal, and tight 

wavelet frames, the orthogonal wavelet is the most restrictive 

condition, enforcing a number of properties that are typically 

undesirable for applications, including non-symmetry or phase 

non-linearity.  

A matrix form of the wavelet transform is often used as a 

notational convenience. In a matrix notation, let the analysis 

and synthesis operators as shown in Figure 1 be represented by 

W  and 1W . The forward wavelet transform or analysis 

operator based on n  be represented by 
n

W  for an orthogonal 

n . Then we have IWW T

nn
  where explicitly, T

nn
WW  1 . 

Biorthogonal wavelets also maintain perfect reconstruction, 

but approach phase linearity, using dual Riez bases to maintain 

perfect reconstruction. The analysis operator uses a scaling 

function,  
nnf , , while the synthesis operator uses a 

different function  
n

nf 
~

, , with the restriction that 

][)(
~

),( nntt    to maintain biorthogonality and perfect 

reconstruction. To formulate this in a matrix notation, 

IWW T

nn


 ~ , where explicitly, T

nn
WW

 ~
1  . 

Tight frame wavelets, or framelets as termed by Daubechies, 

use a single function n  with multiple mother wavelets n  to 

create a perfect reconstruction system. In a matrix form, 

IWW
nn
1

 . Where 1

n n

TW W 

  % .  

This paper introduces a system which uses bases n , and 
n

)
 

which do not preserve perfect reconstruction, i.e., 

IWW
nn
1


 . Instead, we study the errors introduced when the 

bases used in analysis and synthesis are not matched. We use 

orthogonal wavelets as the basis to develop non-perfect 

reconstruction analysis tools. We base our work on orthogonal 

wavelets due to the ease of understanding and the wide 

availability of fast implementations. The same ideas can be 

applied using biorthogonal or tight frame approaches. 

B. Wavelet Distance 

For a formal definition of a mismatched wavelet, the 

concept of wavelet distance is needed. To define a distance, 

two different approaches are possible. First, a metric can be 

defined in terms of the results of the operators, i.e. the quality 

of the resulting image, and second, a metric can be defined 

based on the wavelet filters themselves. 

1) Image Structural Similarity Measure 

In the first case, we start with the results of the wavelet 

transform, defining the original image as i , the NPR transform 

results in, 
1 ˆ

n n

W iW i 

 ) . (2.1) 

For the one-dimensional case or in the two-dimensional case,  

  1 1 ˆ
n nn n

W W iW W i  

  ) )   (2.2) 
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Figure 2, Odd and Even Wavelet space, demonstrates how Ex. 1 and Ex. 2 are 

a distance of ( )   from one another 

or for notational convenience   ˆ
n n

W i i
 

) , which is a linear 

operator. 

The ability to quantify the similarity or difference of i  and 

î  has been a topic of much research in the field of computer 

vision. As has been shown by Bovik, Simoncelli and a wide 

range of computer vision researchers [15]-[20], the 

measurement of image similarity is not a trivial problem. 

Common techniques of using the mean squared error (MSE) or 

peak signal to noise ratio (PSNR) have been shown to be poor 

methods of judging image quality. We define a measure of 

distance between two images, ˆ( , )M i i , such that visually 

similar images follow, 

ˆ( , )M i i  . (2.3) 

In [18][19], an image similarity measure is introduced that 

uses wavelet-like multiresolution analysis to decorrelate the 

image and capture image structure. Using the wavelet to 

capture the structural information of the image, the amount of 

information change is measured between two images using the 

structural similarity measure, SSIM, of the wavelet 

representation of an image.  

  
  2 2 2 2

2 2
( , )

x y x x y y

x y x x y y

C C
SSIM x y

C C

  

   

 


   
  (2.4) 

Though imperfect, this metric was shown to be among the 

state of the art in full reference image quality metrics [20], 

although the inclusion of higher-order statistics has been 

shown to be useful in steganography [25].  

2) Analysis and Synthesis Operator Distance 

It is desirable to define a metric between the analysis and 

synthesis operators themselves, n  and n
)

, i.e., ( , )n nd  
)

. 

Using orthogonal wavelets as a baseline, we define this 

distance using parametric wavelets, i.e. a function that can 

generate wavelets. Pollen introduced a parameterization of 

orthogonal wavelets in [23]. For the four coefficient wavelet, 

his solution has the following form, where the parameter   is 

used to generate new wavelets. 

0
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, (2.5) 

 

To widen this definition to encompass additional tight frames 

as well as orthogonal wavelets, a different parameterization, 

introduced by Smith and Agaian [18], can be used,  
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m
. (2.6) 

For simplicity, our discussion will continue with the Pollen 

parameterization.  

To develop an understanding of this parameterization and 

how it can be applied as a distance measure, it is useful to 

explore Sweldens’ space of odd and even coefficients of 4-

coefficient filters shown in Figure 2. Sweldens [22], Heil, and 

others [24], divided the 4-coefficients ck into two groups, 

“odd” and “even” coefficients. This leaves us with two degrees 

of freedom. We can choose them to be the first coefficient, 

termed “even” and the last one termed “odd”. We then have:  

oddcevencoddcevenc  3210 ,1,1, . (2.7) 

With the orthogonality constraint,  

0)1()1(  oddoddeveneven , (2.8) 

this results in a circle in the space of even and odd, on which 

all orthogonal wavelets appear on a circle. The constraints of 

symmetry and maximal vanishing moments have a linear 

representation in this space. 

Pollen’s parameterization can be represented by an even 

periodic sampling of this circle of orthogonal wavelets. The 

parameter φ becomes an angular measure of distance between 

any two wavelets, as shown in Figure 2. That is the distance 

between any two scaling functions 
n  and 

n
)

 can be 

represented by, 

( , ) ( ) ( )P n n n nd       
) )

, (2.9) 

where ( )  is the parameter resulting in the basis, “  ”.  

C. Mismatched Wavelet Definition 

To define mismatched wavelets, we start with the idea of 

losing perfect reconstruction, or 

IWW
nn
1


 .  (2.10) 
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Figure 3, Mismatched wavelets and the error they introduce, include two 

forms, top the visually similar class of mismatched wavelets, and bottom the 

distortion inducing class of visually similar wavelets. 

 

To maintain some reasonable behavior of the system we must 

choose n  and n


, such that IWW
nn
1


 . To do this in a 

systematic way, we use a distance measure ( , )n nd  
)

 

between wavelet filters. Then it is desirable that, 

][)(),(lim
0

nntt 






. (2.11) 

Using Pollen’s parameterization distance,   becomes an 

angular measure of distance between any two wavelets, as 

discussed in Section II.B, i.e., 

( , )P n nd  
)

 (2.12) 

Definition: A system of operators is termed a mismatched 

wavelet system when the analysis and synthesis operators are 

(scaling functions) 
n  and 

n
)

, alone form a complete 

multiresolution analysis, but together do not preserve perfect 

reconstruction; the errors of which can be exploited as a useful 

quantity. 

Thus rather than a system of 3 stages, 1) the forward DWT, 

2) some processing on the coefficients, and 3) the inverse 

transform; this new method is now a system of two stages, 1) 

forward DWT using n , and 2) inverse DWT using n


. 

Mismatched wavelets can be generated using the Pollen 

parameterization. With this distance measure mismatched 

wavelets can be separated into those that result in visually 

similar errors and those which do not. We briefly introduced 

this idea in [18], but now present the full theory here. 

D. Examples 

Two example mismatched wavelets are shown in Figure 3. 

The visually similar case uses wavelets that are near mirror 

images of one another, (symmetry is not a requirement of the 

visually similar mismatched wavelet, but does provide a 

convenient example). For cases shown, the errors introduced 

by NPR retain much of the structure of the image, while the 

reconstructed image is perceptually identical to the original. In 

the distorted image shown, the errors again retain much of the 

image information, but in this case the reconstructed image is 

distorted. Examples from a number of other images can be 

found at the end of this paper. 

E. Visual Similarity 

To define a useful subclass of the mismatched wavelet, 

consider the case where the analysis and synthesis filters 

approach PR. In this case, the reconstructed image will be 

perceptually identical to the original. By using wavelets that 

are close to one another, we ensure the results will be similar 

to the original. 

Definition: A system of analysis and synthesis operators is 

termed a visually similar mismatched wavelet, or visually 

similar wavelet, when the mismatched wavelet results in an 

image which is visually similar to the original. 

Theorem: Corruptions due to mismatched wavelet filters 

result in small changes if the distance between analysis and 

synthesis operators is small.  

The proof of which is trivial, if the distance ( , )n nd  
)

 

between the wavelets is small, 

][)(),(lim
0

nntt 






     (2.13) 

implies 1

0
lim

n n

W W I 




) , (2.14) 

then  
0

lim
n n

W i i
 

) , (2.15) 

so given 0  ,  ( , ) 0
n n

M i W i 
) . W   (2.16) 

This theorem can be extended informally to show visually 

similarity, using the SSIM defined in [19] applied in the 

wavelet domain, 

  
  2 2 2 2

2 2
( , )

x y x x y y

x y x x y y

C C
SSIM x y

C C

  

   

 


   
  (2.17) 

since,  E 
v

vM M , and  

 1 1 1 1

n n n nn n n n n n
i iE W W iW W W W W W D        

     ) ) ) ) ) ,  

Assigning, 

     
2 2

1 1 1 1var
n n n nn n n n n n

W W iW W E W W iW W D        
        

 
) ) ) ) )

Then, 

   

  
  

1

2 2 2 2 2 2

( , )

2 2

n nn n

n n n n n n

n n n n n n n n

x y x yiW W

x y x x y y

SSIM W i W i

D C D C

D C D D C D

 

  

   

       

 

   





  

   

)

)

) )

) ) ) )

  

since, 1

n n

W W I 

 ) , 1
n n

D
 

) . As long as   is small, the 

errors introduced become visually undetectable. 

In practice, the Pollen based distance less than one, i.e., 

( , ) 1P n nd   
)

, has proven sufficient to maintain visual 

similarity. Figure 4 thru Figure 6 show the results applying a 

mismatched wavelet of distance, 0.01, 0.1, 0.5, and 1. Notice 

the differences in the images are not humanly discernable, 

while the first order statistics are virtually identical.  
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Figure 4, Results of generating visually similar images using a mismatched 

wavelet. From left to right distances of 0.01 0.1 0.5 1 are used. Bottom shows 

the histogram of each image, solid line is the original, dotted the visually 

similar version. The distortion induced by the mismatched wavelet does not 

visually distort the first order statistics. 

 
Figure 5, Results of generating visually similar images using a mismatched 

wavelet. From left to right distances of 0.01 0.1 0.5 1 are used. Bottom shows 

the histogram of each image, solid line is the original, dotted the visually 

similar version. The distortion induced by the mismatched wavelet does not 

visually distort the first order statistics. 

 

F. Relationship to NPR QMF Banks, Multiwavelets, and 

Wavelet Packets 

There are several topics in the literature that bear a cursory 

resemblance to the mismatchced wavelet. Just as the QMF 

bank is a generalization of the wavelet, so the pseudo-QMF, or 

NPR filterbank, is a generalization of the  

mismatched wavelet. The goal of the NPR QMF research has 

been to trade PR for better stop band attenuation, improving 

filter quality while minimizing errors [8]-[13]. In this paper 

rather than minimize the errors, we study and exploit such. 

Multiwavelets and wavelet packets also bear some conceptual 

similarity to mismatched wavelets, though this similarity is 

superficial. Multiwavelets are a construction which results in 

multiple wavelet transforms being performed in an efficient 

parallel structure. Wavelet packets use different filters at each 

wavelet level, possibly decomposing high pass as well as low 

pass components. Both use filters in analysis and synthesis 

operators such that perfect reconstruction is preserved. The 

ideas presented here could benefit from extensions using either 

multiwavelets or wavelet packets but are independent in their 

own right. 

 
Figure 6, Results of generating visually similar images using a mismatched 

wavelet. From left to right distances of 0.01 0.1 0.5 1 are used. Bottom shows 

the histogram of each image, solid line is the original, dotted the visually 

similar version. The distortion induced by the mismatched wavelet does not 

visually distort the first order statistics. 

 G

Wavelet 


Wavelet


Analysis

Embed

 
Figure 7, Mismatched wavelet based embedding, the distortion operator G is 

formed by using a mismatched pair of analysis and synthesis operators. Data 

is then embedded based on an analysis of the distorted image. 

III. INFORMATION HIDING 

In this section we introduce the idea of using mismatched 

wavelets to introduce distortions to an image while 

maintaining visually significant properties of the image. We 

further show how this can be applied to information hiding, 

with some comparative results. 

A. Data Hiding 

The problem in information hiding is how to modify a given 

image by embedding information, without making detectable 

changes to the image. A common example would be modifying 

the LSB of the image. In information hiding, such as 

steganography or watermarking, such simple techniques have 

been shown to be readily detectable [26]. In addition to simple 

techniques such as LSB modification, transform domain 

techniques are also prominent. Modifications in the transform 

domain introduce less perceptually obvious distortion than 

spatial techniques, but are also detectable [27]-[29]. The field 

of information hiding is a developing science; here we take a 

fundamentally different approach.  

Instead of making a modification to the image, we generate 

an image that is visually and statistically similar to the original, 

then use the new image as a bound on how the original image 

can be modified. Such a process is shown in Figure 7. From 

Section II, we know the mismatched wavelet distortion 

channel will result in an image similar to the original. An 

embedding method is proposed based on an analysis of the 

image generated by mismatched wavelets. Since any bits 

modified by the mismatched wavelet are not visibly 
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Figure 8: Bits made available by in the image generated by the mismatched 

wavelet, 1=Saturn, 2=Cameraman 3= Goldhill, on a log scale plotted against 

wavelet distance. All images are 512x512, distances used correspond to 

Figure 4-Figure 6. For the same images JSteg can only embed 1024 – 4096 

bits. 

significant, these bits can be replaced using any method 

desired. This transform-domain technique determines where to 

embed bits in the spatial domain. A brief exploration of other 

data hiding variations can be found in [18]. 

B. Generating Similar Images 

To formulate the problem of generating similar images, we 

start with a natural image, C. To embed additional information 

into the image it must be passed through a distorting channel, 

G. The goal of information hiding is to construct that channel 

G such that the distortions applied to C are not detectable, i.e. 

the statistics of the distorted image are not different from 

typical image statistics. 

Given a distortion model from [30], 

VGCD  , (3.1) 

the goal is to minimize the noise component introduced and 

derive a channel G such that G is close to identity. Using a  

channel composed of two mismatched wavelets eliminates the 

noise component, V, since there are no stochastic processes in 

such a system. The resulting channel  
TWWG 21 ,  (3.2) 

in terms of wavelet matrices 21 ,WW . As discussed in Section 

II, the amount of distortion is now directly related to the 

distance between two wavelets,  . For example, this distance 

can be defined as the corresponding angle in the parametric 

wavelet. Given a distance  ,  

1

1 2
0

limWW I





  (3.3) 

such that smaller distances introduce a less distorting channel. 

By choosing appropriate wavelets 
n  and n

)
, we can 

guarantee the distorting channel G produces minimal changes. 

C. Examples 

Numerous methods exist for embedding information into 

images, be it for watermarking or steganography. Here we 

present a method to determine “safe” locations and size of data 

to embed. Our goal is to demonstrate the viability of a new 

approach rather than create a cutting edged embedding 

algorithm. We compare the number and amount of data to the 

classic JSteg algorithm. Many newer approaches exist, but 

 

 

 
Figure 9, Histogram comparison of mismatched wavelet (MMW) based 

embedding to JSteg, Top: Saturn, middle: Cameraman, bottom: Goldhill. All 

images are of size 512x512; MMW distances used correspond to Figure 4-

Figure 6. In the JSteg case, the peaks are lowered and the valleys are raised 

even with relatively low data amounts of (top and middle) 1024 and (bottom) 

4096 bits, vs. the MMW technique which embeds >100Kbits many cases 

shown. 

 JSteg is freely available and widely used [31][32]. This 

comparison is sufficient to demonstrate the viability of this 

approach. The images and wavelets from Figure 4-Figure 6 

were used to hide data, the number of bits modified, by the 

mismatched transform are shown in Figure 8. Note for 

distances greater than 0.5, all three images store 10
5 

bits, the 

same images using JSteg can only embed up to 4092 bits of 

information. Figure 9 shows a zoom in on the histogram 

changes as compared to JSteg. Notice how JSteg has clear 

smoothing effect on peaks and leveling of valleys that is not 

present with the mismatched wavelet despite the embedding 

rate difference between the two techniques. 

IV. EDGE DETECTION 

In this section we show how mismatched wavelets can be 

used for edge detection. Comparative results are shown in both 

qualitative examples and a quantitative measure using methods 

discussed in [33]. 

A. Edge Detectors 

The detection of edges in images is a fundamental problem 

in image processing. Many applications such as target 

detection, facial recognition, or simple denoising, use edge 

detection as a first stage process. Typical methods of edge 

detection use a process of filtering, followed by the estimation 

of the gradient, followed by a final noise removal stage using 

thresholding. Three examples used here include the Sobel 

algorithm, which approximates horizontal and vertical gradient 

operators, the Prewitt algorithm which uses a set of eight  
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Figure 10, Filter response of pollen(1)-pollen(2), the filter used for 

reconstruction in Figure 14 and Figure 15. 

 

kernels to approximate a continuous gradient operator, and 

Canny algorithm which uses a Gaussian filter followed by four 

gradient estimating kernels. [33]-[35] 

Here we introduce a method based on using mismatched 

wavelets. Similar to the preceding section this method is based 

on distorting the image through the systematic mechanism of 

mismatched wavelets. If the proper wavelets are chosen, the 

effect of this distortion is a simple highlighting of edges. 

B. Mismatched Wavelet 

The mismatched wavelet approach to edge detection again 

involves a distortion channel: 
TWWG 21 . (4.1) 

In this case the wavelets used introduce distortion only on 

the edges of the images. The process used is similar to that 

discussed earlier, 

1) Perform full forward DWT using W1 

2) Perform inverse DWT using W2 

3) Take the difference between the original image and the 

results 

4) Optionally, use thresholding to remove remaining 

highpass noise  

 

The example wavelets used in many of the figures here were 

n  and 
n

)
 equal to Pollen(2) and Pollen(3), respectively. To 

make this process more efficient, given the linear nature of the 

operators, it is trivial to optimize this process by replacing W2, 

with 21 WW  , which is equivalent to performing the inverse 

DWT with the non-orthonormal filter )()( tt 


 . Or, 

1) Perform full forward DWT using W1 or ( )tW  

2) Perform inverse DWT using 
( ) ( )t t

W
 

)  

A proof of this optimization is found in the appendix. An 

example of an optimized filter is shown in Figure 10. Notice it 

has a clear band pass characteristic. 

 

 
Figure 11 Edge detection comparison, Top, left to right: wavelet-based 

technique, original, MMW technique, Bottom, left to right: Sobel, Canny, 

Prewitt edge detectors. 

 
Figure 12 Edge detection comparison, Top, left to right: wavelet-based 

technique, original, MMW technique, Bottom, left to right: Sobel, Canny, 

Prewitt edge detectors. 

C. Comparison 

A series of experiments were performed to demonstrate the 

effectiveness of the mismatched wavelet approach to edge 

detection. These include qualitative and quantitative 

comparisons. In the first set of experiments, we qualitatively 

explore this approach compared to Sobel, Canny, and Prewitt 

methods, as well as the wavelet based method described in a 

the introduction of this paper. The images Saturn, Cameraman, 

and Goldhill were chosen as three challenging images for edge 

detectors. Figure 11-Figure 13, show the results from this 

comparison. There are several features of these images to 

highlight an edge detector.  

In the “Saturn” image four moons are visible. In Figure 11, 

one is dark with Saturn as a backdrop, and the others are light 

just below the body of Saturn. Notice each technique does not 

highlight all four moons.  

In “Cameraman”, the presence of the airport tower in the 

background is often a challenge for edge detection. There are 

also two imperfections in this image, one above the 

cameraman’s right elbow, the other above the tower. In Figure 

12 some detectors highlight this imperfection and others do 

not. 

The final image, Goldhill, is a challenging image for edge 

detection. In Figure 13 most techniques do not appear to  
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Figure 13 Edge detection comparison, Top, left to right: wavelet-based 

technique, original, MMW technique, Bottom, left to right: Sobel, Canny, 

Prewitt edge detectors. 

 
Figure 14, Edge detection performance as the wavelet used changes, left to 

right distances of 
11


, 

11

2
, 

11

3
, 

11

4
. Base wavelet was 1 . 

 

capture the information content in the image. The Sobel 

approach is very good at finding the edges, but somehow fails 

to convey the information content. The proposed technique 

communicates the shape of the houses and windows, as well as 

the contours in the background. 

To further explore effect of wavelet distance on edge 

detection, Figure 14 shows distances of 
11


, 

11

2
, 

11

3
, 

11

4
. 

Notice the slow change in edge detection as the distance is 

varied. Saturn and Cameraman seem to be best at 
11

3
, while 

Goldhill is best at 
11

4
. A study was also conducted with 

respect to threshold. Figure 15 shows how varying level of 

threshold affects the three images differently. A low threshold 

causes Saturn to simply “fill in”, while Goldhill becomes 

almost entirely white. This implies a threshold selection 

mechanism based on image luminance. 

Of course all measures of performance of an edge detector 

should be made in light of a particular application, but such an  

 
Figure 15, Edge detection performance as the threshold is varied, left to right 

thresholds of 1, 3, 8, 11. Base wavelet was 2,1  SA   

       
Figure 16, Clean test images for Figure 17 and Table Il 

 

evaluation is beyond the scope here. Instead to provide a 

quantitative evaluation of the proposed edge detection 

technique, an analysis was conducted using the two artificial 

images shown in Figure 16. By using two simple images, with 

known edges we can measure the rate of miss and false alarms. 

In this case the images are black with a single stripe, 3 pixels 

wide, in the first case the stripe is horizontal, in the second 

vertical. The known edges are used to quantify the 

performance of the edge detector. To avoid well known offset 

problems between the different algorithms different “ground 

truth” edges were used for each technique; we report the best 

result for each technique. For example, some algorithms, such 

as the Sobel and Prewitt, will tend to detect the edge on the left 

side of a vertical edge, while others such as the Canny 

algorithm, will prefer the side of the edge with less luminance. 

Using this known set of edges, an evaluation was made using a 

pixel by pixel measure of probability of miss and false alarm 

from [33].  

( | ) 1 (det | )

(det )
 1

( )

#det
 1

#

p miss edge p ection edge

p ection edge

p edge

ection on edge

edge pixels

 

 

 

I

 (4.2) 
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Figure 17, Example edge detection results with noise of SNR 10, Top left to 

right, Wavelet edge detection, Noisy image, NPR edge detection, Bottom, left 

to right, Sobel, Canny, Prewitt standard edge detection techniques. 

(det )
(det | )  

( )

#det

#

p ection nonedge
p ection no edge

p nonedge

ection on no edge

nonedge pixels





I

 (4.3) 

To evaluate the robustness of the edge detection techniques, 

probabilities were computed under a number of noise 

conditions, from integer SNR values from 1 to 10. Figure 17 

shows an example result of this test at an SNR of 10. As can 

be seen from the Figure, the wavelet based method did not 

perform well on this particular image for any choice of 

threshold, missing one edge entirely. The NPR wavelet 

performed well selecting a well defined though slightly sparse 

edges, while the Sobel and Prewitt edges show a wavering 

effect due to the noise. The Canny approach did very well at 

selecting the true edges, but also had detections where only 

noise was present in the image. The resulting miss and false 

alarm rates are shown in Table I. For this table the 

probabilities were averaged across a number of simulations 

and across SNR. The NPR makes a compromise with a low 

false alarm rate and good probability of miss. For this 

experiments the parameters of the various edge detection 

techniques were not tweaked for performance, so it is likely 

each could potentially do better than shown here. 

V. CONCLUSION 

In this paper we introduced a new method of applying 

wavelets to problems in signal and image processing. This 

approach uses non-perfect reconstruction to create a structured 

distortion channel. We introduced mismatched wavelets as a 

basis for inducing mild distortion which maintains much of the 

information content of the image. In using wavelets as a 

foundation, we have gained the benefit of the processing speed 

of wavelets. This approach is applied to two important 

problems in signal and image processing. We demonstrate an 

information hiding technique based on generating a near 

identity distortion matrix and using this to locate embeddable 

pixels. This approach guarantees visual and statistical 

similarity. We further show how mismatched wavelets can be  

Table I, Comparison of Edge Detection Techniques, mean miss and false 

alarm rates across two test images and 10 SNRs. 

 mP  faP  

Wavelet 0.4685 0.1443 

NPR 0.3724 0.0265 

Sobel 0.5239 0.0310 

Canny 0.2236 0.0885 

Prewitt 0.5202 0.0316 

 

applied to the problem of edge detection. The results of this 

approach show much promise when compared to several other 

techniques.  

Given the premise of introducing structured distortion to do 

something useful, the mechanism presented is far from the 

only solution available. Obvious extensions using biorthogonal 

wavelets or steerable pyramids are likely to have similar or 

better performance. In addition the use of wavelet packet or 

multiwavelet style ideas holds much unexplored potential. For 

applications, an open problem remains in how to optimally 

select or adapt the best wavelet for either analysis or synthesis.  

APPENDIX 

Theorem, The following procedure 

1) Perform forward DWT using 
( )tW  

2) Perform inverse DWT using 
( )t

W

)  

3) Take the difference between the original image and the 

results 

Or, 1

( ) ( )t t
e W XW X 

 )  

Is equivalent to 

1) Perform forward DWT using 
( )tW  

2) Perform inverse DWT using 
( ) ( )t t

W
 

)  

Or, 
1

( ) ( ) ( )t t t
e W XW  




 )   

Proof: 
1

( ) ( )

1 1

( ) ( ) ( )( )

1 1

( ) ( )( )

1

( ) ( )( )
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W X W W
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) ⁭  (4.4) 
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Figure 18, Example Images, Top row, wavelets used for (left) visually similar case, and (right) distorting case. Other rows, left to right on each row, visually 

similar reconstruction, visually similar errors, distorted reconstruction, and distorted error 
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