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Abstract—It has been widely recognized that bistable behavior 

of random access protocols may suddenly deteriorate the 

performance of the system due to the unexpected slip into an 

undesired stable operating point. The catastrophe theory succeeds 

in presenting the bistable region of random access protocols, 

where packet retransmissions occur in a memoryless manner. In 

this correspondence, the stability of slotted ALOHA systems using 

backoff algorithms with the contention window is analyzed 

without converting the retransmission with the contention window 

into the memoryless retransmissions. The analysis is based on the 

catastrophe theory. We first construct a two-dimensional 

Markovian model, which is equivalent to the model devised for 

IEEE 802.11 DCF by Bianchi. Then, the balance function of the 

system is formulated whose zeros provide equilibrium operating 

points. Finally, we prove that the system is mono-stable for any set 

of contention window sizes, if the number of allowable 

retransmissions is less than or equal to eight. Equivalently, the 

existence of the bistable region is proved if nine or more 

retransmissions of backlogged packet are permitted. 

 
Index Terms—Backoff algorithm, Bistable region, Catastrophe 

theory, Contention window, Slotted ALOHA 

 

I. INTRODUCTION 

ISTABLE behavior observed in random access protocols has 

been extensively investigated, since Carleial and Hellman 

analyzed the stability of ALOHA-type protocols in terms of the 

expected drift [1]. The system possesses two stable operating 

points, if it exhibits bistable behavior; one of which offers 

comparatively high throughput, whereas the other produces 

considerably low throughput [2]. To make matters worse, the 

system operating at the "good and desired" stable point may 

suddenly slip into a catastrophic "air pocket", which 

contingently occurs as a result of an unexpected avalanche of 

offered load. In order to mitigate undesired bistable behavior of 

random access protocols, backoff algorithms and 

retransmission cutoff are effective countermeasures [3]-[6]. 
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With backoff algorithms, a user defers its packet retransmission 

for a randomly selected interval. In general, each user 

independently keeps its own contention window (CW) size. The 

random interval is determined according to the current CW of 

the user. The binary exponential backoff algorithm is widely 

employed in wired and wireless local area networks, where the 

CW size is doubled upon every packet transmission failure 

[3][4]. On the other hand, with retransmission cutoff a user 

drops a packet which experiences excessive transmission 

failures. By dropping packets, an avalanche of traffic can be 

relaxed at the cost of an increase of the packet loss rate [5][6]. 

In conventional analyses of random access protocols with 

backoff algorithms [1][2][6], packet retransmissions with 

random backoff interval according to the current CW are 

converted into those with the retransmission probability. This 

conversion enables us to carry out tractable mathematical 

analysis due to the memoryless property. In this context, the 

catastrophe theory has succeeded in explicitly revealing the 

bistable region of random access protocols such as slotted 

ALOHA [6]-[8], CSMA (Carrier Sense Multiple Access) [9] 

and PRMA (Packet Reservation Multiple Access) [10]. 

However, in [6]-[10] the constant retransmission probability is 

assumed. Moreover, it has been mathematically proved that a 

slotted ALOHA with constant retransmission probability is 

mono-stable, if the number of retransmissions is limited to eight 

or less [6]. 

Recently, IEEE 802.11 DCF (Distributed Coordination 

Function) [11] has attracted researchers’ attention to the use not 

only in wireless local area networks but also wireless 

sensor/ad-hoc networks. Bianchi proposed a two-dimensional 

Markovian model with respect to the backoff algorithm adopted 

in IEEE 802.11 DCF [4]. The model elaborately takes into 

account a CW-version of backoff algorithm, rather than a 

retransmission probability-version. Hence, it is a challenging 

issue to analyze the stability of random access protocols with a 

two-dimensional Markovian model without converting the CW 

into the retransmission probability 

In this correspondence, we analyze the stability of slotted 

ALOHA systems using backoff algorithms with the CW in 

connection with the catastrophe theory. In particular, we prove 

that the system is mono-stable for any set of the CW sizes, if the 

permitted number of retransmissions is less than or equal to 

eight. Equivalently, the existence of the bistable region is 

proved if nine or more retransmissions of backlogged packet are 

permitted. 
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In Section II, we describe a two-dimensional Markovian 

model for the system using backoff algorithm with CW. Section 

III presents the main result with the proof. Numerical results of 

the bistable region of the binary exponential backoff algorithm 

are shown in Section IV. Section V concludes the present 

correspondence. 

 

II. SYSTEM MODEL 

We consider a slotted ALOHA system for its simplicity and 

mathematical tractability, which enables us to focus on a 

backoff algorithm itself. Let N  be the number of users 

contending a shared common channel. Each user with empty 

buffer generates a packet to transmit with probability λ  at the 

beginning of each time slot. The capacity of a user buffer is 

assumed to be limited to one packet, so that a backlogged user 

can generate no new packets. A packet retransmission is cut off 

and the packet is dropped, if it experiences consecutive L  

transmission failures. Let W
l
 denote the l th CW size, where l  

is the number of transmission failures experienced by the packet 

in the buffer for 0,1, , 1L= −l K . Here, we refer to an L -tuple 

0 1 1( , , , )LW W W −= KW  as the CW profile. A user inserts a 

random backoff interval of k  slots before packet 

(re)transmission, where k  is a non-negative integer in 

[0, 1]W −
l

. The value of k  is decreased every time slot and a 

packet is (re)transmitted when k  reaches to zero. Here, we 

assume that a packet (re)transmission succeeds, if no other 

simultaneous packet (re)transmission occurs and that a packet 

collision results in transmission failure for all the packet 

involved. 

Based on the above assumptions, we can construct a 

Markovian system model with respect to the user state, as shown 

in Fig. 1, which is equivalent to the system model in [4]. In Fig. 

1, TH represents the empty state. 

 

III. ANALYSIS 

First, we derive equations in equilibrium for backlogged 

users. Then, considering the flow balance for users in State TH, 

we formulate the balance function, whose zeros provide 

equilibrium operating points [6]. Finally, the main theorem is 

proved. 

A. Equations in Equilibrium 

Let 
,k

b
l

 be the average number of users in State ( , )kl  at 

equilibrium for 0,1, 1L= −l K  and 0,1, 1k W= −
l

K . The 

average number of backlogged users is then given by 
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In equilibrium, the average in-flow and out-flow balance at each 

state. Then, the following equations hold at State ( , )kl ; 
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where z
l

 represents the total average in-flow to States ( , )kl  

for 0,1, 1k W= −
l

K , as shown in Fig.1, that is, 
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l
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l
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where ε  is the probability of packet transmission failure. 

Recursively solving (2), we obtain 

1( 1, 1)LL W −− −1( 1, 2)LL W −− −( 1,1)L −( 1, 0)L −

2( 2, 1)LL W −− −2( 2, 2)LL W −− −( 2,1)L −( 2, 0)L −

1(1, 1)W −1(1, 2)W −(1,1)(1, 0)

0(0, 1)W −0(0, 2)W −(0,1)(0, 0)

TH
λ 0z

1z

2Lz −

1Lz −

1 ε−

1 ε−

1 ε−

 
 

Fig. 1.  Markovian model with respect to the user state with the CW profile 0 1 1( , , , )LW W W −= KW  and retransmission cutoff L . 
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−
= l

l l

l

 (4) 

for 0,1, 1L= −l K  and 0,1, 1k W= −
l

K . In particular, for 

0k = , a trivial relation 

 ,0b z=
l l

 (5) 

can be derived, which implies that any in-flow to State ( , )kl  

departs from State ( ,0)l . Moreover, it follows from (3) and (5) 

that 

 ,0 1,0 0,0 ( )Bb b b N nε ε ε λ−= = = = −l l

l l
L  (6) 

for 0,1, 1L= −l K .  Substituting (4)-(6) into (1), we can derive 

 
1

0

1
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2

L

B B
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n N n λ ε

−

=

+
= − ∑ ll

l

 (7) 

which provides us  
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n
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λ ε

ε

−

=
−
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+
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∑

∑

ll

l
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 (8) 

Here, let us denote traffic to the channel by 

 
1

,0

0

,
L

G b
−

=

= ∑ l

l

 (9) 

since only the users in State ( ,0)l  are allowed to transmit a 

packet. With the aid of Poisson approximation to the binomial 

distribution [6]-[10], the probability of packet transmission 

failure ε  is evaluated by 

 1 .Geε −= −  (10) 

B. Balance Function 

The in-flow to State TH consists of successful users and users 

who drop a packet in buffer due to L  consecutive transmission 

failures.  The Poisson approximation provides us the average 

number of successful users as  

 
2
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0
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L
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−
−

=

− = − =∑ l

l

 (11) 

The average number of users dropping a packet is 
1,0L

be
-

. Then, 

subtracting the average out-flow from the average in-flow, we 

define the balance function as 

 1,0( | , , , ) ( ) .G
L BA G N N L Ge b N nλ β ε λ−

−= + − −W  (12) 

From (6), (8), and (10), the balance function (12) can be 

rewritten as  
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where 

 
0

( 1)2
and .

1 2

W

W

β
β α

+
= =

+
l

l
 (14) 

Note that the balance function is equivalent to the first 

derivative of the potential function of some dynamic system. 

The roots of ( | , , , ) 0A G N N Lλ β =W  provide equilibrium 

operating points for given Nλ , Nβ , L  and W . The system is 

mono-stable, if ( | , , , ) 0A G N N Lλ β =W  has the unique root, 

which is the globally stable operating point. The system is 

bistable, if ( | , , , ) 0A G N N Lλ β =W  has three roots, two of 

which correspond to locally stable operating points and one to 

an unstable operating point [2]. 

C. Cusp Catastrophe and Bifurcation Sets 

According to the catastrophe theory, the cusp catastrophe 

may exist in our slotted ALOHA system, if 

 
2 3

2 3
( | , , , ) 0 and 0

A A A
A G N N L
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∂ ∂ ∂
= = = ≠

∂ ∂ ∂
W (15) 

have roots ( , , )G N Nλ β  for given L  and W  [7][8]. The cusp 

point is provided by the root of (15) and the bifurcation sets, 

AB
+  and AB

− , are defined as  
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Solving / 0A A G= ∂ ∂ = , we can obtain from (13) 
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and 
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which must be positive to be the valid bifurcation sets. 

D. No Bistable Region if 8L ≤  

This subsection is devoted to the proof of the following 

theorem. 

Theorem 1:  No bistable region exists for any CW profile 

0 1 1( , , , )LW W W −= KW , if 8L ≤ . �  

Proof:  In order for (17) and (18) to offer the valid bifurcation 

sets in our slotted ALOHA system, both Nλ  in (17) and Nβ  

in (18) must be positive. We prove the theorem by showing that 

for 8L ≤ , no valid bifurcation sets can be obtained for any 

positive G . 

First, the numerators in (17) and (18) are clearly positive for 

any positive traffic G . 

Secondly, the denominator in (18) is equivalent to (8) in [6]. 

Thus, there exists the fold catastrophe in a certain dynamic 

system whose balance function is equal to the denominator in 

(18). According to Fig. 2 in [6], the fold point is 

( , ) (1.443,8.300)G L ≈ , so that the denominator in (18) is 

negative for any positive G , if 8.300L <  and it can be positive 

for some G  if 8.300L > . 

Thirdly, it can be proved that the denominator in (17) is 

positive as follows. Let ( )Gδ  be the denominator in (17) for 

given Nλ , Nβ , L  and W . Then, 
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where ε  is given by (10). From (6), (8) and (9), we have 
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where β  and α
l
 are given by (14). Substituting (20) into (19), 

we can express the denominator ( )Gδ  as 
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Here, let us consider the double summation in the numerator in 

(21). Let  

 
1 1

0 0

( ) ( ) .
L L

m
m

m

f ε α α ε
− −

+

= =

= −∑ ∑ l

l

l

 (22) 

It can be derived that ( ) 0f ε =  as follows; 
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Therefore, ( )Gδ  is positive; 
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which proves that the denominator in (17) is also positive. 

In consequence, according to the sign of the denominator in 

(18), 0Nβ <  for any positive G , if 8L ≤  and 0Nβ >  for 

some G , if 9L ≥ . It completes the proof. (Q.E.D.) 

 

IV. NUMERICAL EXAMPLE 

We examine the derived expressions for the binary 

exponential backoff algorithm; 

 min[16 2 ,1024]W = × l

l
 (25) 

for 0,1, 1L= −l K , whose CW profile is 

(16,32,64, ,512,1024, ,1024)=W L L . In this case, we have 

 
2 16 2 1 1025

and min , .
17 17 17

β α
 × +

= =  
 

l

l
 (26) 

From Theorem 1, the system with CW operates with the unique 

globally stable point, if 8L ≤ . Note that the stability analysis in 

the previous section can be applied to any random access 

protocols, if they operate in a synchronous manner similarly to 

slotted ALOHA systems. Hence, Theorem 1 ensures that IEEE 

802.11 DCF operates with globally stable equilibrium point, 

since the retransmission is cut off after 4 consecutive 

transmission failures for DotShortRetryLimit and 7 for 

DotLongRetryLimit as the nominal values [11]. 

The bistable region for 9,10,15,20,50,100L =  is shown in 

Fig. 2, where the bifurcation sets; AB
+  and AB

− , are drawn by 

red lines and their intersection represents the cusp point. The 

horizontal axis Nλ  is the average traffic when no backlogged 

users exist and the vertical axis Nβ  is the maximum average 

traffic when all the users are backlogged, that is, all the users are 

in States (0,0) to 0(0, 1)W − . From Fig. 2, for given N b , the 

slotted ALOHA system possesses two stable equilibrium 

operating points, if N l  is between AB
+  and AB

− . Otherwise, 

the system can operate with the unique globally stable 
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equilibrium point. In Fig. 2, mono-stable region with light (resp. 

heavy) traffic is referred to as the active region (resp. saturated 

region). If the system operates in the active region, there exists a 

unique globally stable equilibrium point which provides 

comparatively low traffic. The system also possesses a unique 

globally stable equilibrium point even if it operates in the 

saturated region. However, the system suffers from heavy traffic 

in contrast. It can be observed how bistable region grows 

according to an increment of L . Similarly to Fig. 3 in [6], one 

of the bifurcation sets, AB
− , is stable with respect to the 

increment of L , whereas the other, AB
+ , moves to smaller Nλ . 

Therefore, the bistable region expands by curtailing the active 

region rather than the saturated region. Comparing to Fig. 3 in 

[6], which corresponds to the constant CW profile 

0 1 1LW W W −= = =L , the cusp point of the slotted ALOHA with 

the binary exponential backoff algorithm appears at larger Nβ . 

This implies that the system with binary exponential backoff 

algorithm can achieve stable operation for heavier traffic, 

compared to the system with the constant CW profile. For 

example, the cusp point is cusp cusp( , ) (0.3903,197.0)N Nλ β =  

for 20L =  from Fig. 2. Hence, the slotted ALOHA operates 

with the global stable point for any packet generation 

probability λ , if the number of users satisfies 
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Fig. 2. Bifurcation sets and bistable region of slotted ALOHA with binary exponential backoff algorithm min[16 2 ,1024]W = × l

l
, 0,1, 1L= −l K , for 

9,10,15,20,50,100L = . 
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cusp 197.0

1674.5.
2 /17

N
N

β

β
< = ≈  (27) 

On the other hand, it follows from [6] that the cusp point of the 

slotted ALOHA system with the constant CW profile for 

20L =  is cusp cusp( , ) (0.4945,4.714)N Nλ β = . Thus, the 

system is mono-stable for any packet generation probability λ , 

if the number N  of users is less than 

 
cusp 4.714

40.069.
2 /17

Nβ

β
= ≈  (28) 

Comparing the above results, we can find that the binary 

exponential backoff algorithm can operate mono-stably for 

more number of users than the backoff algorithm with the 

constant CW profile. 

V. CONCLUSION 

The stability of slotted ALOHA systems using backoff 

algorithms with the CW has been analyzed. The analysis has 

been based on the catastrophe theory. We have first constructed 

a two-dimensional Markovian model. Then, the balance 

function of the system has been formulated. Finally, we have 

proved that the system is mono-stable for any CW profiles, if the 

number of allowable retransmissions is less than or equal to 

eight. Equivalently, the bistable region exists if nine or more 

retransmissions of backlogged packet are permitted. This main 

result implies that no static CW profiles can eliminate the 

bistable region of the system with nine or more retransmissions 

of backlogged packet, so that some adaptive CW profiles are 

desired to stabilize the system. Numerical results of the bistable 

region have revealed that the binary exponential binary backoff 

algorithm can accommodate more users with the globally stable 

equilibrium operating point, compared to the backoff algorithm 

with the constant CW profile. 
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