
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), April Edition, 2012

1

Abstract—Implementations of mobile games have become

prevalent industrial technology due to the ubiquitous nature of

mobile devices. However, simultaneous-movement multiplayer

games – games that a player competes simultaneously with other

players – are usually affected by such parameters as latency, type

of game architecture and type of communication technology. This

paper makes a review of the above parameters, considering the

pros and cons of the various techniques used in addressing each

parameter. It then goes ahead to propose an enhanced

mechanism for dealing with packet delays based on partitioning

the game background into grids. The proposed design is

implemented and tested using Bluetooth and Wi-Fi

communication technologies. The efficiency and effectiveness of

the design are also analyzed.

Index Terms— Background partitioning, Communication

technology, Game architecture, Latency, Mobile game,

Multiplayer game, Online game, Packet delay, Simultaneous-

movement game,

I. INTRODUCTION

OBILE games are video games played on mobile phones,

smart phones, PDA or handheld devices and it is played

using the technologies present on the device itself. A

mobile game can be single or a multiplayer. In a multiplayer

environment, the player collaborates or competes with other

players who are playing the same game on their mobile device

while connected via some network. Simultaneous-movement

games are games that are based on turns. The participants play

simultaneously and therefore waiting time is reduced [1].

These games are however affected by the game architecture

and such network parameters as latency and the type

communicate technology.

This paper reviews these important factors and the various

mechanisms that have been proposed in solving these

problematic parameters. It finally designs and implements an

enhanced mechanism for addressing these parameters based

on partitioning the game background into grids. The proposed

design is implemented and tested using Bluetooth and Wi-Fi

communication technologies such that mobile clients

communicate with their servers through Bluetooth whereas

Manuscript received on April 8, 2012. The author is with the Computer

Science Department, Kumasi Polytechnic, Postal Code 854, Kumasi, Ghana,
Africa (phone: +233-242-124-291; e-mail: Samuelk.opoku@kpoly.edu.gh).

inter-server communication is achieved through Wi-Fi. The

efficiency and effectiveness of the design are also analyzed.

II. LATENCY ISSUES

Latency has been the most crucial network parameter on

line gaming. It refers to the time a terminal takes to send

information to a server or to receive the reply. Interaction

latency [2] is therefore defined as the time from the generation

of interaction request till the appearance of updated image.

Apparently, the interaction latency takes at least a roundtrip

network transmission time between the mobile client and the

rendering server. Latency varies greatly from network to

network, wired networks to wireless network and as a function

of congestion on a given network [3]. It can vary significantly

from time to time and can kill the user experience in many

latency-sensitive applications [2], [4]. Latency rate is usually

affected by jitter and packet loss [3], [5]. Jitter refers to the

delay variance which is usually caused by routers queuing

packets because of congestion or prioritizing traffic. The

margin of jitter is directly proportional to the margin of

latency. A packet may not reach its destination due to network

saturation, degradation of the signal through the network

medium, faulty network or hardware and faulty packet [6]. A

common way to reduce the effect of jitter is time stamping the

packets. This allows the receiver to store the packets in a

buffer until they are delivered in the right sequence with

appropriate inter-arrival spacing based on the time stamps. [3],

[7]

One technique for compensating latency is the use of image

warping [8]-[11]. Image warping refers to the process of

geometrically transforming two-dimensional picture or image.

Although the word “Warp” may suggest radical distortion, the

term “Image Warping” encompasses the whole range of

transformation such as scaling or rotation to complex,

irregular warp. The basic application of digital image warping

is to change location, scale or orientation of the image. In

warping technique, the rendering server generates a new

image (from the previous image) and sends auxiliary

information such as the coordinates of the new location of the

generated image to mobile clients. The mobile client then

generates images at the new viewpoint if any user interaction

happens. A rendering server may produce two or more images

as reference frames in order to reduce computational time. In

such situations, Graphic Processing Unit (GPU) is usually

A Simultaneous-Movement Mobile Multiplayer

Game Design Based on Adaptive Background

Partitioning Technique

Samuel King Opoku, Member, IEEE

M

2

used to accelerate search based algorithms [2], [11] in finding

the required image to be displayed at the new viewpoint.

A proposed method for latency reduction is the Service

Oriented Architecture (SOA) mostly in the form of web

services with SOA backend [12], [13]. The mobile application

usually calls many different SOA backend services to support

the mobile process. However, performing a high number of

network requests consumes a lot of energy on the mobile

device. Another way to reduce perceived latency is by using

rich client hybrid architecture [14], where the client can cache

results locally. This architecture also allows some degree of

off-line operations through the use of modern web

technologies like Asynchronous JavaScript and XML (AJAX)

[15]. Yet, using client-side cache to reduce latency perceived

by the user is ideally suitable for non-mobile settings due to its

poor usability issues and excessive power consumption [16]-

[19]. An attempt of employing pre-fetching and caching that

takes into account energy conservation has been described in

[20]. These techniques assume a broadcast scenario, in which

clients have to decide when to activate the network connection

and actively pre-fetch data they observe from the broadcast

channel. This is not applicable to mobile process participation,

where a single client invokes several services in the backend

SOA infrastructure. In [21] and [22], a general approach for

caching web services for mobile devices that relies on rich

JavaScript Client executed in the browser of the mobile device

was proposed. The approach requires that the application

developer specifies the pre-fetching and caching rules in great

detail, instead of easing the burden of the developer.

An effective method [23] of handling latency in a highly

interactive game is to adapt the server’s update time T

according to the heterogeneous latency. The protocol works as

follow:

• The game status in the server gets updated every

period, T.

• During that time, clients send their update

information to the server

• Packets that arrive too late will however, be

considered lost

• Clients are updated by the server

When latency occurs, the client suffers from missing game

data. Dead reckoning is a way to estimate this missing data by

taking into account recent positions, velocities and

acceleration of game objects. Through the use of Dead

Reckoning (DR) vector, a player sends his or her position in

X, Y and Z coordinates, velocity, acceleration and other

parameters such as pitch, roll and yaw to other players in the

game sessions. When the vector is received by the other

terminals or devices, they can predict the sender’s future

movement assuming that the velocity and the acceleration are

unchanged. This prediction is done until the next vector is

received which will give the receiver an updated state for the

sender. When dead reckoning is only used to predict the

client’s position rather than frequently updating each peer with

new information, bandwidth is conserved [24]. Dead

reckoning, however, has some limitations. Its implementation

means that all the clients have to run an algorithm to calculate

the vectors while running the game [25] and this consumes

processing power and battery’s energy. They can slow down

the client significantly. Dead reckoning is only useful when it

is possible to predict a probable path for the game objects but

if their predicted movements do not coincide with the client’s

actual movement, then the prediction wastes resources

III. GAME ARCHITECTURE

There are three architectures for implementing mobile games

[7]. These are peer-to-peer (P2P), client-server and network

server. A P2P connection is only based on clients who are

connected to each other. The game status is updated

individually at every client [26]. This solution is perfect for

the game provider [7], [26] because there is no need to invest

in a server. Another advantage is that the network is very

stable [7], [27] such that if one client goes down, the

remaining clients still make up a network and continue to send

information to each other. The drawbacks are related to

security [26], [27]. All the clients have all the game

information and it will be much easier for one gamer to cheat

by hacking the game information in his terminal [3], [27]. To

avoid divergence in game status due to delays,

synchronization has to occur between clients [7], [26]. The

network traffic generated increases exponentially as n�n −
1�		where n is the number of clients and thus a player can

easily run out of bandwidth [7], [27]. Fig. 1 illustrates a

typical P2P architecture.

Fig. 1. A Typical P2P Architecture

A client-server connection, on the other hand, is based on a

server. The server stores and processes all the game data it

receives from all the connected clients. It only updates those

clients with the data they need, thus every client receives a

unique update [7]. The limited information that the server

sends to its clients is good from traffic point of view and leads

to lower latency [7], [28]. From a coding perspective, the

model is preferable because little code needs to be added to

support this sharing of state information and it can be easily be

separated from the game code – a techniques suitable for

multiplayer games and mobile games [3], [7]. A typical

drawback is the high load at the server side. It is difficult in

this architecture to have global knowledge of the game state

[28] since the server updates each client individually within

their scope and the data received by each client contains

information about his or her scope only. Hence client-server

model is better if the developer wishes to avoid players

cheating in the game [7], [26]. The figure below illustrates the

implementation of client-server architecture with four clients

3

Fig. 2. Overview of Client-Server Architecture

The last architecture is the network server. This is a game

genre with many participants connecting to the same server.

The clients connect to one or more servers which are in turn

interconnected with one another through a local network [7],

[27]. The local network enables the servers to exchange a huge

amount of data very quickly [7]. This model allows many

clients to connect to a server without causing saturation of a

single server [28], [29]. Fig. 3 is used to demonstrate the

implementation of network-server architecture.

Fig. 3. Overview of Network-Server Architecture

IV. MOBILE GAME COMMUNICATION

TECHNOLOGIES

There must be a communication medium – be wired or

wireless – for devices to communicate. Wireless technology is

more convenient for mobile devices [30], [31] due to its

flexibility in nature. For online mobile gaming, the various

communication technologies employed are [3], [7], [28]:

Bluetooth, General Packet Radio Service (GPRS), Universal

Mobile Telecommunications Services (UMTS), Wide Code

Division Multiple Access (WCDMA), and High-Speed

Downlink Packet Access (HSDPA).

Bluetooth communication protocol has client-server

architecture. The client initiates the connection and the server

accepts or receives the connection [32]. Communication

between devices depends on the type of data transferred.

Object Exchange (OBEX) protocol supports exchange of such

physical data as files and images. Logical Link Control and

Adaptation Protocol (L2CAP) is used for sending packets

between host and client whereas Radio Frequency

COMMunication (RFCOMM) supports simple data transfer

[32]-[34]. Although RFCOMM is easy to setup by providing

Universally Unique Identifier (UUID) to indicate the service

provided [35] yet a one-way communication link usually shuts

down before data is transferred [32]. This problem is

addressed by allowing bidirectional transmission before

shutting down the link. This approach is not suitable from

gaming perspective since it wastes bandwidth. Bluetooth is

also limited by excessive power consumption [36], [37] and

the power level of the energy source especially when the

software development kit used for game development does not

suite the handheld device [38], [39].

General Packet Radio Service (GPRS), adds packet data

service to the Global System for Mobile (GSM) network.

GPRS is the most widespread wide area wireless data service

available [7], [40]. GPRS offers packet-based IP

communication and builds upon the existing GSM technology

and networks [41]. Enhanced Data GSM Environment

(EDGE) is an enhancement of the GSM/GPRS network where

the architecture is unchanged. By using different modulation

scheme during the timeslot allocated for GPRS, the throughput

can be increased [7], [40] and thus latency in EDGE is of a

higher performance than that of GPRS. The advantage of

EDGE is that if a packet fails to be transmitted, GPRS simply

ignores it whereas EDGE will try to send it again using coding

schemes with more error correction so that hopefully, the

transmission will be successful [42]. Thus producing less

packet loss makes it good communication technology from

gaming perspective.

UMTS is a packet switching 3G technology which in

comparison to EDGE, offers significantly greater data transfer

and allows simultaneous voice/data communication [42], [43]

which is suitable from a cellular online gaming point of view

as the gaming session will not be interrupted by an incoming

call. These terminals are however, big, heavy and battery

consuming [7], [43] although the bigger screen gives an

advantage towards gaming.

WCDMA is built on Code Division Multiple Access

signaling method [42]. It has the advantage of offering soft

handover between cells [43]. Thus less burst traffic can be

expected which is better from gaming point of view. However,

during hard handover when the terminal does not have any

contact with the base station, burst traffic can occur since the

terminal cannot transfer any data.

HSDPA offers higher bit rates and lower round trip delay

[43] enabling applications such as multi-user gaming. HSDPA

is an improvement of UMTS, built on the implementation of a

new WCDMA channel [43], [44]. A drawback is that HSDPA

geographical coverage is limited to big cities [7], [44].

V. BACKGROUND PARTITIONING DESIGN

The background partitioning design is basically used to

• assign coordinate system to game ground so that the

game parameters can be accordingly controlled

• control memory and processing power

• predict the subsequent game action when game

packets are lost or when the latency rate is very high

4

A. Assigning Coordinate System

Consider a 3-Dimensional background (x, y, z) which is

shown in the figure below:

Fig. 4. 3-D Architecture of a Game Ground

The background partitioning algorithm ignores the y-axis

values and then considers (x, z) as a 2-Dimensional

background. The (x, z) axes are partitioned as shown below:

Fig. 5. Background Partitioning Design

 The points with the following coordinates: (0, 0), (n+1, 0),

(n+1, m+1) and (0, m+1) serve as the boundary of the entire

game system whereas the playing ground boundary is

characterized by the points with the following coordinates (1,

1), (n, 1), (n, m) and (1, m). The difference between two

adjacent points such as �n+1�	 –	 n form the background

partitioning point interval denoted by I. The partitioning

system is used to determine the x and z coordinates of every

player of the game. The partitioning is based on

• Game level which determines the acceleration of the

game and the players

• Interaction latency rate which corresponds to the

delay variance between sending and receiving game

packets

Thus the game partitioning parameter, ρ, is a function of

latency rate, L and the game level, G. The higher the latency

rate, the greater the delay and hence the smaller the intervals

between game ground points. However, the higher the game

level, the higher the intervals between ground points. It,

therefore, implies that 		 ∝ 	 �
�
 and hence				 = � �

�
. � is the

partitioning parameter constant which depends on the type of

communication technology and the type of game architecture.

 To minimize computational overload, partitioning

parameter, 	, for both x and z axes are equal. Thus both axes

have the same scale for the coordinate system. The

background partitioning point interval, I, is computed using

the partitioning parameter, 	, and the width of the screen. The

basic condition is that there should be at least R points on both

x and z axes depending on the type of game implemented.

Let			��, be the width of the screen. Thus if 	 ≤ ��/� then

� = 		. However, if 	 > ��/� but			 ≤ �2 ∗ ���/� then

	� = 		/2. On the other hand, if				 > �2 ∗ ���/�, 		� = ��/�.

Using the background partitioning interval, I, the coordinates

of x and z are computed as ���� = 	�� + 	�	 ≤ 	�� and

���� = 	�� + 	�	 ≤ 	�� given that		 ∈ ℤ�.

Let (x, z) be the current position of a game player. The next

position is determined as (� ± �, �	 ± �) for ordinary players

and (� ± $�, �	 ± $�) for “specially-talented” players with the

ball. The speed of the ball is determined by the player

handling it. $ represents the number of intervals that needs to

be combined so that the speed of the player is doubled or

tripled. Thus $ ∈ {2, 3} with $ = 3 used for “world class”

players. A “specially-talented” player without the ball has its

next position determined as (� ± �, �	 ± �).
The background partitioning parameter is adaptive in that

the parameter is computed in regular intervals and when there

is a change in the value of 	, the background is re-partitioned

using the new value of			. From 	 = � �

�
, it implies that when

the latency rate is very high, the background partitioning point

interval diminishes allowing the game players and the object

of concern to move slowly. Thus, lim�→, 			 	≅ 0 indicating

that the game players and the object of concern turn to be

motionless when the network connection increasingly

becomes slower.

B. Managing Memory and Processing Power

The partitioning mechanism divides the game ground into

regions. Each four intercepting lines create a region. In order

to manage resource such as memory and processing power

efficiently, the regions are categorized into More Detailed

Region (MDR) and Less Detailed Region (LDR).

In such simultaneous-movement multiplayer games as

football, basketball and hockey, the region surrounding the

object of concern – the ball – is the MDR whereas the other

regions constitute the LDR.

To determine the boundary of the MDR, let the current

position of the ball be (∝, /) and I be the interval between

points on the game ground. The coordinates of the MDR is

(∝ 	±	0�, /	 ± 	0�) where 0	 ≥ 1 is a constant – called game

region constant – that depends on the size of the memory and

the processing power. Also ∀	∝ 	±	0�	and	/	 ± 	0� the

following conditions should be satisfied: 0	 ≤	∝ 	±	0� ≤ +
1 and 0	 ≤ 	/	 ± 	0� ≤ 5 + 1. Thus 0� gives the number of

the intervals required to add to or deduct from the coordinate

of the ball to obtain the MDR. It therefore, follows that the

coordinate of the boundary of MDR are: (∝ 	−	0�, / − 	0�),
�∝ 	−	0�, / + 	0�), �∝ 	+	0�, / − 	0�) and �∝ 	+	0�, / + 	0�).

If there exists a coordinate such that 	∝ 	+	0� > + 1	or

∝ 	−	0� < 0 then ∝ 	+	0� = + 1 and							∝ 	−	0� = 0.

Similarly, If there exists a coordinate such that 	/ + 	0� >
5 + 1	or 	/ − 0� < 0 then / + 0� = 5 + 1 and			/ − 0� = 0.

To illustrate, consider a game ground with the background

partitioning point interval, I = 1 and the game region

constant,		0 = 1. The MDR is shown in the figure below:

5

Fig. 6. Illustration of More Detailed Region

The object under consideration, the ball, is at point (2, 3).

With I = 1 and μ = 1 the MDR is described by the following

points using (∝ 	±	0�, /	 ± 	0�): (1, 2), (1, 4), (3, 2) and (3, 4).

The Less Detailed Region (LDR) does not appear on the

screen and thus the memory that can be used to store detailed

information about the LDR is freed. All the players and

activities in the LDR are freeze. Once a ball moves to the

LDR, a new MDR is assigned and the previous MDR is frozen

and treated as LDR.

The y-axis values are designed so that memory and

processing power are effectively controlled. An interview with

eighty computer game players demonstrated that they do not

take notice of the height of game players into consideration

when playing games like football and hockey. In view of that

all the game players are designed with the same height and

hence they all occupy the same y-axis value of the game

background. The point interval for y-axis denoted by �8 is

given by		�8 = 9:;<= −	>?@AℎCDE<8FGH/3. A player can jump

from >?@AℎCDE<8FG to >?@AℎCDE<8FG +	�8 whereas the object

of concern (usually the ball) can move to a maximum height

of >?@AℎCDE<8FG +	2 ∗ �8. However, in a basketball game, a

player can jump from >?@AℎCDE<8FG to >?@AℎCDE<8FG +	2 ∗ �8

C. Managing Packet Loss and Excessive Packet Delay

Game data is lost when packets are lost. In excessive packet

delay or occurrence of very high latency rate, game packets

are considered to be lost. The mechanism employed in

managing packet loss divides the game progress into game

states over time spent. A round trip communication between

the online players indicates a complete state of the game.

Let		I� ,			 ∈ ℤ� denotes the game states such that if IJ 	is

the current state, ∀	K ∈ and K ≥ 1, the immediate previous

state is IJL�. Also let T be the time spent, in seconds, in the

game from IM	to	IJ, it follows that		N�IJ� 	> 	N�IJL�� 	> 0.

When N = 0, that is at the beginning of the game, IM is set to

the default setting. The default setting for a typical such

multiplayer game as football is the default positions of the

players and the ball when the game is about to start. The MDR

is in the center of the playing ground.

The mechanism employed is applied from the second round

trip communication onwards. This mechanism also sets the

background partitioning parameter, game acceleration and the

players’ velocities of I� to be equal to that of I�L�		∀	 	 > 1

where I� is the state whose game data is missing and the game

parameters need to be computed. The background partitioning

point interval,	�, for I�L� is therefore used to determine the

positions of players and the ball in the current state, I�.

The set of parameters needed for the current state, I�, is

given by

I� = {	��L�, 		OJ� , 		P�	}
where

��L� is the background partitioning point interval

OJ� = �QJ
�,	:J�, RJ�� is the coordinate of the players such

that ∀	K, K ∈ ℤ� ≤ 	S represents the KTU player out of

the total S players in the MDR. When K = 0, there is no

player in the MDR.

P� = �Q�, :� , R�� is the coordinate of the ball

The following are general parameters used to determine the

coordinates of the ball and the players.

Let

� be the background partitioning point interval

Q;<= be the x-axis point limit of the entire game system

:;<= be the y-axis point limit of the entire game system

R;<= be the z-axis point limit of the entire game system

		�8			 be the interval between the y-axis values

The design for obtaining player’s coordinate assumes that a

player can only move in one direction at any given time and

thus for any particular time, only one of the three axes is

affected leaving the other two axes unchanged.

Let

QJ
D be the x-axis value of the KTU player in the current state

:JD be the x-axis value of the KTU player in the current state

RJD be the x-axis value of the KTU player in the current state

The algorithm below is used to determine whether the

player is stationary or not:

If (|	QJ
DL� −	QJ

DLV	| < �	and 	|:JDL� −	:JDLV	| < �8 and

	|RJDL� −	R
J
DLV	| < �)

Then the player is assumed to be motionless and it continues

to be at its position. Thus

QJ
D = 	QJ

DL�, :JD = :JDL� and RJD = 	RJDL�

To determine the x-coordinate, the following algorithm is

used:

If (|	QJ
DL� −	QJ

DLV	| ≥ �	and 	|:JDL� −	:JDLV	| < �8 and

	|RJDL� −	R
J
DLV	| < �)

Then

0 ≤ [QJ
D = 	QJ

DL� +	9Y@A 	Z[QJ
DL�H ∗ �] 	≤ �Q;<= − ��

Similarly, the z-axis coordinate is determined by the

algorithm:

If (|	QJ
DL� −	QJ

DLV	| < �	and		|:JDL� −	:
J
DLV	| < �8 and

	|RJDL� −	R
J
DLV	| ≥ �)

Then

0 ≤ [RJD = 	RJDL� +	9Y@A 	Z[RJDL�H ∗ �] 	≤ �R;<= − ��

The y-axis is designed to have two states in managing packet

loss mechanism. A player may jump to increase y-axis value

or descend from a height after jumping to decrease the y-axis

value. Thus

6

If (|	QJ
DL� −	QJ

DLV	| < �	and 	:JDL� −	:JDLV	 ≥ �8 and

	|RJDL� −	R
J
DLV	| < �)

Then the player jumped and has to come down. Thus

QJ
D = 	QJ

DL�, :JD = :JDLV and RJD = 	RJDL�

Else If (|	QJ
DL� −	QJ

DLV	| < �	and 	:JDL� −	:JDLV	 < �8

and 	|RJDL� −	RJDLV	| < �)

Then the player is down or came down from jumping and has

to retain its previous value. Thus

QJ
D = 	QJ

DL�, 			:JD = :JDL� and 				RJD = 	RJDL�

The ball alone can move in one direction along x-axis or z-

axis only. Thus for any given game state, only one of the two

axes (x and z) is affected leaving the other unchanged.

However, a ball can move along x-axis direction altering the

y-axis accordingly at the same time or it can move along z-

axis direction whereas the y-axis is changed accordingly at the

same time. This depends on the game control key(s) used in

I�L� state.

Let

 Q] be the x-axis coordinate of the ball in the current state

 :] be the x-axis coordinate of the ball in the current state

 R] be the x-axis coordinate of the ball in the current state

^ be the strength of the game control key pressed by the

online player such that ∀	^, ^ = 0, 1, 2

^ = 0 when the control key suggests that the value of the y-

axis coordinate has to be retained and thus :] = 	:]L�. The

design assumes that from any state I�L� to I�, the ball cannot

move beyond two consecutive interval points of the y-axis and

hence 0	 ≤ ^ ≤ 2. Increasing	^ indicates that the ball ascends

along the y-axis such that :;<= ≥ :] ≥ :]L� + ^ ∗ �8 and

^ = 	^ + 1 < 2 whereas decreasing ^ indicates that the ball

descends so that 0 ≤ 	:] 	≤ :]L� + ^ ∗ �8 and 	^ = 	^ − 1	 > 0.

The ball is assumed to be motionless when the condition

shown below is satisfied:

If (Q]L� == 	Q]LV	_ ` :]L� == 	:]LV	_ `	R]L� == 	R]LV)

Then

Q] = Q]L�, :] = :]L� and R] = R]L�

The algorithm below computes the x-coordinate of the ball

in the current state given that y-coordinate can change:

If (|Q]L� −	Q]LV| < �	_ ` 	R]L� == 	R]LV) Then

0 ≤ [Q] = 	Q]L� + �Y@A 	Z[Q]L�� ∗ �] 	≤ Q;<=
and

0 ≤ [:] = 	:]L� + ^ ∗ �8] 	≤ :;<=

Similarly, the z-coordinate of the ball is computed given

that the y-coordinate can change:

If (Q]L� == 	Q]LV	_ ` 	|R]L� −	R]LV| < �) Then

0 ≤ [R] = 	R]L� + �Y@A 	Z[R]L�� ∗ �] 	≤ R;<=

and

0 ≤ [:] = 	:]L� + ^ ∗ �8] 	≤ :;<=

VI. TESTING AND ANALYSIS OF THE PROPOSED

DESIGN

A. Architecture of the Testing System

The testing system is made up of two mobile phones and two

computer systems. Each phone is connected to a computer

system through Bluetooth. The computer systems are

connected via Wi-Fi. The computer systems act as servers to

the mobile phone and thus the system implements network

server game architecture. This architecture allows manual

manipulation at the server side regarding packet delays. The

general overview of the system is illustrated in the figure

below:

Fig.7. Overview of the Implementation Architecture

For the servers to be connected, one of the servers initiates a

connection and the other server accepts. Thus, there is a client-

server relationship between the servers. The flowchart below

illustrates the connection process of the testing system.

Fig.8. Connection Process of the Testing System

7

B. Testing of the Implemented System

Soccer was the game simulated using the above

architecture. In a displayed view, a user will only see what is

demonstrated in Fig. 8. The figure below represents MDR

with only one player near the throw line.

Fig.9. Display View of a Game Ground

However, beneath the display view is the implementation of

the partitioning system. The figure below demonstrates the

implementation of the background partitioning system. The

ball occupies the point (0.64, 0.92) whereas the player is at

(0.66, 0.92).

Fig.10. Background Partitioning System of the Game Ground

The above partitioning system is implemented in a worse

situation with higher game level and very high latency rate.

The point interval is very small (� = 0.02) and thus the player

with the ball has different coordinate values from that of the

ball. However, the above situation can also arise when the

game is played with the least game level and a tolerable

latency rate. The next position of the player from Fig. 9 can be

one of the following points (0.66, 0.92), (0.66, 0.90), (0.66,

0.94), (0.64, 0.92) and (0.68, 0.92)

The figure below demonstrates a game played with higher

game level with a normal latency rate. In such case, the player

with the ball has the same coordinate as the ball. From the

figure below, the player and the ball occupy the point (6.0,

5.5). This situation reduces memory consumption and also

controls processing power. The other player approximately

occupies the point (5.0, 4.5). The approximate points are used

in predicting the subsequent coordinates when game data is

lost.

Fig.11. Normal Background Partitioning System of the Game Ground

C. Analysis of the Implemented System

Unlike various game designs that rely on the velocity of the

game players and the acceleration of the game to determine

the subsequent actions of game objects, this design ignores

players’ velocity. The coordinate of the game objects can

easily be determined using the background partitioning

system. Using two previous states of the game, the coordinates

of the game objects of the next state are effectively

determined.

The major drawback of the design is its inability to resist

frequent latency fluctuations. This inevitably kills user’s

interest. This happens as the background partitioning also

adjusts frequently to reflect the latency rates. Users therefore

will find it difficult to predict the outcome of their actions.

VII. CONCLUSION

In this paper, the researcher reviewed the various factors

that affect online multiplayer game which is played

simultaneously. The researcher went ahead to propose a robust

design based on background partitioning technique that has

the ability to adapt to different latency. The work serves as a

basis for developing online game systems that eliminate

excessive coding which usually takes into consideration

parameters such as velocity, acceleration, pitch, roll and yaw

of game players.

 The efficiency and the effectiveness of the design were

tested and analyzed. The implemented system has the

following characteristics:

• It does not require many parameters in its

computations

• It conserves memory and processing power by

minimizing computation

8

REFERENCES

[1] Nokia White Paper, “Overview of Multiplayer Mobile Game Design”,

Available: http://www.forum.nokia.com

[2] S. Shi, "Reduce latency: The Key to Successful Interactive Remote

Rendering Systems", IEEE International Conference on Pervasive
Computing and Communications Workshops, pp. 391-392, 2011

[3] A. Spurling, "QoS Issues for Multiplayer Gaming", Case study at Cardiff

university 2004, http://users.cs.cf.ac.uk/O.F.Rana/data-
comms/gaming.pdf

[4] M. Claypool, K. Claypool, “Latency Can Kill: Precision and Deadline

in Online Games”, Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, New York, NY, USA, pp. 215–222,

2010

[5] R. Rakesh, N. Amiya, "An Efficient Video Adaptation Scheme for SVC
Transport Over LTE Networks", IEEE 17th International Conference on

Parallel and Distributed Systems (ICPADS), pp. 127-133, 2011

[6] O.J.S. Parra, A. P. Rios, G. Lopez Rubio, "Quality of Service Over IPv6
and IPv4", 7th International Conference on Wireless Communications,

Networking and Mobile Computing (WiCOM), pp. 1-4, 2011

[7] C. Westermark, “Mobile Multiplayer Gaming”, Master Thesis, School of
Information and Communication Technology, Royal Institute of

Technology, web.it.kth.se, pp. 20-45, 2007

[8] W. R. Mark, G. Bishop, L. McMillan, “Post-Rendering Image Warping
for Latency Compensation,” Chapel Hill, NC, USA, Tech. Rep., 1996

[9] S. Shi, M. Kamali, J. C. Hart, K. Nahrstedt, R. H. Campbell, “A High-

Quality Low-Delay Remote Rendering System for 3D Video”,
Proceedings of the eighteen ACM international conference on

Multimedia, New York, NY, USA, 2010

[10] S. Shi, W. J. Jeon, K. Nahrstedt, R. H. Campbell, “Real-time Remote
Rendering of 3D Video for Mobile Devices”, Proceedings of the

seventeen ACM international conference on Multimedia. New York,

NY, USA, pp. 391-400, 2009
[11] W. Yoo, S. Shi, W. J. Jeon, K. Nahrstedt, R. H. Campbell, “Real-time

Parallel Remote Rendering for Mobile Devices using Graphics

Processing Units”, in ICME, IEEE, pp. 902–907, 2010
[12] M. Muhlhauser, I. Gurevych, “Ubiquitous Computing Technology for

Real Time Enterprises”, Information Science Reference, 2008.
[13] R. Tergujeff, J. Haajanen, J. Leppanen, S. Toivonen, “Mobile SOA:

Service Orientation on Lightweight Mobile Devices”, in ICWS, IEEE,

pp. 1224–1225, 2007
[14] V. Gruhn, A. Kohler, “Aligning Software Architectures of Mobile

Applications on Business Requirements,” in WISM, 2006.

[15] L. Hamdi, H. Wu, S. Dagtas, and A. Benharref, “Ajax for Mobility:
MobileWeaver AJAX Framework”, Proceedings of the WWW. ACM,

pp. 1077–1078, 2008

[16] M. Pervila, J. Kangasharju, “Performance of Ajax on Mobile Devices: A
Snapshot of Current Progress”, 2nd International Workshop on

Improved Mobile User Experience, 2008.

[17] V. N. Padmanabhan, J. C. Mogul, “Using Predictive Pre-fetching to
Improve World Wide Web Latency”, ACM SIGCOMM Review, Vol. 26,

No. 3, pp. 22–36, 1996.

[18] L. Fan, P. Cao, W. Lin, Q. Jacobson, “Web Pre-fetching Between Low-
Bandwidth Clients and Proxies: Potential and Performance”, in ACM

SIGMETRICS, pp. 178–187, 1999

[19] A. N. Eden, B. W. Joh, and T. Mudge, “Web Latency Reduction via
Client-Side Pre-fetching”, in IEEE ISPASS, pp. 193–200, 2000

[20] G. Cao, “Proactive Power-Aware Cache Management for Mobile

Computing Systems”, IEEE Transactions on Computers, Vol. 51, No. 6,
pp. 608–621, 2002.

[21] K. Elbashir, R. Deters, “Transparent Caching for Nomadic WS Clients”,

in IEEE ICWS, pp. 177–184, 2005
[22] D. Schreiber, E. Aitenbichler, A. Goeb, M. Muhlhauser, "Reducing User

Perceived Latency in Mobile Processes", IEEE International Conference

on Web Services (ICWS), pp. 235-242, 2010
[23] Wu-chang, F Feng, “Provisioning On-line Games: A Traffic Analysis of

a Busy Counter-Strike Server", 2002, http://www.imconf.net/imw-

2002/imw2002-papers/168.pdf
[24] S. Aggarwal, “Accuracy in Dead-Reckoning Based Distributed Multi-

Player Games”, 2004, Available:

http://www.sigcomm.org/sigcomm2004/workshop_papers/net610-
aggarwal.pdf

[25] W. Cai, “An Auto-adaptive Dead Reckoning Algorithm for Distrubuted

Interactive Simulation”, Proceedings of the thirteenth workshop on

Parallel and distributed simulation, Atlanta, Georgia, United States, pp.

82-89, 1999
[26] T. Moser, "Design and Implementation of a Multiplayer Peer-to-Peer

Game for Android Mobile Devices", Master Thesis, Department of

Informatics, University of Zurich, pp. 25-40, 2010
[27] R. Schollmeier, "A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications", Peer-to-

Peer Computing, pp. 101–102, 2001.
[28] C. Xin, "Multiplayer Game in Mobile Phone Serious Game",

International Joint Conference on Artificial Intelligence, JCAI '09, pp.

56-58, 2009. .
[29] S. M. Malfatti, F. Ferreira dos Santos, S. Rodrigues dos Santos, "Using

Mobile Phones to Control Desktop Multiplayer Games", Brazilian

Symposium on Games and Digital Entertainment (SBGAMES), pp. 230-
238, 2010

[30] Z. Li-zhong, Y. Zheng-lin, G. Hai-feng, "Study on Simulation

Technology of 3G Mobile Communication Network", WRI Global
Congress on Intelligent Systems, GCIS '09.Volume: 3, pp. 236-241,

2009

[31] H. Wu, "Some Thoughts on the Transformation of Information and
Communication Technologies", IEEE Technology Time Machine

Symposium on Technologies Beyond 2020 (TTM), pp. 1, 2011

[32] S. Rathi, "Infrastructure: Bluetooth Protocol Architecture", Microware
Architect, Microware System Corporation, p. 1 – 6, 2000

[33] B. Hopkins and R. Antony, “Bluetooth for Java”, ISBN 1-59059-78-3,

pp 33-35, 2003.
[34] A. Zapater, K. Kyamakya, S. Feldmann, M. Kruger, I. Adusei,

“Development and Implementation of a Bluetooth Networking
Infrastructure for a Notebook”, University Scenario, International

Conference on Wireless Networks, 2003

[35] S. K. Opoku, "An Indoor Tracking System Based on Bluetooth
Technology", Cyber Journals: Multidisciplinary Journals in Science and

Technology, Journal of Selected Areas in Telecommunications (JSAT),

Vol. 2, No. 12, pp. 1-8, December Edition, 2011
[36] Bluetooth Special Interest Group Specification, "Specification of the

Bluetooth System Core" Vol 1 and Vol 2, Versions 1.1, February 22,

2001
[37] M. M. Organero, S. K. Opoku, "Using NFC Technology for Fast-

Tracking Large-Size Multi-Touch Screens", Cyber Journals:

Multidisciplinary Journals in Science and Technology, Journal of
Selected Areas in Telecommunications (JSAT), Vol. 2, No. 4, pp. 65-70

April Edition, 2011

[38] S. K. Opoku, "Performance Enhancement of Large-Size NFC Multi-
Touch System", Cyber Journals: Multidisciplinary Journals in Science

and Technology, Journal of Selected Areas in Telecommunications

(JSAT), Vol. 2, No. 10, pp. 52-57, October Edition, 2011
[39] S. K. Opoku, “Exploring Near Field Communication Multi-Touch”,

Master Thesis, Telematics Engineering Department, Universidad Carlos

III de Madrid, pp. 1-52, 2011.
[40] Usha Communications Technology, "White Paper of GPRS", 26 June

2000

[41] B. Ghribi, L. Logrippo, “Understanding GPRS: The GSM Packet Radio
Service”, School of Information Technology and Engineering,

University of Ottawa, 2009.

[42] V. Sami, K. Katja, “Positioning Edge in the Mobile Network Evolution”,
Master Thesis, Helsinki University of Technology, pp. 25-40, 2007.

[43] P. Rysavy, "EDGE, HSDPA and LTE", Rysavy Research Developed for

3G America, September 2006
[44] M. Akervik, "Network Gaming: Performance and Traffic Modeling",

Master Thesis, Royal Institute of Technology (KTH), Department of

Communication systems, November 2006.
[45] Amplified Engineering, “Delivering Optimized Solution”, 2004,

http://www.amplified.com.au/Application_Ethernet_Device_to_Server_I

nternet_SMS.aspx

