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Abstract— There are many difference algorithms used for 

unknown worm detection. Some algorithms use static features, 

while others use dynamic features. However, no algorithm that 

can perfectly detect all unknown worms. Because, each detection 

method has its own drawbacks. It’s difficult to detect 

polymorphic worms with only static features or it takes more time 

to execute dynamic detection algorithms. This paper describes an 

algorithm for detecting unknown worms and its variations based 

on features previously extracted from the analyzed files. This set 

of features is statically defined in this proposal and the method 

for extracting such features is also described. The proposed 

algorithm can detect worm and its variations with a small sample 

features set. This approach is not only applied well to detect 

worms with static features but also can be developed to detect 

worms based on their dynamic features and behavious. This is a 

first-attempt for demonstrating the effectiveness of the detection 

algorithm that uses both static features and dynamic features. 

 
Index Terms— computer virus, static feature, variations, worm 

detection. 

I. INTRODUCTION 

ECENTLY, many computers and network systems in 

the world have been attacked by computer viruses. Anti-

virus groups have done many research works and worked 

in several many different approaches. The antivirus software 

has been quite successful with signature-based virus detection 

technology.  However, this method has drawbacks that should 

have a copy of the malicious code to extract recognition 

sample.    

To solve this problem, antivirus organizations have added 

recognition technology into their antivirus softwares. This 

technology can detect behaviors and intents of the virus. 

However, antivirus softwares are difficult to distinguish 

between regular behaviors of application and destructive 

behaviors of virus (such as benign applications creating and 

deleting temporary files, while the virus copies itseft to create 

and delete user data) and it is difficult to detect intents of 

polymorphic files in the infected system.  
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The existing malicious code detection methods are not 

adequate. Because “no algorithm that can perfectly detect all 

possible viruses” [1] so computer virus recognition problems 

are still open problems for the present [2, p35]. 

In this paper, we propose the recognition technology that 

can detect quite good worm and its variations. This approach 

can apply to detect unknown malicious code not only in 

executable files but also in run-time running processes. This 

paper is a first-attempt for demonstrating the effectiveness of 

such algorithm and only covers the analysis of static files and 

not processes at run-time stage. 

Our paper is divided into the following main parts: the 

first part present “Introduction”. The second part present 

“related work”. The third part present “viruses detection 

mechanism”. The fourth part present “experiment result”. The 

fifth part present “conclusion”. 

II. RELATED WORK 

There are many difference techniques used for malicious 

codes detection such as secure hash codes, neural networks, 

data mining, machine learning techniques, or comparisons with 

past copies.   

Antivirus softwares combined signature-based recognition 

techniques with heuristic techniques, such as Bloodhount of 

Symantec, Heuristic scan of McAfee and Panda, Hash scan of 

BitComet, or using IBM’s footprint technology to monitor 

internet transactions of BitDefender.  

In our antivirus application (ATV2011), we  used secure 

hash codes SHA-1 to detect trojans and applied this algorithm 

to restore a file when it is infected by one or more unknown 

malicious codes. The secure hash algorithm SHA-1 is one of a 

number of cryptographic hash functions published by the 

National Institute of Standards and Technology as a U.S. 

Federal Information Processing standard. We will present this 

recognition technology in another paper.    

Jeffrey O. Kephart, Gregory B. Sorkin, Morton Swimmer 

and Steve R. White have described a immune system for 

computers that senses the presence of a previously unknown 

pathogen that within minutes, automatically derives and 

deploys a prescription for detecting and removing the 

pathogen [6]. Vesselin Bontchev summarized some ideas that 

are likely to be used by virus writers in the future and 

suggested the kind of measures that could be taken against 

them [7]. Wing Wong presented an effective metamorphic 
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virus detection technique based on hidden Markov models [8]. 

M.G. Schultz, E. Eskin, E.Zadok, S.J. Stolfo used data mining 

methods for detection of new malicious executables [9]. M. 

Debbabi et al. discussed a dynamic monitoring mechanism 

called DaMon. This is capable of stopping certain malicious 

actions based on the combined accesses to critical resources 

according to rudimentary specifications [10]. George I, 

Davida, Yvo G. Desmedt and Brian J. Matt describes the use 

of cryptographic authentication for controlling computer 

viruses [11]. Jose Nazario presented traffic analysis 

technology to detect internet worms [12].   

Recently, Zhang,B., Yin,J. and Hao,J. proposed fuzzy 

pattern recognition method [3], using support vector machine 

to detect unknown computer viruses [4]. Authors used API 

function calls as a main feature to detect unknown malicious 

executables. Liu Guozhu and Shang Yanjun represented 

amalgamation genetic algorithm into ant colony algorithm to 

detect unknown virus [5].  

III. VIRUSES DETECTION  MECHANISM  

In this paper, a new approach for a worm and its variations 

detection is being proposed. It can be described as follows:  

-- Feature extraction  

-- Unknown malicious executables detection algorithm 

  

A. Feature Extraction 

In the study of unknown malicious executables code 

detection, Zhang,B., Yin,J. and Hao,J. used fuzzy pattern 

recognition method [3], It includes an extraction algorithm that 

use windows API function calls as a main feature to detect 

malicious executable or benign application. However, the 

algorithm achieved only when the antivirus application have to 

run executable files and observing its behavior. It is ineffective 

if malicious executables don’t use api functions or using for 

static features analysis.  

We have carried out the algorithm modified by adding 

variable mi to determine the maximum number that a feature is 

observed. Our purpose is limit the frequency of occurrence and 

decrease feature analysis timing. And the algorithm does not 

only use for dynamic features extraction but also can be 

applied to extract static features. This extraction result will be 

used for malicious code detection algorithm that we propose in 

section 3.2.  

Depending on the type of detected virus (malicious 

executables, macro virus, etc…), static features that are 

proposed for extraction are different. Based on the 

modification of Zhang,B.’s extraction method, the extraction 

algorithm can be described as follows: 

Step 1. select the sample data set Q as  

Q = V + N.  

where  

V = {V1, V2, …, Vi}, 1<=i<=s,  is the malicious code set.a 

N = {N1, N2, …, Ni}, 1<=i<=n,  is the benign file set. 

 

Step 2. determine all features Ai can appear in the sample 

data set Q.  

A = {A1, A2, …, Ai}, 1<=i<=p,  is the features set that can 

appear in sample data set.   

 

Step 3. count the number of occurences of the feature Aij
V  
in 

every malicious code Vj and the number of occurences of 

the feature Aik
N 
in every benign file Nk.  

where:  

j  is the j-th malicious code  

k is the k-th benign file   

Ai  is the i-th feature     

 

Step 4. calculating average frequency P(Aij
V
) and P(Aik

N
) of 

each feature Ai in the j-th malicious code or the k-th benign 

application. 
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where:  

mi is the maximum number of occurrences of i-th feature 

in a specific malicious code of set V or a benign 

application of set N. This allows the i-th feature detection 

time limit in malicious code or benign application.   

mi can be determine based on data mining result with a 

sample data set,  or gathered experiences from experts.   

    

Step 5. The following formulas compute average frequency of 

each features in malicious code set V and benign files set N. 
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where:  

v is the number of malicious codes in set Q 

n is the number of benign files in set Q. 

 

Step 6. The following formula computes total mean frequency 

of each feature (Ai) in set Q. 
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Step 7. Compute mean square deviation D(Ai) of each feature 

Ai as  
22 ))()(())()(()( N
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Step 8. We sorted features according to D(Ai) sequence and 

choose the first t-th feature as the feature vector to recognize 

malicious codes and benign files.  

T   = {T1, T2, …, Ti}, 1<=i<=t , T ⊂ A 



 

 3 

B. Unknown Malicious Code Detection Algorithm 

This part introduces detaily the malicious code detection 

algorithm that we proposed. The result of detection a file is 

“benign file” or “malicious code”.   

F defined as  the file detects 

C defined as the set that contains 2 subset B and M.  

C = {B, M}, where B represents “detected benign files 

set” and M represents “detected malicious codes set”. 

T defined as proposed features set that is chosen from A set 

in feature extraction algorithm to recognize malicious codes or 

benign files.   

T   = {T1, T2, …, Ti}, 1<=i<=t  

Every feature Ti has four values D(Ti), mi,, E(Ti
v
) and E(Ti

n
) 

to determine it’s membership level in B subset and M subset.  

Algorithm’s objective is to determine any F file belongs to B 

or M.   

The algorithm can be described as follows:  

Input :  

File F  

Set of features T (every Ti has four values D(Ti), mi,, E(Ti
v
) 

and E(Ti
n
)) 

Warning level W (high, medium, low) 

Output :  

 F is “benign file” or “malicious code” 

 

Step 1. Divide set T into two subset of features T1 and T2 

T1 = {K1, K2, …, Ki}, 1<=i<=k,  T1 ⊂ T 
T2 = {D1, D2, …, Dj, 1<=j=d,  T2 ⊂ T 
T1 is the set of static features. Every Ki has four values 

D(Ki), E(Ki
v
), E(Ki

n
) and mi 

T2 is the set of dynamic features. Every Dj has four values 

D(dj), E(Dj
v
), E(Dj

n
) and mj 

 

Step 2. Initialize values 

fm =  0 

fb =  0 

S = 0 

fm defined as the degree membership of the file F in M set.  

fb defined as the degree membership of the file F in B set. 

S defined as the number of suspicious features.  

 

Step 3. Sort features Ki according to D(Ki) descending 

sequence. Sort features Dj according to D(Dj) descending 

sequence. 

 

Step 4.  

For all Ki ⊂ T1 
Count the number of occurrences of features Ki

f 
.  

If  Ki
f
 = mi then stop counting. 

Compute percentage of occurrences of feature Ki in file f. 

i

f

if

i
m

K
KP =)(  

In the formula, mi is the maximum number of occurrences of 

i-th feature in file f.  

If  E(Ki
v
) ≥ E(Ki

n
) then  

 If  P(Ki
f
) ≥ E(Ki

v
) then  

         fm  = fm + D(Ki) 

          S = S + 1 

     Else   

If  P(Ki
f
) > E(Ki

N
) then   

S = S + 1 

         End if 

  End if 

ELSE  

If  P(Ki
f
) ≥ E(Ki

N
) then  

      fb  = fb + D(Ki) 

Else   

         If  P(Ki
f
) > E(Ki

V
) then  

     S = S + 1 

   End If 

       End if 

End if  

If fm >= 1 then  

    return “f is the malicious code” 

Else 

    If fb >= 1 then  

        return “f is the benign file” 

    End if 

End if 

Next 

 

Step 5. 

For all Dj ⊂ T2 

Count the number of occurrences of features Dj
f 
.  

If  Dj
f
 = mi then stop counting. 

Compute percentage of occurrences of feature Dj in file f. 

  

j

f

jf

j
m

D
DP =)(  

In the formula, mi is the maximum number of occurrences of 

i-th feature in file f.  

If  E(Dj
v
) ≥ E(Dj

N
) then 

     If P(Dj
f
) ≥ E(Dj

v
) then  

         fm  = fm + D(Dj)  

         S = S + 1 

    Else   

If  P(Dj
f
) ≥ E(Dj

N
) > then  

S = S + 1 

      End if 

  End if 

ELSE  

If  P(Dj
f
) ≥ E(Dj

N
) then  

fb  = fb + D(Dj) 

Else   

      If  P(Dj
f
) > E(Dj

v
) then  

    S = S + 1 

   End If 

End if 

End if  

If fm >= 1 then  

    return “f is the malicious code” 

Else 

    If fb >= 1 then  

        return “f is the benign file” 
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    End if 

End if 

Next 

 

Step 6. Test warning level W and value in S variable. Warning 

level W shows correctness of the determination a infected file 

or a benign file.    

Select case W  

Case “high”:  

if (
dk

s

+
>0.9) OR (fm - fb >0.75) then  

return “f is the malicious code”   

else  

return “f is the benign file” 

end if   

Case “medium”:  

if (
dk

s

+
>0.75) OR (fm - fb >0.5) then  

return “f is the malicious code”   

else  

return “f is the benign file” 

end if  

Case “low”:  

if (
dk

s

+
>0.5) OR (fm >0.5) then  

return “f is the malicious code”   

else  

return “f is the benign file” 

end if 

End Select 

C. Analysis 

When a file is recognized as a worm, it is saved in M set, 

and a file is recognized as a benign file, it is saved in B set. 

Antivirus software can use this result to detect its variations by 

other algorithms such as secure hash algorithm, … In the 

future, we use this result to calculate again D(Ti) as a learning 

machine algorithm and we present it in another paper. 

Features Ai are determined after analyze features of Q files 

set. It includes static and dynamic features such as api function 

calls, behaviors of worm and benign application, … Features 

Ti are determined from set A by feature extraction algorithm, 

after sorting features Ai according to D(Ai) descending 

sequence. For example, if we choose api function calls as 

features, set A includes all api functions of windows. But 

“unknown malicious code detection algorithm” only examines 

api functions that chosen in set T. 

There are some features that you always use them to detect 

statically. Some features always use to detect dynamically. But 

some features can use for both. For example, feature “The 

external storage device contains many files that have the same 

contents with file f”. If our USB doesn’t infect worm, we use 

this feature as a dynamic feature. When our USB infected 

worms such as w32-virut.gen (the worm is named by Avira), 

we can use this feature as a static feature when we plug this 

USB into our computer.  

S value indicates the number of “suspicious” features that 

antivirus software found in file f. S and (fm-fb) values 

determine f is malicious or not when fm<1 and fb < 1. 

E(Ti
N
) and E(Ti

V
) are values of feature Ti and they are 

previously calculated from set Q. Set Q doesn’t include files 

that we want to detect. It is easy to realize that D(Ti) max  = 

0.71 when  E(Ti
N
)=1 and E(Ti

V
)=0  or  E(Ti

N
)=0 and E(Ti

V
)=1. 

It means that Ti is particular feature of malicious codes or 

benign application. If you find such a feature in file f, you can 

conclude f is a malicious code (or benign application) but your  

appraisal is not 100% precisely because D(Ti) is only 

calculated on a sample files set. When set Q is large enough 

for data mining technique, D(Ti) value decreases. Because it’s 

difficult to find a particular feature of all malicious codes or all 

benign files. So the algorithm examines many features to get 

fm >=1 or fb >=1. In this case, if we find a feature that has 

D(Ti) = 0.71, our appraisal is more precisely. Our algorithm 

always previously examines features that have higher D(Ti) 

value. Because they are particular features of malicious codes 

or benign application. For example, we examine a file word, if 

feature “no macro” is detected, it is not necessary to continue. 

Our approach allows to save time for detecting worms and 

polymorphic worm. For example, W32.sality.y is a 

polymorphic worm. Although this worm can create new files 

that have difference size. But it still have features that we can 

detect it statically when it infected in our USB or in our 

computer. If we only have a new file and we don’t know if it is 

worm or not? Antivirus software runs it to detect dynamic 

features. But when our computer infected W32.sality.y or we 

plug an USB that infected W32.sality.y into our computer, 

antivirus software can detect it that needn’t run file. It’s not 

necessary to examine all features of set T.    

IV. EXPERIMENT RESULTS 

We used 120 benign programs and 100 malicious executable 

programs that are in the Windows Portable Executable (PE) 

format as dataset for experiment (table 1). The clean programs 

were gathered from a freshly installed Windows XP machine. 

We installed WINXP source on the new harddisk and we also 

tested them by antivirus softwares, including AVIRA, 

Bitdefender, BKAV and Kaspersky.  All of files were 

recognized as benign applications. Malicious codes (such as 

w32-virut.AR, W32-virut.gen, w32.sality.Y, trojan 

crypt.pepm.gen, mabezat.b, trojan spy.gen) is recognized by 

one of the following antivirus softwares: AVIRA, BKAV, 

Kaspersky.  

TABLE 1 

SAMPLE DATA IN EXPERIMENT 

W Sample space Training set Testing set 

Benign file 120 50 70 

Malicious file 100 30 70 

Sum 220 80 140 
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We used 50 benign programs (V) and 30 codes executable 

files (N) in the Q sample data set (training set).  

The A features set is determined after analyze features of Q 

set (by data mining technique or our direct files analysis result, 

it includes static and dynamic features such as api function 

calls, behaviors of worm and benign programs, …).  

The T features set is determined from A set by feature 

extraction algorithm, after sorting features Ti according to 

D(Ti) descending sequence. An example of T features set are 

proposed for unknown worm and its variations detection 

algorithm as table 2. They include 22 typical features (t=22) of 

worms.  

Features that we proposed in table 2 is to clarify our 

algorithm. That’s not all. To detect worm “in general”, we 

have to expand set Q, and the size of set A also increases. Set 

A can include static features and dynamic features.  

Result of dividing T set into subset T1 and T2 is determined 

in table 3 and table 4.  T1 includes the static features. T2 

includes the dynamic features. Some features are particular 

features of T1 set or T2 set. But some features can belong to 

both (such as API function calls). This paper only proposes the 

features of T2 set that can belong to T1 set. 

 

 

 

 

 

 

 

 

TABLE 3 

AN EXAMPLE OF SET T1 (STATIC FEATURES) ARE PROPOSED FOR UNKNOWN 

MALICIOUS CODE DETECTION ALGORITHM 

 

Feature T1i mi E(Ki
v
)  E(Ki

n
) E(Ki)  D(Ki)  

Executable file has 

the same name as 

folder in storage 

disk drive. 

1 0.67 0 0.34 0.47 

File has the same 

content with one 

or many processes. 

2 0.83 0 0.42 0.59 

File has the same 

contents with one 

a many files in a 

disk drive. 

3 0.78 0.11 0.45 0.47 

The external 

storage device 

contain many files 

that have the same 

contents. 

3 0.83 0 0.42 0.59 

File change it’s 

size but no change 

system time 

1 0.67 0 0.34 0.47 

Executable file has 

hidden attribute. 
1 0.83 0 0.42 0.59 

Many system files 

increase in the 

same size 

3 0.83 0 0.42 0.59 

Executable file has 

the same name as 

word file and word 

file has hidden 

attribute. 

1 0.12 0 0.06 0.09 

File has the same 

contents with one 

a many files in the 

system directory. 

3 0.28 0 0.14 0.20 

 

 

TABLE 2 

AN EXAMPLE OF SET T ARE PROPOSED FOR UNKNOWN MALICIOUS CODE 

DETECTION ALGORITHM 

Features 

1. Executable file has the same name as folder in storage 

disk drive. 

2. File has the same content with one or many processes. 

3. File has the same contents with one a many files in a 

disk drive. 

4. The external storage device contain many files that 

have the same contents. 

5. File change it’s size but no change system time 

6. Executable file has hidden attribute. 

7. Many system files increase in the same size 

8. Executable file has the same name as word file and 

word file has hidden attribute. 

9. File has the same contents with one a many files in the 

system directory. 

10. Create Autorun.inf  file in many storage disk drives. 

11. Executable file in autorun.inf is the same file in startup 

keys of windows registry 

12. Process file is as the same as executable file in 

autorun.inf but difference path 
13.
 Copy many times a file to the system directory

 

14. CallNextHookEx 

15. GetFileSize 

16. ExitProcess 

17. VirtualAlloc 

18. CloseSocket 

19. GetKeyboardType 

20. GetTickCount 

21. GetCurrentProcessID 

22. GetSystemTimeAsFileTime 
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Experiment results of detection unknown worm on testing 

set are showed in table 5. 

 

V. CONCLUSION 

We presented a method for detecting unknown worm and its 

variations based on features previously extracted from the 

analyzed files. The proposed algorithm can detect unknown 

worm and its variations with a small sample features set. This 

approach is not only applied well to detect worms with static 

features but also can be developed to detect worms based on 

their dynamic features and behavious. It overcomes drawbacks 

of unknown worms detection algorithms based on only static 

features or dynamic features. It can protect user realtime 

effectively and has good effect on unknown worm detection in 

USB. In the future, we will continue to expand our algorithm 

for both dynamic features of malicious code and static features 

of benign executables to gain higher accuracy and detection 

rates. We also would like to test this method on a larger set of 

malicious and benign executables.  
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TABLE 5 

EXPERIMENTAL RESULT OF DETECTION SYSTEM 

W False Negative False Positive 

High 4.29%   2.86% 

Medium 7.14% 10.00% 

Low 8.57% 11.43% 

 

TABLE 4 

AN EXAMPLE OF SET T2 (DYNAMIC FEATURES) ARE PROPOSED FOR 

UNKNOWN MALICIOUS CODE DETECTION ALGORITHM 

 

Feature T2j mi E(Dj
v
)  E(Dj

n
) E(Dj)  D(Dj)  

Create Autorun.inf  

file in many 

storage disk 

drives.  

2 0.83 0 0.42 0.59 

Executable file in 

autorun.inf is the 

same file in 

startup keys of 

windows registry 

1 0.06 0 0.03 0.04 

Process file is as 

the same as 

executable file in 

autorun.inf but 

difference path 

1 0.33 0 0.17 0.23 

Copy many times 

a file to system 

directory 

3 0.78 0.11 0.45 0.47 

CallNextHookEx 1 0.15 0.10 0.13 0.04 

GetFileSize 1 0.23 0.16 0.20 0.05 

ExitProcess 1 0.59 0.34 0.47 0.18 

VirtualAlloc 1 0.38 0.21 0.29 0.12 

CloseSocket 1 0.16 0.02 0.09 0.10 

GetKeyboardType 1 0.12 0.01 0.06 0.08 

GetTickCount 1 0.12 0.64 0.38 0.37 

GetCurrentProcess

ID 

1 0.17 0.65 0.41 0.34 

GetSystemTimeAs

FileTime 

1 0 0.61 0.31 0.43 
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