

 1

Abstract— There are many difference algorithms used for

unknown worm detection. Some algorithms use static features,

while others use dynamic features. However, no algorithm that

can perfectly detect all unknown worms. Because, each detection

method has its own drawbacks. It’s difficult to detect

polymorphic worms with only static features or it takes more time

to execute dynamic detection algorithms. This paper describes an

algorithm for detecting unknown worms and its variations based

on features previously extracted from the analyzed files. This set

of features is statically defined in this proposal and the method

for extracting such features is also described. The proposed

algorithm can detect worm and its variations with a small sample

features set. This approach is not only applied well to detect

worms with static features but also can be developed to detect

worms based on their dynamic features and behavious. This is a

first-attempt for demonstrating the effectiveness of the detection

algorithm that uses both static features and dynamic features.

Index Terms— computer virus, static feature, variations, worm

detection.

I. INTRODUCTION

ECENTLY, many computers and network systems in

the world have been attacked by computer viruses. Anti-

virus groups have done many research works and worked

in several many different approaches. The antivirus software

has been quite successful with signature-based virus detection

technology. However, this method has drawbacks that should

have a copy of the malicious code to extract recognition

sample.

To solve this problem, antivirus organizations have added

recognition technology into their antivirus softwares. This

technology can detect behaviors and intents of the virus.

However, antivirus softwares are difficult to distinguish

between regular behaviors of application and destructive

behaviors of virus (such as benign applications creating and

deleting temporary files, while the virus copies itseft to create

and delete user data) and it is difficult to detect intents of

polymorphic files in the infected system.

Manuscript received April 9th, 2011. Accepted: April 26th, 2011.

Tran Cong Hung, Ph.D. is with the Posts & Telecommunications Institute

of Technology, Vietnam (e-mail: conghung@ ptithcm.edu.vn).

Dinh Xuan Lam, Eng., is with the Posts & Telecommunications Institute

of Technology, Vietnam (e-mail: dxlamdb@yahoo.com).

The existing malicious code detection methods are not

adequate. Because “no algorithm that can perfectly detect all

possible viruses” [1] so computer virus recognition problems

are still open problems for the present [2, p35].

In this paper, we propose the recognition technology that

can detect quite good worm and its variations. This approach

can apply to detect unknown malicious code not only in

executable files but also in run-time running processes. This

paper is a first-attempt for demonstrating the effectiveness of

such algorithm and only covers the analysis of static files and

not processes at run-time stage.

Our paper is divided into the following main parts: the

first part present “Introduction”. The second part present

“related work”. The third part present “viruses detection

mechanism”. The fourth part present “experiment result”. The

fifth part present “conclusion”.

II. RELATED WORK

There are many difference techniques used for malicious

codes detection such as secure hash codes, neural networks,

data mining, machine learning techniques, or comparisons with

past copies.

Antivirus softwares combined signature-based recognition

techniques with heuristic techniques, such as Bloodhount of

Symantec, Heuristic scan of McAfee and Panda, Hash scan of

BitComet, or using IBM’s footprint technology to monitor

internet transactions of BitDefender.

In our antivirus application (ATV2011), we used secure

hash codes SHA-1 to detect trojans and applied this algorithm

to restore a file when it is infected by one or more unknown

malicious codes. The secure hash algorithm SHA-1 is one of a

number of cryptographic hash functions published by the

National Institute of Standards and Technology as a U.S.

Federal Information Processing standard. We will present this

recognition technology in another paper.

Jeffrey O. Kephart, Gregory B. Sorkin, Morton Swimmer

and Steve R. White have described a immune system for

computers that senses the presence of a previously unknown

pathogen that within minutes, automatically derives and

deploys a prescription for detecting and removing the

pathogen [6]. Vesselin Bontchev summarized some ideas that

are likely to be used by virus writers in the future and

suggested the kind of measures that could be taken against

them [7]. Wing Wong presented an effective metamorphic

A Feature Extraction Method and Recognition

Algorithm for Detection Unknown Worm

and Variations based on Static Features

Tran Cong Hung, Dinh Xuan Lam, Member, IEEE

R

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Software Engineering (JSSE), April Edition, 2011

 2

virus detection technique based on hidden Markov models [8].

M.G. Schultz, E. Eskin, E.Zadok, S.J. Stolfo used data mining

methods for detection of new malicious executables [9]. M.

Debbabi et al. discussed a dynamic monitoring mechanism

called DaMon. This is capable of stopping certain malicious

actions based on the combined accesses to critical resources

according to rudimentary specifications [10]. George I,

Davida, Yvo G. Desmedt and Brian J. Matt describes the use

of cryptographic authentication for controlling computer

viruses [11]. Jose Nazario presented traffic analysis

technology to detect internet worms [12].

Recently, Zhang,B., Yin,J. and Hao,J. proposed fuzzy

pattern recognition method [3], using support vector machine

to detect unknown computer viruses [4]. Authors used API

function calls as a main feature to detect unknown malicious

executables. Liu Guozhu and Shang Yanjun represented

amalgamation genetic algorithm into ant colony algorithm to

detect unknown virus [5].

III. VIRUSES DETECTION MECHANISM

In this paper, a new approach for a worm and its variations

detection is being proposed. It can be described as follows:

-- Feature extraction

-- Unknown malicious executables detection algorithm

A. Feature Extraction

In the study of unknown malicious executables code

detection, Zhang,B., Yin,J. and Hao,J. used fuzzy pattern

recognition method [3], It includes an extraction algorithm that

use windows API function calls as a main feature to detect

malicious executable or benign application. However, the

algorithm achieved only when the antivirus application have to

run executable files and observing its behavior. It is ineffective

if malicious executables don’t use api functions or using for

static features analysis.

We have carried out the algorithm modified by adding

variable mi to determine the maximum number that a feature is

observed. Our purpose is limit the frequency of occurrence and

decrease feature analysis timing. And the algorithm does not

only use for dynamic features extraction but also can be

applied to extract static features. This extraction result will be

used for malicious code detection algorithm that we propose in

section 3.2.

Depending on the type of detected virus (malicious

executables, macro virus, etc…), static features that are

proposed for extraction are different. Based on the

modification of Zhang,B.’s extraction method, the extraction

algorithm can be described as follows:

Step 1. select the sample data set Q as

Q = V + N.

where

V = {V1, V2, …, Vi}, 1<=i<=s, is the malicious code set.a

N = {N1, N2, …, Ni}, 1<=i<=n, is the benign file set.

Step 2. determine all features Ai can appear in the sample

data set Q.

A = {A1, A2, …, Ai}, 1<=i<=p, is the features set that can

appear in sample data set.

Step 3. count the number of occurences of the feature Aij
V
in

every malicious code Vj and the number of occurences of

the feature Aik
N
in every benign file Nk.

where:

j is the j-th malicious code

k is the k-th benign file

Ai is the i-th feature

Step 4. calculating average frequency P(Aij
V
) and P(Aik

N
) of

each feature Ai in the j-th malicious code or the k-th benign

application.

>

=

=
0,

0,0

)(
i

i

V

ij

i

V

ij m
m

A

m

AP

>

=

=
0,

0,0

)(
i

i

N

ik

i

N

ik m
m

A

m

AP

where:

mi is the maximum number of occurrences of i-th feature

in a specific malicious code of set V or a benign

application of set N. This allows the i-th feature detection

time limit in malicious code or benign application.

mi can be determine based on data mining result with a

sample data set, or gathered experiences from experts.

Step 5. The following formulas compute average frequency of

each features in malicious code set V and benign files set N.

∑
=

=
v

j

v

ij

V

i P
v

AE
1

1
)(

∑
=

=
n

k

N

ik

N

i P
n

AE
1

1
)(

where:

v is the number of malicious codes in set Q

n is the number of benign files in set Q.

Step 6. The following formula computes total mean frequency

of each feature (Ai) in set Q.

2

)()(
)(

N

i

v

i

i

AEAE
AE

+
=

Step 7. Compute mean square deviation D(Ai) of each feature

Ai as
22))()(())()(()(N

ii

v

iii AEAEAEAEAD −+−=

Step 8. We sorted features according to D(Ai) sequence and

choose the first t-th feature as the feature vector to recognize

malicious codes and benign files.

T = {T1, T2, …, Ti}, 1<=i<=t , T ⊂ A

 3

B. Unknown Malicious Code Detection Algorithm

This part introduces detaily the malicious code detection

algorithm that we proposed. The result of detection a file is

“benign file” or “malicious code”.

F defined as the file detects

C defined as the set that contains 2 subset B and M.

C = {B, M}, where B represents “detected benign files

set” and M represents “detected malicious codes set”.

T defined as proposed features set that is chosen from A set

in feature extraction algorithm to recognize malicious codes or

benign files.

T = {T1, T2, …, Ti}, 1<=i<=t

Every feature Ti has four values D(Ti), mi,, E(Ti
v
) and E(Ti

n
)

to determine it’s membership level in B subset and M subset.

Algorithm’s objective is to determine any F file belongs to B

or M.

The algorithm can be described as follows:

Input :

File F

Set of features T (every Ti has four values D(Ti), mi,, E(Ti
v
)

and E(Ti
n
))

Warning level W (high, medium, low)

Output :

 F is “benign file” or “malicious code”

Step 1. Divide set T into two subset of features T1 and T2

T1 = {K1, K2, …, Ki}, 1<=i<=k, T1 ⊂ T
T2 = {D1, D2, …, Dj, 1<=j=d, T2 ⊂ T
T1 is the set of static features. Every Ki has four values

D(Ki), E(Ki
v
), E(Ki

n
) and mi

T2 is the set of dynamic features. Every Dj has four values

D(dj), E(Dj
v
), E(Dj

n
) and mj

Step 2. Initialize values

fm = 0

fb = 0

S = 0

fm defined as the degree membership of the file F in M set.

fb defined as the degree membership of the file F in B set.

S defined as the number of suspicious features.

Step 3. Sort features Ki according to D(Ki) descending

sequence. Sort features Dj according to D(Dj) descending

sequence.

Step 4.

For all Ki ⊂ T1
Count the number of occurrences of features Ki

f
.

If Ki
f
 = mi then stop counting.

Compute percentage of occurrences of feature Ki in file f.

i

f

if

i
m

K
KP =)(

In the formula, mi is the maximum number of occurrences of

i-th feature in file f.

If E(Ki
v
) ≥ E(Ki

n
) then

 If P(Ki
f
) ≥ E(Ki

v
) then

 fm = fm + D(Ki)

 S = S + 1

 Else

If P(Ki
f
) > E(Ki

N
) then

S = S + 1

 End if

 End if

ELSE

If P(Ki
f
) ≥ E(Ki

N
) then

 fb = fb + D(Ki)

Else

 If P(Ki
f
) > E(Ki

V
) then

 S = S + 1

 End If

 End if

End if

If fm >= 1 then

 return “f is the malicious code”

Else

 If fb >= 1 then

 return “f is the benign file”

 End if

End if

Next

Step 5.

For all Dj ⊂ T2

Count the number of occurrences of features Dj
f
.

If Dj
f
 = mi then stop counting.

Compute percentage of occurrences of feature Dj in file f.

j

f

jf

j
m

D
DP =)(

In the formula, mi is the maximum number of occurrences of

i-th feature in file f.

If E(Dj
v
) ≥ E(Dj

N
) then

 If P(Dj
f
) ≥ E(Dj

v
) then

 fm = fm + D(Dj)

 S = S + 1

 Else

If P(Dj
f
) ≥ E(Dj

N
) > then

S = S + 1

 End if

 End if

ELSE

If P(Dj
f
) ≥ E(Dj

N
) then

fb = fb + D(Dj)

Else

 If P(Dj
f
) > E(Dj

v
) then

 S = S + 1

 End If

End if

End if

If fm >= 1 then

 return “f is the malicious code”

Else

 If fb >= 1 then

 return “f is the benign file”

 4

 End if

End if

Next

Step 6. Test warning level W and value in S variable. Warning

level W shows correctness of the determination a infected file

or a benign file.

Select case W

Case “high”:

if (
dk

s

+
>0.9) OR (fm - fb >0.75) then

return “f is the malicious code”

else

return “f is the benign file”

end if

Case “medium”:

if (
dk

s

+
>0.75) OR (fm - fb >0.5) then

return “f is the malicious code”

else

return “f is the benign file”

end if

Case “low”:

if (
dk

s

+
>0.5) OR (fm >0.5) then

return “f is the malicious code”

else

return “f is the benign file”

end if

End Select

C. Analysis

When a file is recognized as a worm, it is saved in M set,

and a file is recognized as a benign file, it is saved in B set.

Antivirus software can use this result to detect its variations by

other algorithms such as secure hash algorithm, … In the

future, we use this result to calculate again D(Ti) as a learning

machine algorithm and we present it in another paper.

Features Ai are determined after analyze features of Q files

set. It includes static and dynamic features such as api function

calls, behaviors of worm and benign application, … Features

Ti are determined from set A by feature extraction algorithm,

after sorting features Ai according to D(Ai) descending

sequence. For example, if we choose api function calls as

features, set A includes all api functions of windows. But

“unknown malicious code detection algorithm” only examines

api functions that chosen in set T.

There are some features that you always use them to detect

statically. Some features always use to detect dynamically. But

some features can use for both. For example, feature “The

external storage device contains many files that have the same

contents with file f”. If our USB doesn’t infect worm, we use

this feature as a dynamic feature. When our USB infected

worms such as w32-virut.gen (the worm is named by Avira),

we can use this feature as a static feature when we plug this

USB into our computer.

S value indicates the number of “suspicious” features that

antivirus software found in file f. S and (fm-fb) values

determine f is malicious or not when fm<1 and fb < 1.

E(Ti
N
) and E(Ti

V
) are values of feature Ti and they are

previously calculated from set Q. Set Q doesn’t include files

that we want to detect. It is easy to realize that D(Ti) max =

0.71 when E(Ti
N
)=1 and E(Ti

V
)=0 or E(Ti

N
)=0 and E(Ti

V
)=1.

It means that Ti is particular feature of malicious codes or

benign application. If you find such a feature in file f, you can

conclude f is a malicious code (or benign application) but your

appraisal is not 100% precisely because D(Ti) is only

calculated on a sample files set. When set Q is large enough

for data mining technique, D(Ti) value decreases. Because it’s

difficult to find a particular feature of all malicious codes or all

benign files. So the algorithm examines many features to get

fm >=1 or fb >=1. In this case, if we find a feature that has

D(Ti) = 0.71, our appraisal is more precisely. Our algorithm

always previously examines features that have higher D(Ti)

value. Because they are particular features of malicious codes

or benign application. For example, we examine a file word, if

feature “no macro” is detected, it is not necessary to continue.

Our approach allows to save time for detecting worms and

polymorphic worm. For example, W32.sality.y is a

polymorphic worm. Although this worm can create new files

that have difference size. But it still have features that we can

detect it statically when it infected in our USB or in our

computer. If we only have a new file and we don’t know if it is

worm or not? Antivirus software runs it to detect dynamic

features. But when our computer infected W32.sality.y or we

plug an USB that infected W32.sality.y into our computer,

antivirus software can detect it that needn’t run file. It’s not

necessary to examine all features of set T.

IV. EXPERIMENT RESULTS

We used 120 benign programs and 100 malicious executable

programs that are in the Windows Portable Executable (PE)

format as dataset for experiment (table 1). The clean programs

were gathered from a freshly installed Windows XP machine.

We installed WINXP source on the new harddisk and we also

tested them by antivirus softwares, including AVIRA,

Bitdefender, BKAV and Kaspersky. All of files were

recognized as benign applications. Malicious codes (such as

w32-virut.AR, W32-virut.gen, w32.sality.Y, trojan

crypt.pepm.gen, mabezat.b, trojan spy.gen) is recognized by

one of the following antivirus softwares: AVIRA, BKAV,

Kaspersky.

TABLE 1

SAMPLE DATA IN EXPERIMENT

W Sample space Training set Testing set

Benign file 120 50 70

Malicious file 100 30 70

Sum 220 80 140

 5

We used 50 benign programs (V) and 30 codes executable

files (N) in the Q sample data set (training set).

The A features set is determined after analyze features of Q

set (by data mining technique or our direct files analysis result,

it includes static and dynamic features such as api function

calls, behaviors of worm and benign programs, …).

The T features set is determined from A set by feature

extraction algorithm, after sorting features Ti according to

D(Ti) descending sequence. An example of T features set are

proposed for unknown worm and its variations detection

algorithm as table 2. They include 22 typical features (t=22) of

worms.

Features that we proposed in table 2 is to clarify our

algorithm. That’s not all. To detect worm “in general”, we

have to expand set Q, and the size of set A also increases. Set

A can include static features and dynamic features.

Result of dividing T set into subset T1 and T2 is determined

in table 3 and table 4. T1 includes the static features. T2

includes the dynamic features. Some features are particular

features of T1 set or T2 set. But some features can belong to

both (such as API function calls). This paper only proposes the

features of T2 set that can belong to T1 set.

TABLE 3

AN EXAMPLE OF SET T1 (STATIC FEATURES) ARE PROPOSED FOR UNKNOWN

MALICIOUS CODE DETECTION ALGORITHM

Feature T1i mi E(Ki
v
) E(Ki

n
) E(Ki) D(Ki)

Executable file has

the same name as

folder in storage

disk drive.

1 0.67 0 0.34 0.47

File has the same

content with one

or many processes.

2 0.83 0 0.42 0.59

File has the same

contents with one

a many files in a

disk drive.

3 0.78 0.11 0.45 0.47

The external

storage device

contain many files

that have the same

contents.

3 0.83 0 0.42 0.59

File change it’s

size but no change

system time

1 0.67 0 0.34 0.47

Executable file has

hidden attribute.
1 0.83 0 0.42 0.59

Many system files

increase in the

same size

3 0.83 0 0.42 0.59

Executable file has

the same name as

word file and word

file has hidden

attribute.

1 0.12 0 0.06 0.09

File has the same

contents with one

a many files in the

system directory.

3 0.28 0 0.14 0.20

TABLE 2

AN EXAMPLE OF SET T ARE PROPOSED FOR UNKNOWN MALICIOUS CODE

DETECTION ALGORITHM

Features

1. Executable file has the same name as folder in storage

disk drive.

2. File has the same content with one or many processes.

3. File has the same contents with one a many files in a

disk drive.

4. The external storage device contain many files that

have the same contents.

5. File change it’s size but no change system time

6. Executable file has hidden attribute.

7. Many system files increase in the same size

8. Executable file has the same name as word file and

word file has hidden attribute.

9. File has the same contents with one a many files in the

system directory.

10. Create Autorun.inf file in many storage disk drives.

11. Executable file in autorun.inf is the same file in startup

keys of windows registry

12. Process file is as the same as executable file in

autorun.inf but difference path
13.
 Copy many times a file to the system directory

14. CallNextHookEx

15. GetFileSize

16. ExitProcess

17. VirtualAlloc

18. CloseSocket

19. GetKeyboardType

20. GetTickCount

21. GetCurrentProcessID

22. GetSystemTimeAsFileTime

 6

Experiment results of detection unknown worm on testing

set are showed in table 5.

V. CONCLUSION

We presented a method for detecting unknown worm and its

variations based on features previously extracted from the

analyzed files. The proposed algorithm can detect unknown

worm and its variations with a small sample features set. This

approach is not only applied well to detect worms with static

features but also can be developed to detect worms based on

their dynamic features and behavious. It overcomes drawbacks

of unknown worms detection algorithms based on only static

features or dynamic features. It can protect user realtime

effectively and has good effect on unknown worm detection in

USB. In the future, we will continue to expand our algorithm

for both dynamic features of malicious code and static features

of benign executables to gain higher accuracy and detection

rates. We also would like to test this method on a larger set of

malicious and benign executables.

REFERENCES

[1] David M. Chess, Steve R.White, “An Undetectable Computer Virus”,

Virus Bulletin Conference, September 2000.

[2] Essam Al Daoud, Iqbal H. Jebril, Belal Zaqaibeh, “Computer Virus

Strategies and Detection Methods”, Int. J. Open Problems Compt.

Math., Vol. 1, No. 2, September 2008.

[3] Zhang,B., Yin,J., Hao,J., “Using Fuzzy Pattern Recognition to Detect

Unknown Malicious Executables Code”. In: Wang,L.,Jin,Y.(eds.):Fuzzy

Systems and Knowledge Discovery. LNAI,Vol.3613. Springer-Verlag,

Berlin Heidelberg New York(2005) 629-634.

[4] Zhang,B., Yin,J., Hao,J., Zhang.D., Wang.S., “Using Support Vector

Machine to Detect Unknown Computer Viruses”, In: International

Journal of Computational Intelligence Research, ISSN 0973-1873 Vol.2,

No. 1 (2006), pp. 100-104.

[5] Liu Guozhu, Shang Yanjun, “Unknown Virus Detection Method

Amalgamation Genetic Algorithm into Ant Colony Algorithm”, Journal

of Computers, Vol. 5, No. 6, June 2010, pp. 879-884.

[6] Jeffrey O. Kephart, Gregory B. Sorkin, Morton Swimmer and Steve R.

White, “Blueprint for a Computer Immune System”, Virus Bulletin

International Conference San Francisco, California, October 1-3,

1997.

[7] Vesselin Bontchev, “Future Trends in Virus Writing”, 4th International

Virus Bulletin Conference, 1994, pp.65-82.

[8] Wing Wong, “Analysis and Detection of Metamorphic Computer

Viruses“, A writing project presented to the faculty of the department of

computer science San Jose State University, May 2006, pp. 25-60.

[9] M.G. Schultz, E. Eskin, E.Zadok, S.J. Stolfo, “Data Mining Methods for

Detection of New Malicious Executables”, sp, pp. 0038, IEEE

Symposium on Security and Privacy, 2001.

[10] M. Debbabi et al., “Dynamic Monitoring of Malicious Activity in

Software Systems”, Symposium on Requirements Engineering for

Information Security, Indianapolis, Indiana, USA, March 5-6, 2001.

[11] George I, Davida, Yvo G. Desmedt and Brian J. Matt, “Defending

Systems Against Viruses through Cryptographic Authentication”,

Proceedings of the 1989 IEEE Symposium on Computer Security and

Privacy, 1989, pp. 312-318.

[12] Jose Nazario, “Defense and Detection Strategies against Internet

Worms”, Artech House Inc., 2004, pp. 137-158.

. TRAN CONG HUNG was born in VietNam in 1961

He received the B.E in electronic and

Telecommunication engineering with first class honors

from HOCHIMINH university of technology in

VietNam, 1987.

He received the B.E in informatics and computer

engineering from HOCHIMINH university of

technology in VietNam, 1995.

He received the master of engineering degree in

telecommunications engineering course from postgraduate department HaNoi

university of technology in VietNam, 1998.

He received Ph.D at HaNoi university of technology in VietNam, 2004.

His main research areas are B – ISDN performance parameters and

measuring methods, QoS in high speed networks, MPLS.

Currently, he is a lecturer, Deputy Head of Training & Science Technology

Department in Posts and Telecoms Institute of Technology (PTIT), in

HOCHIMINH City, VietNam.

DINH XUAN LAM was born in Vietnam in 1971.

He received the B.E in Physical from DALAT

university in VietNam, 1993.

TABLE 5

EXPERIMENTAL RESULT OF DETECTION SYSTEM

W False Negative False Positive

High 4.29% 2.86%

Medium 7.14% 10.00%

Low 8.57% 11.43%

TABLE 4

AN EXAMPLE OF SET T2 (DYNAMIC FEATURES) ARE PROPOSED FOR

UNKNOWN MALICIOUS CODE DETECTION ALGORITHM

Feature T2j mi E(Dj
v
) E(Dj

n
) E(Dj) D(Dj)

Create Autorun.inf

file in many

storage disk

drives.

2 0.83 0 0.42 0.59

Executable file in

autorun.inf is the

same file in

startup keys of

windows registry

1 0.06 0 0.03 0.04

Process file is as

the same as

executable file in

autorun.inf but

difference path

1 0.33 0 0.17 0.23

Copy many times

a file to system

directory

3 0.78 0.11 0.45 0.47

CallNextHookEx 1 0.15 0.10 0.13 0.04

GetFileSize 1 0.23 0.16 0.20 0.05

ExitProcess 1 0.59 0.34 0.47 0.18

VirtualAlloc 1 0.38 0.21 0.29 0.12

CloseSocket 1 0.16 0.02 0.09 0.10

GetKeyboardType 1 0.12 0.01 0.06 0.08

GetTickCount 1 0.12 0.64 0.38 0.37

GetCurrentProcess

ID

1 0.17 0.65 0.41 0.34

GetSystemTimeAs

FileTime

1 0 0.61 0.31 0.43

 7

He received the B.E in Information Technology with first class honors from

HANOI university of polytechnic in VietNam, 2001. Will receive Master in

Post and Telecommunication Institute of Technology (PTIT), 2011, major in

Networking and Data Transmission.

His main research fields are Application programming and Security.

Senior of IT group of Card Department at Vietnam Import & Export Bank,

2002-2004

Deputy Head of Software Consulting and Implementing Department at Kha

Thi Corp., 2005 - 2006

Team Leader of Security Group at Aplis VietNam Corp., 2007.

Currently, he is a lecturer at CaoThang Technical College, in HOCHIMINH

City, VietNam.

