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   Abstract- The problem of jointly estimating time delay and 
frequency of a signal received at two separated sensors is 
addressed in this paper. These methods require eigenvalue 
decomposition (EVD) of the covariance matrix of received data. 
Thus, the computational load and complexity is high especially 
when the number of samples is large. In addition, the noises field 
is assumed to be uncorrelated with constant variance. The 
objective of this paper is to develop an algorithm for estimating 
time delay and frequency without using any spectral 
decomposition techniques such as eigenvalue decomposition 
(EVD) or singular value decomposition (SVD) of the received 
data matrix. Proposed method only uses a linear transformation 
of the received data. Furthermore, this method accommodates 
more practical noise cases where the noise variance is not 
constant or in unknown correlated noise field. The proposed 
method can therefore is implemented with a reduced complexity 
compared to reference Y.Wu’s method. Computer Simulation 
results demonstrate that the proposed method can estimate both 
the frequencies and time delay efficiently and accurately even at 
low signal to noise ratio (SNR). 
 
Index Terms- Time Delay and Frequency estimation, ESPRIT, 
Propagator Method, MUSIC, root-MUSIC 
 

I. INTRODUCTION 
 
   The problem of frequency estimation of multiple sinusoidal 
signals in the presence of noise has received a significant 
amount of attention in signal processing literature [1-4]. It has 
also played an important role in many application areas such 
as radar, sonar, radio astronomy, speech analysis, control 
theory, and communication systems. However, these methods 
rely on the singular value decomposition (SVD) of the 
received data or the eigenvalue decomposition (EVD) of the 
covariance data matrix which increase the computational 
complexity of the algorithm.  It becomes a time consuming 
especially when implementation focusing on hard real time 
signal processing requirement. On the other hand, the problem 
of estimating the time delay in the signal at two separated 
sensors has been studied by many researchers [5-7].  These 
problems widely addressed in application areas such as radar, 
sonar, biomedical, and geophysics. 
   Recently, Y.Wu et al. studied the problem of jointly 
estimation of time delay and frequency of multiple sinusoidal 
[8-11] based on the measured data from two separated sensors. 
However, Y.Wu 's method [12] has some drawbacks; This 
method is separating the received data matrix or the 
covariance matrix into noise and signal space. This separation 
requires either EVD or SVD which is computationally 

intensive task. It has become even more time consuming 
process when the number of snapshots N is larger than the 
number of signals which is always the. In addition, Y.Wu's 
methods are applicable only when the noise is spatially white 
and the covariance noise matrices are known.  But in practical 
situation, the covariance noise matrix may be difficult to 
obtain because the noise covariance are often measured 
experimentally.  
   In this paper, we developed a computationally efficient 
algorithm to estimate the time delay and frequencies of 
multiple sinusoids based on measurements from two separated 
sensors.  Our algorithm performs better for low SNR and is 
suitable for real-time implementation. To achieve this, we first 
construct the data matrices (Toeplitz or Hankel) from 
measurements taken from two separated sensors. Second, we 
modify and extend the method of bearing estimation without 
EVD or SVD [13-15]. It has been developed for direction of 
arrival estimation to track moving sources. We utilized the 
Propagator method (PM) which has been previously 
developed for direction of arrival estimation problem [13] to 
estimate the time delay between the two separated sensors. 
The proposed method for frequency and delay estimation does 
not require SVD or EVD for the data covariance matrix. It 
applies only a linear operation on the received data matrix or 
the sample covariance matrix.  In addition, the proposed 
method can handle more general noise cases such as spatial or 
unknown correlated noise field.    
    In Section II, we first formulate the problem of frequency 
and time delay estimation followed by derivation of the 
proposed algorithm. Section III presents the simulation results, 
and Section IV concludes the research work. 
 

II. PROPOSED METHOD FOR TIME DELAY AND FREQUENCY 
ESTIMATION OF MULTIPLE SINUSOIDS 

 
Consider that the discrete time of sinusoidal signals )(nx  and 

)(ny  are the two sensor measurements satisfying   
)()()( 1 nensnx                   (1) 

)()()( 2 neDnsny                         (2) 
where,  
                푠(푛) = ∑ 퐴 exp(	푗휔 푛), 푛 = 0,1, … ,푁 − 1			 

 
Also, 퐴  and 휔  represent the amplitude and the frequency of 
the k-th complex sinusoid, N denotes the number of data 
samples,    nene 21  and , 푛 = 0,1, … ,푁 − 1 are sequence of 
complex Gaussian noise variables. The parameter D  is the 
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differential time delay between the signals at the two sensors. 
The objective is to estimate both time difference D  and the 
frequencies 휔  of multiple sinusoid given a data record at two 
separated sensors	푥(푛)	푎푛푑	푦(푛),				푤ℎ푒푟푒		푛 = 0,1, … ,푁 −
1. Following steps illustrate the formulation of proposed 
method. 
 
Step 1: Frequency estimation for multiple sinusoidal 
 
   To derive the proposed method for frequency estimation we 
construct the square Henkel matrix X with dimension ×  
from the data samples 푥(0), 푥(1), … … … 푥(푁 − 1) as follow 
 

푿 =

⎣
⎢
⎢
⎢
⎡ 푥(0) 						푥(1)
푥(1) 						푥(2)

… 푥(	 − 1)			
… 					푥(	 )

⋮ ⋮
푥(	 − 1) 푥(	 )

⋱ ⋮
… 푥(푁 − 1)		 ⎦

⎥
⎥
⎥
⎤
                   (3) 

       
 
The elements of the i-th column can be rewritten as follows 
 

풓 =

푥(푖)
푥(푖 + 1)

⋮
푥(푖 + − 1)

	= 	푩(휔)(흋(휔)) 푺 + 풆           (4) 

                                                       푖 = 0,1, … … − 1 
where, 푺 = 	 [푆 		푆 … 푆 ] , T represent the matrix transpose, 
and the Vandermonde matrix 푩(휔) is given by  
 

푩(휔) =

1 										1
		푒 									푒

… 1
… 	푒

	
⋮						 ⋮

푒 ( ) 푒 ( )
⋱ ⋮
… 푒 ( )

          (5) 

                           
and 

흋(휔) = 푑푖푎푔(	푒 			푒 … … 		푒 )              (6) 
 
is (퐾 × 퐾)  diagonal matrix whose diagonal elements contain 
the information about the frequencies of the complex 
sinusoids, and 풆풊ퟏ is the gaussian noise vector. In general, the 
data matrix in (3) can be rewritten in terms of 푩(흎), S, and 
흋(휔) as follow  
 

푿 = 푩(휔)푺			푩(휔)흋(휔)푺… …푩(휔) 흋(휔)
N
2−1푺  

+[풆 		풆 … … 	풆( )]             (7) 

 
In the proposed method we introduce the following partition 
on the array response matrix 푩(휔)  

 
푩(휔) = 	 [푩 (휔)				푩 (휔)				푩 (휔)				푩 (휔)]         (8) 

 
where,  푩 ,푩   and 푩  are matrices of dimension (퐾 × 퐾) 
and  푩  has a dimension of (푁 2⁄ − 	3퐾) × 퐾, respectively. 
Since 푩  is nonsingular and has full rank of 퐾, we can define 

uniquely three matrices 1 , 2 ,and 3  with dimension 
퐾 × (푁 2⁄ − 	3퐾) using the parathion of array response vector  
푩(휔) as follows  
  	 

흍 = −푩 (휔) 푩 (휔) 	                              (9) 
흍 = −푩 (휔) 푩 (휔)                             (10) 
흍 = −푩 (휔) 푩 (휔)                             (11) 

 
Let us define matrix U with dimension 푁 2⁄ × 3(푁 2⁄ − 	2퐾)  
matrix using  흍  ,	흍 , and  흍  as  
 

푼 =

흍
0

0 0
흍 0

0
퐼

0 흍
퐼		 퐼

                                 (12) 

 
where,  0 is a zeros matrix with dimension 퐾 × (푁 2⁄ − 	3퐾) 
and I is an identity matrix with dimension	(푁 2⁄ − 	3퐾) ×
(푁 2⁄ − 	3퐾). We show that the matrix U span the null space 
of 푩(휔)  as follow 
           

푩 (휔) 푼 = ퟎ                                 (13) 
 
Equation (13) implies that the subspace spanned by the 
columns of 푼 is orthogonal to the columns of	푩(휔). Since the 
basis of 푼 is not orthonormal we can introduce the orthogonal 
projection as 푶 = 	푼(푼 푼) 푼 .The matrix 푼 can also be 
written in terms of 흍 , 흍 , and 흍  as 
 

푼 = [흍 		흍 		흍 		3퐼]          (14) 
 

Now, we show here how to find the elements of the 푼 matrix 
흍 ,	흍 , and 흍  from the covariance data matrix. The 
covariance matrix 푹 of the square data Hankel matrix can be 
written as 

  

=ࡾ 퐸[푿푿 ] =

푹 푹
푹 푹

푹 푹
푹 푹

푹 푹
푹 푹

푹 푹
푹 푹

                      (15) 

 
Now, consider the partition of the covariance data matrix 푹 
similar to the partition of the array response vector	푩(휔). The 
matrices	흍 ,	흍 , and 	흍  can be found form the partition 
blocks of the covariance data matrix in (15) as follow  
 

흍 = −푹 푹     (16) 
흍 = −푹 푹      (17) 
흍 = −푹 푹     (18) 

 
here, 푹 , 푹 , and 푹  have a dimension of (퐾 × 퐾) while  
block matrices 푹  and 푹  have dimension of − 3퐾 × 퐾. 
Note that the proposed method does not require any EVD or 
SVD in estimating the matrix 푼. 
   Estimation of the frequencies of the multiple sinusoids is a 
search for the peaks which maximize the power spectrum. 
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These peaks in the spectrum corresponding to the true 
frequencies are examined by 
 

푃(푒 ) =
푩( ) 푶푩( )

			                       (19) 
 
Since we have considered uniformly sampled data, the 
proposed method can also utilize the root MUSIC algorithm 
[15] to find the roots of polynomial which reveal the 
frequencies of multiple sinusoids. Note that the proposed 
method does not require any EVD or SVD in estimating the 
orthonormalized version matrix	푶, whereas the original Root 
MUSIC, and MUSIC algorithm does. The frequency estimates 
may be taken to be the angles of the 퐾 roots of the polynomial 
퐷(푧)	that are closest to the unit circle 
 

퐷(푧) = ∑ 푉 (푧)푉∗(1 푧∗⁄ )	       (20) 
 
where, 푉 (푧) is the z-transform [5] of the i-th column of the 
projection matrix  푶. 
 
Step 2: Time delay estimation by proposed method 
 
The estimate 휔 obtained in first step is used to estimate the 
time delay D. From the given data record at the second sensor 
{푦(푛),			푛 = 0,1, … ,푁 − 1}, we can construct a square Henkel 
matrix 풀 with dimension ×  as  
 

풀 =

푦(0) 						푦(1)
푦(1) 						푦(2)

… 푦(푁 2⁄ − 1)			
… 					푦(푁 2⁄ )

⋮ ⋮
푦(푁 2⁄ − 1) 푦(푁 2⁄ )

⋱ ⋮
… 푦(푁 − 1)		

       (21) 

 
In (21), the i-th column can be written as  
 

풒 =

푦(푖)
푦(푖 + 1)

⋮
푦(푖 + − 1)

	= 	푩(휔)훀(휔,퐷) 흋(휔) 푺 + 풆 						(22) 

               푖 = 0,1, … … − 1  
 
where, 풆  is the complex noise vector of size  × 1  and 
훀(휔,퐷) = 푑푖푎푔(푒 			푒 … 	푒 )  is a (퐾 × 퐾) 
diagonal matrix which contains an information about the time 
delay.  The received data from the two separated sensors 푿 
and 풀, respectively can be grouped as  
 

풁 = 푿
풀 = 푩푺					푩흋푺				… … 	푩흋( ⁄ )푺

푩훀퐒		푩훀흋푺… … 	푩훀흋( ⁄ )푺
+ 	 풆

풆
      (23) 

 
The objective here is to find the time delay information 
matrix	훀(휔,퐷). In proposed method, we utilize the PM 
(Propagator Method) which is originally proposed for classical 
direction of arrival estimation problem.  The estimated 
frequencies 휔  in step one is used to estimate the time delay 

from	훀(휔,퐷). For sake of simplicity, we dropped time delay 
and frequency index.  
 
We introduce the following partition on the matrix B as 
퐵 = [퐵 	퐵 ] . where, 21  and  BB are sub-matrices with 
dimension(퐾 × 퐾) and 	(푁 2⁄ − 	퐾) × 퐾; Similarly, we can 
define matrix 푸 as  
 

푸 = 푸
푸 =

⎣
⎢
⎢
⎢
⎡ 푩 					푩 흋				… … 	푩 흋( ⁄ )

푩 					푩 흋				… … 	푩 흋( ⁄ )

푩 훀		푩 훀흋… … 	푩 훀흋( ⁄ )

푩 훀		푩 훀흋… … 	푩 훀흋( ⁄ )⎦
⎥
⎥
⎥
⎤
          (24) 

 
Under the hypothesis that 푩 	is (퐾 × 퐾)	non-singular matrix, 
the propagator matrix P is a unique linear operator which can 
be written as 푷 푸 = 푸  . Here, 푸  and 푸  contain the first 
	퐾 and the last (푁 − 퐾)	 rows of	푸. The propagator estimation 
can be found from the data matrix 풁 or from the data 
covariance matrix	푹 = [풁풁 ].  Partitioning  푹 as 
 

푹 = [푹 			푹 ]    (25) 
 
where, matrices 푹  and		푹  contain the first 퐾 and the last 
(푁 − 퐾)	 columns of Q . The propagator estimate matrix can 
be obtained by minimizing the following cost function: 
 

휉(푷 ) = ‖푸 − 푷 푸 ‖    (26) 
 

휉(푷 ) = ‖푹 − 푹 푷 ‖      (27) 
          
where,  푷  and 푷  are propagator estimate from the data 
matrix and the covariance matrix respectively. ‖	‖  denotes 
the frobenius norm. Following above argument, the 
propagator estimate matrix can be found from (26) and (27) as 

 
푷 = (푸 푸 ) 푸 푸     (28) 

 
푷 = (푹 푹 ) 푹 푹    (29) 

 
We can partition either 푷  or 푷 as follows: 
 

푷 = [푷 		푷 		푷 ]                 (30) 
 
푷 푩 		푩 횽…푩 횽( ⁄ ) =
																																												 푩 훀		푩 훀횽	… 	푩 훀횽( ⁄ )    (31) 
 
From (31), the 퐾 eigenvalues of the propagator 푷  are 
corresponding to the 퐾 diagonal elements of Ω. Let the angle 
of 퐾 diagonal elements of 푷  equals to	푸 = 푑푖푎푔(∠푷 ). 
This implies that the trace of 푸 is equal the trace of Ω. Then 
the time delay estimation can be found as 
 

퐷 = (푸 )
∑

    (32) 
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III. SIMULATION RESULTS  
 
    In the first part, we test the proposed method using the 
power spectrum plots for multiple sinusoids (퐾=3) in 
presence of AWGN noise and the time delay estimation for 50 
independent trials. In the second part, the performance of the 
proposed method verifies at two different noise cases: 1) non-
uniform noise power and 2) unknown correlated noise field. 
Finally in the third part, we compared the performance of the 
proposed method with the ESPRIT algorithm for estimating 
the frequencies of two sinusoids (퐾=2) and the time delay 
estimation. We considered the number of data samples, N=40. 
The signal to noise ratio (SNR) values tested from 0 to 20 dB, 
and 200 independent trials. 
   For Fig. 1 and Fig 2, we assume three sinusoid signals with 
frequencies at	[0.51휋		0.636휋			0.764휋], time delay at D=0.9, 
the number of recorded samples is N=40 for each sensors, and 
SNR of 0 dB for all signals. The complex attenuation 
coefficients of the three signals are (.4+.8i), (–.5–.7i), and (–
.3+.8i). Fig. 1 shows the power spectrum versus the frequency 
estimation. It is become clear that our proposed algorithm 
gives accurate frequency estimation for all the unknown 
signals at exact frequencies. In Fig. 2 we show the time delay 
estimation for fifty independent trials.  It is observed that the 
proposed method give accurate estimation for the time delay 
even at low SNR.  
   For Fig 3, we assume two sinusoid signals at		[0.6휋			0.8휋], 
time delay at D =1.4, the number of recorded samples is N=20 
for each sensors, and the SNR of 5 dB for all signals. The 
attenuation coefficient of the two signals are (–.7–.7i), and 
(.2+5i). In this Figure, we considered two cases of noise field; 
In first case, the non-uniform covariance noise matrix whose 
diagonal elements for the first sensor is diag[ 1  2  2  3   4  6  6  
8   7  8 ] and for the second sensor is diag[ 1  3  3  2   4  4  5  8   
7  9 ] and in second case,  unknown correlated noise filed 
whose covariance matrix in the form of 
푄 , = 휎 0.9( )푒 ( ⁄ )( ) where k, l =1,2,…,10 and  휎  is 
the variance. It is become clear that our proposed algorithm 
gives accurate frequency estimation for all signals even the 
noise filed is non-uniform or correlated. Also, the proposed 
method deliver accurate estimation for the time delay for the 
non-uniform noise field (estimated 퐷 = 1.4011) and for 
unknown correlated noise field (estimated	퐷 = 1.4130 ).   
   Fig. 4, 5 and 6 show the standard deviation of frequency and 
time delay estimation versus SNR while considering K=2, and 
N=40 for each sensors. The proposed estimation scheme is 
utilizing the root MUSIC to find the accurate frequencies and 
compared with ESPRIT algorithm. It is observed in Fig. 4 and 
Fig. 5 that the proposed method can produce accurate 
estimation of sinusoids for the two sources and perform quite 
alike the ESPRIT algorithm. However, the ESPRIT algorithm 
requires the EVD or SVD which is computationally intensive. 
Also, it is observed in Fig. 6 that the proposed method can 
estimate accurate estimation for time delay with lower 
complexity.   
 
 

 
Fig.1. Power spectrum of Frequency estimation. 

 

 
Fig.2. Time delay estimation for D=0.9. 

 

 
Fig.3. Power spectrum of Frequency estimation obtained by the proposed 

method for using correlated noise and non-uniform noise power. 
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Fig.4. Standard deviation Vs SNR for the frequency estimation for source 1 at 

frequency at 푤 = 0.6휋, assuming N=40 snapshots  
 

 
Fig.5. Standard deviation Vs SNR for the frequency estimations for source 2 

at frequency at 푤 = 0.65휋, assuming N=40 snapshots  
 

 
Fig.6. Standard deviation Vs SNR for time delay estimation with time delay 

D=1.4 sec, assuming N=40 snapshots. 
 

IV. CONCLUSION 
 

   In this paper we proposed a method for estimating time 
delay and frequency for multiple sinusoids in the presence of 
different noise filed. The proposed method does not require 
any spectral decomposition techniques such as EVD or SVD. 
Thus, the proposed scheme has much lower computational 
complexity and cost compared with peer algorithms such that 
MUSIC, ESPRIT and the methods [10-11]. The proposed 
method is more appropriate when concerning non-uniform 
noise power or unknown spatially correlated noise field 
whereas the eigenvalue analysis based methods [10-11]. In 
addition, the proposed method is accurately estimating the 
time delay and frequencies even at lower SNR. 
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