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Abstract—In this paper, we determinate the shortest balanced 

cycles of quasi-cyclic low-density parity-check (QC-LDPC) codes. 

We show the structure of balanced cycles and their necessary and 

sufficient existence conditions. Furthermore, we determine the 

shortest matrices of balanced cycle. Finally all nonequivalent 

minimal matrices of the shortest balanced cycles are presented in 

this paper. 

 
Index Terms—Girth, quasi-cyclic low-density parity-check 

(QC-LDPC) codes, balanced cycles. 

 

I. INTRODUCTION 

Low-density parity-check (LDPC) codes were first 

discovered by Gallager [1] and rediscovered by MacKay et al. 

and Sipser et al.. They have created much interest recently since 

they are shown to have a remarkable performance with iterative 

decoding that is very close to the Shannon limit over additive 

white Gaussian noise (AWGN) channels. Also, LDPC codes 

possess many advantages including parallelizable decoding, 

self-error-detection capability by syndrome-check, and an 

asymptotically better performance than turbo codes, etc. 

The performance of LDPC codes of finite length may be 

strongly affected by their cycle property such as girth and 

stopping sets, etc. Here the girth is the minimum length of cycles 

in the Tanner graph of a given parity-check matrix. In most 

cases, it is difficult to analyze explicitly these factors of 

randomly constructed LDPC codes and predict their 

performance. One advantage of quasi-cyclic LDPC (QC-LDPC) 

codes based on circulant permutation matrices is that it is easier 

to analyze their code properties than in the case of random 

LDPC codes. Recently, several coding theorists proposed some 

classes of QC-LDPC codes with algebraically strong restriction 

on the structure and analyzed their properties more explicitly 

[2], [3], [4], [5]. 

The main contribution of this paper is to analyze balanced 

cycle properties of QC-LDPC codes and we presented all 
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nonequivalent minimal matrices of the shortest balanced cycles 

Firstly; we analyze necessary and sufficient existence 

conditions of balanced cycles. Secondly, we determine the 

shortest balanced cycle in the QC-LDPC codes matrix. 

According to our results, we presented all nonequivalent 

minimal matrices of the shortest balanced cycles 

The outline of the paper is as follows. In Section II, we review 

QC-LDPC codes and introduce some definitions for our 

presentation. In Section III, we analyze necessary and sufficient 

existence conditions of balanced cycles. In Section IV, we 

determine the minimal matrices of balanced cycle. In Section V 

we determinate the shortest balanced cycles of QC-LDPC codes 

and we presented all nonequivalent minimal matrices of the 

shortest balanced cycles. Finally we give concluding remarks in 

Section VI. 

 

II. QUASI-CYCLIC LDPC CODES 

A QC-LDPC code is characterized by the parity-check matrix 

which consists of small square blocks which are the zero matrix 

or circulant permutation matrices. Let p  be the 

LL× permutation matrix given by 
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Note that
ip is just the circulant permutation matrix which 

shifts the identity matrix I to the right by i times for any 

integer i , Li <≤0 .For simple notation, we denote the zero 

matrix by
∞p .LetH be the nLmL × matrix defined by 
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where { }∞−∈  ,1 ..., ,1 ,0 Laij . From now on, the code C  

with parity-check matrix H will be referred to as a QC-LDPC 

code. When H has full rank, then its code rate is given by 
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nmR /1−= regardless of its code length nLN = .If the 

locations of 1’s in the first row of the i th row block are fixed, 

then those of the other 1’s in the block are uniquely determined. 

Therefore, the required memory for storing the parity-check 

matrix of a QC-LDPC code can be reduced by a factor L/1 , as 

compared with random LDPC codes. 

The QC-LDPC code defined in (2) may be regular or 

irregular depending on the choice of ija ’s ofH . WhenH has 

no blocks corresponding to the zero matrix, it is a regular LDPC 

code with column weightm and row weight n . In this case, its 

code rate is larger than nm /1−  since there are at 

least 1−m linearly dependent rows. 

For our presentation we introduce the following 

Lemmas[7][8][9][11][12][13] [14]. 

Lemma 1.For )(,, 321 MΓ∈γγγ with 2|| 2 ≥γ , the 

sequence 321 γγγ is a path if and only if 3221 , γγγγ are paths. 

Lemma 2. For )(,,, 10 MEeeee ∈′  with )(10 Meee Γ∈  

and 1)()( =′∩ ee σσ , there are integers v  and τ  in }1,0{  

such that )()()( ededed v
′== τττ  and 

φσσ =′∩− )()( 1 ee v . In particular, eee v
′−1  is a path. 

Lemma 3. For  { } )(/,, 10 MΓ∈ φγγγ with 

)()( 10 γογο ≠ and 1>γ , if 0γγ , 1γγ  are paths, then 

1

1

0 γγ −  is a path. 

Lemma 4. A path γ is a cycle if and only if 0|| >γ  

and )(MΓ∈γ . 

Lemma 5. For paths 
',γγ of positive lengths, the sequence 

'γγ  is a cycle if and only if |||| 'γγ + is even and γγγ '
is a 

path. 

 

III. NECESSARY AND SUFFICIENT CONDITIONS FOR THE 

EXISTENCE OF BALANCED-CYCLES 

A cycle keee 221 ... of length k2 is called a balanced cycle if 

for any edge )(MEe∈  { }|1,:| 2 kieei i ≤≤= = 

{ }|1,:| 12 kieei i ≤≤=+   Clearly, in a balanced cycle the 

number of occurrences of any edge is even. Hence, the length of 

a balanced cycle is at least twice the number of the distinct edges 

on the cycle. IfM has at least one balanced cycle, the length of 

the shortest balanced cycles of M is called 

the girthB − of M , and denoted by )(MgB .If M has no 

balanced cycle, we say that the girthB −  of M  is 

∞=)(MgB .It is well known that the girthB − of any matrix 

is not smaller than 12.In particular, the girthB − of M is 

equal to 12 if and only if the all-one 2×3(or 3×2)matrix is a 

sub-matrix ofM . 

For the existence of balanced cycles, The following two 

lemmas are refinements of Conclusions given in [19,20]. 

Lemma 6.If 1γ , 2γ and 3γ are paths of positive lengths such 

that
1

21

−γγ ,
1

32

−γγ and 
1

13

−γγ  are cycles ,then 

1

13

1

32

1

21

−−−= γγγγγγC                                     (3) 

is a balanced cycle of length |)||||(|2 321 γγγ ++ .The 

balanced cycle given by(3) will be called 

a 1321 |)||,||,(| γγγ -cycle formed by 1γ , 2γ and 3γ . 

Lemma 7.If 201 CC γ is a path, where 1C , 2C are two cycles 

without common edges and φγ =0 or φγ ≠0  with 

10 )( Co ⊄γ and 20 )( Ct ⊄γ ,then 

1

0

1

20

1

1

1

0201

−−−−= γγγγ CCCCC                            (4) 

is a balanced cycle of length 021 4|)||(|2 γ++ CC .The 

balanced cycle given by(4) 

will be called a 2021 |)||,||,(| γCC -cycle formed 

by 1C , 2C and 0γ . 

Theorem 1. If there is at least one cycle )(MC Θ∈  which 

is not multiple of any simple cycle, then at least one of the 

following conditions is valid: 

1. )(MΓ has three acyclic paths 1γ , 2γ , 3γ such that
1

21

−γγ , 

1

32

−γγ  and 
1

13

−γγ are simple cycles. 

2. )(MΓ has two simple cycles 1C , 2C and a path 0γ such 

that
1

201

−γγγ is an acyclic path, where, for  2,  ,1=i the 

path iγ satisfies iii CoC γ)(= . 

Now we show some necessary and sufficient conditions for 

the existence of balanced cycles. 

Theorem 2. For any binary matrixM , the followings are 

equivalent 

1. The B-girth of M is finite. 

2. There is a cycle which is not a multiple of any simple cycle. 

3. There are two connected simple cycles which are not 

equivalent. 

4. There are an acyclic pathγ and two different edges 1f , 

2f such that γ1f and 2fγ are cyclic paths. 

Proof. “1⇒ 2” is obvious. 

“2⇒ 1” follows from Theorem 1, Lemma 6 and 7. 

“2⇒ 3” follows from Theorem 1. 

“3 ⇒ 1”: Assume that there are two connected simple 

cycles 0C and 1C which are not equivalent. If 0C and 1C have no 

common edge, according to Lemma 7, there is a balanced cycle. 

Now we assume 0C and 1C have some common edges, letγ be 

one of the longest paths such that 0C⊆γ  and 1C⊆γ . For 
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0=i , 1, let iγ be the path such that iγγ 1−
is a cycle equivalent 

to iC . Clearly, 0γ and 1γ are positive integers with the same 

parity. If 110 == γγ , then we must 

have ( ) ( )10 γσγσ = and thus 10 γγ = . Therefore, 0C and 1C  

are equivalent, contradicts our assumption. Hence, at least one 

of 10 >γ and 11 >γ is valid. 

If 1=γ , from ( )Mii Γ∈− γγγ 1
 for 0=i , 1 and Lemma 

3, we see that
1

10

−γγ , 1

1

0 γγ − , 
1

01

−γγ and 0

1

1 γγ − are paths. Then, 

according to Lemmas 1 and 5, we see
1

10

−γγ  is a cycle. Thus, 

according to Lemma 6, there is a balanced cycle. 

If 1=γ , then 1>iγ  for 0=i , 1. From 

( )Mii Γ∈− γγγ 1
 for 0=i , Lemma 1 and Lemma 2, we have 

either
1

10

−γγ , ( )MΓ∈−
0

1

1 γγ or 10γγ , ( )MΓ∈01γγ . Then, 

according to Lemmas 1 and 5, we see that either 
1

10

−γγ or 10γγ  

is a cycle. Thus, according to Lemma 6, there is a balanced 

cycle. 

“2⇒ 4”: Assume that there is a cycle which is not a multiple 

of any simple cycle. If the condition 1 of Theorem 1 is valid, let 

1γ ′ and 3γ ′  be the paths such that γγογ ′= )( 11 and 

)( 333 γγγ t= . Then, 3

1

21 γγγγ ′′= −
is the desired path. If the 

condition 2 of Theorem 1 is valid, 
1

201

−= γγγγ is the desired 

path. 

“4 ⇒ 3”: Assume that there are an acyclic 

path keee K21=′γ of length k  and two different edges 1f , 

2f  such that γ1f  and 2fγ  are cyclic paths. Let i  be the 

smallest number such that 1>i  and φσσ ≠∩ )()( 11 fe . 

Let j  be the largest number such that kj <  

and φσσ ≠∩ )()( 2fe j . Clearly, ieeefC K2111 = and 

212 feeeC kjj K−=  are two connected simple cycles. Since 

1f  is not on 2C , we see that 1C  and 2C  are not equivalent. 

 

IV. DETERMINATION OF MINIMAL MATRICES OF BALANCED 

CYCLES 

A matrix W with ∞<)(WgB  is said BC-minimal if 

∞<)( 'WgB  holds for any submatrix 
'W  of W with 

WW ≠'
. A matrix W  with ∞<)(WgB  is said 

*

CB -minimal if any matrix R covered by W with ∞<)(RgB  

implies R = W. 

Lemma 8. For integers a, b, c with 

2},min{ ≥ba ,                                                               (5) 

 2/)1(},max{ −++≤ cbaba ,                              (6) 

we define a matrix )(),,( , jiscbaS =  as the following: 

1. If 12 +=++ ncba  is odd, ),,( cbaS  is an n × n 

matrix and  

.otherwise

)};1,(),1,{(),(or  10 if    

,0

,1
,

bnnajiij
s ji

−+∈≤−≤





=  (7) 

2. If 22 +=++ ncba is even, ),,( cbaS is an n × (n + 

1) matrix and 

.otherwise

)};1,1(),1,{(),(or  10 if    

,0

,1
,

+−+∈≤−≤





=
nbnajiij

s ji
(8) 

then ),,( cbaS  is 
*

CB -minimal and its B-girth is equal to 



 <+

++
=

otherwise.

; if

),(2

c,4
),,(

cba

cba
cbas                                  (9) 

Lemma 9. For any integers a, b, c with (5) and (6), we have 

).,,(),,( cabScbaS ≡                                        (10) 

If the inequality cba >+  is satisfied further, or 

equivalently, the integers a, b, c satisfy (5) and 

 2/)1(},,max{ −++≤ cbacba ,                 (11) 

then for any permutation ),,( zyx  of ),,( cba , we have 

).,,(),,( cabSzyxS ≡                                        (12) 

Proof. For any mn× matrix W and integer 2121 ,,, jjii with 

nii ≤≤≤ 211  and mjj ≤≤≤ 211 , let 
2121 ,,, jjiiW denote the matrix 

obtained from W by exchanging the )( 1 li + -th and )( 2 li − -th 

rows for  2/)(0 12 iil −≤≤  while exchanging the th-)( 1 kj +  

and th-)( 2 kj −  columns for  2/)(0 12 jjk −≤≤ . Let 

 2/)1( −++= cban  . Clearly, }22,12{ ++∈++ nncba . 

If 22 +=++ ncba , then 
1,1;,1),,(),,( += nncbaScbaS . If 

12 +=++ ncba , then 

nn

T cbaScbaS ,1;,1),,(),,( = , where T denotes the transpose. 

Hence, we have (10). 

Now we assume the integers a, b, c satisfies (5) and (11).. 

Hence, we have 
aacbaSbcaS ,1;1,1),,(),,( −=  and 

).,,(),,( cbaSbcaS ≡  Therefore, for any permutation ),,( zyx  

of ),,( cba , (12) follows from (10). 

The following lemma is a simple corollary of Theorem 2. 

Lemma 10. Let W be a *

CB -minimal matrix. There must exist 

integers a, b, c with 

(5) and (6) such that ).,,( cbaSW ≡  

Proof. Let )( , jiwW =  be a *

CB -minimal matrix. According 

to Theorem 2, there are an acyclic pathγ and two different 

edges 1f , 2f such that γ1f and 2fγ are cyclic paths. 

If n2|| =γ is even, without loss of generality, we assume 

that the path γ corresponds the elements .1,1W .2,1W .2,2W  
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.3,2W … .,nnW . Clearly, there are integers a, b with 2≤ a, b≤ n 

such that f1, f2 correspond .1,aW .1,1 +−+ nbnW , respectively. Let c = 

2n + 2－a－b. Then, the integers a, b, c satisfy (5) and (6), and 

).,,( cbaSW =  

If |γ| = 2n－1 is odd, without loss of generality, we assume 

that the path γ corresponds the elements .1,1W .2,1W .2,2W  

.3,2W … .,nnW  Clearly, there are integers a, b with 2≤ a, b≤ n 

and a + b<2n such that f1, f2 correspond wa,1, wn,n+1－b, 

respectively. Let c = 2n + 1－a－b. Then, the integers a, b, c 

satisfy (5) and (6), and ).,,( cbaSW =  

From Lemmas 8, 9 and 10, one can show the following 

corollary easily. 

Corollary 1. Let k be an integer with k≥ 3. 

1. Any
*

CB -minimal matrix W with 24)( += kWgB is 

equivalent to a matrix ),,( cbaS  with 

bacba +≤≤≤≤2  

and 12 +=++ kcba  

2. Any 
*

CB -minimal matrix W with kWgB 4)( =  is 

equivalent to a matrix ),,( cbaS and 12 +=++ kcba ,or 

with ba ≤≤2 and ckba =<+  

Theorem 3.Let M be a matrix with ∞<)(WgB .If R is a 

*

CB -minimal matrix covered by M with the least B -girth, 

thenR must be a sub-matrix ofM . 

Proof. Assume thatW is the least sub-matrix of M which 

coversR .Clearly, the numbers of rows and columns ofW are 

equal to those ofR , respectively. According to Lemmas 9 and 

10,without loss of generality, we assume 

that ),,( cbaSR = with cba ≤≤≤2 .Now we want to 

prove thatW = R .If this is not true, let ),( yx be a position 

of R where the elements of R andW are different. We will 

show thatW must cover a 
*

CB -minimal matrix whose B -girth 

is smaller that )(),,( RgcbaS B= ,which is in conflict with 

the assumption. This can be realized by distinguishing four 

cases. 

Case 1: 22 +=++ ncba .Without loss of generality, we 

assume that 1+> xy .As depicted in Figure .4,we distinguish 

three cases further. 

a
),( yx

b

a

),( yx

b

a
),( yx

b

bny −+≥ 2 { }abny ,1min −+≤ bnya −+≤< 1
 

Case 22 +=++ ncba  and 1+> xy  

.Case 1.1: bny −+≥ 2 .W must cover a matrix which is 

equivalent to 

)32,,( byxnbxyS −−−+− whose B -girth 

is ),,(44)232(2 cbasnxn ≤+<−+ . 

Case 1.2: { }abny ,1min −+≤ .W must cover a matrix 

which is equivalent to )1,,( xyaxyaS +−+−  whose 

B -girth is ),,(44)12(2 cbasna ≤+<+ . 

Case 1.3: bnya −+≤< 1 .W must cover a matrix which 

is equivalent to ),,( axyxyaS −+− whose B -girth is 

),,()22(4
otherwise  ,

a xif

4

4
cbasban

a)x(y

y
=−−+<



 ≤

−+
 

Case 2: 12 +=++ ncba and 1+> xy .Clearly, 

na < .As depicted in Figure 5, we distinguish five cases 

further. 

a

b

),( yx
a

b

),( yx
a

b

),( yx
a

b

),( yx

ay ≥ yax << bnxa −≤≤ 0>−> bnx nbax =≥   and  

a

b

),( yx

 

Case 1  and  12 +>+=++ xyncba  

Case 2.1: y≤ a. W must cover a matrix which is equivalent to 

)1,,( yxaxyaS −++−  whose B-girth 

is ),,(24)12(2 cbasna ≤+<+ . 

Case 2.2: x < a < y. W must cover a matrix which is 

equivalent to ),,( axyxyaS −+−  whose B-girth 

is ),,(244 cbasny ≤+< . 

Case 2.3: a≤ x≤ n－b. W must cover a matrix which is 

equivalent to )22,,( xybnxybS −−−+−  whose B-girth 

is 

otherwise

 if  

),22(4

),222(2 bny

xybn

xn −>





−−−+

−+
. 

).,,()12(4 cbasban =−−+≤  

Case 2.4: x > n－b > 0. W must cover a matrix which is 

equivalent to )1,,( yxbxybS −++− whose B-girth is 

),,(24)1)1(2(2)12(2 cbasnnb ≤+<+−≤+ . 

Case 2.5: x≥ a and b = n. W must cover a matrix which is 

equivalent to )2,,1( yxanxyanS −+−+−−+  whose 

B-girth is ),,(24)12(2)1)1(2(2 cbasnnan ≤+<+≤+−+ . 

Case 3: a + b + c = 2n + 1 and y < x = n. Let d = max{y, n + 1

－b} and e =min{y, n + 1－b}. Clearly, a < n and d < n. As 

depicted in Figure 5, we distinguish two cases further. 
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a

),( yx

b

a

),( yx

b

{ }bnya −+< 1 ,max { }bnya −+≥ 1 ,max  
Case nxyncba =<+=++   and  12  

Case 3.1: a < d. W must cover a matrix which is equivalent 

to ),1,( aededaS −++−  

whose B-girth is 

),1,( aededaS −++−  

),1,( aenenaS −++−<  

).,,()12,,( cbasabnbaS =−−+≤  

where, the first inequality is obtained by using n > d and the 

second inequality is obtained by using n－e + 1 = n + 1－min{y, 

n + 1－b}≥ b. 

Case 3.2: a≥ d. W must cover a matrix which is equivalent to 

)1,1,( +−++− deaedaS whose B-girth is 

),,(24444 cbasnna ≤+<≤+ . 

Case 4: a + b + c = 2n + 1 and y < x < n. Clearly, a < n. As 

depicted in Figure 7, we distinguish five cases further 

a

b
),( yx

a

b

),( yx
a

b
),( yx

ax ≤ xay <≤ bnya −+≤< 1

ybnay <−+<> 11 and 

a

b
),( yx

a

b

),( yx

nbay =>  and 
 

Case 1  and  12 +>+=++ xyncba   

Case 4.1: x≤ a. W must cover a matrix which is equivalent to 

),1,( yxayxaS +−+− whose B-girth is 

),,(2424)12(2 cbasnna ≤+<−≤+ . 

Case 4.2: y≤ a < x. W must cover a matrix which is 

equivalent to ),1,( axyyxaS −++−  whose B-girth is 

),,(2424)12(2 cbasnnx ≤+<−≤+ . 

Case 4.3: a < y ≤ n + 1－b. W must cover a matrix which is 

equivalent to )22,,1( bxynbyxS −−−++−  whose 

B-girth is ),,(2464)232(2 cbasnnyn ≤+<−≤−+ . 

Case 4.4: y > a and 1 < n + 1－b < y. W must cover a matrix 

which is equivalent to ),,1( yxbbyxS +−+−  whose 

B-girth is ),,(2424)12(2 cbasnnb ≤+<−≤+ . 

Case 4.5: y > a and b = n. W must cover a matrix which is 

equivalent to )1,1,1( ++−−+−+− yxananyxS  

whose B-girth is ),,(2424)322(2 cbasnnan ≤+<−≤+− . 

 

V. DETERMINATION OF THE SHORTEST BALANCED CYCLES 

If a balanced cycle does not contain shorter balanced cycles, 

it incidence matrix is said minimal-B in this paper. In [8], all 

the minimal-B  matrices whose shortest balanced cycles are 

of length not exceeding 20 have been determined by an 

exhaustive search. Since any minimal-*

CB matrix must be 

minimal-B , according to Lemmas 9, 10 and the following 

theorem, we see that a binary matrix is minimal-B if and 

only if it is equivalent to a matrix of form ),,( cbaS . Hence, 

all the B-minimal matrices are determined in this dissertation. 

Theorem 4. Any minimal-CB  matrix is minimal-*

CB . 

Proof. Assume in contrary that W  is not a 

minimal-*

CB matrix. Let kCCC ,,, 21 L   be the longest list 

of simple cycles in )(WΘ  with ji CC ≠  for kji ≤≤≤1 . 

Then, 3≥k and, for any minimal-*

CB matrix R  covered 

by W , 

)(2)()( WEWgRg BB ≥≥                    (13) 

If ji CC ,  have some overlaps for some integers ji, with 

kji ≤<≤1 , without loss of generality, we assume that 

21,CC  have some overlaps and 

)(min ,
0,

2,121
,

jiji
lji

lCClCC
ji

−+=−+
>≠

,              (14) 

where jil ,  is the number of common edges of iC  and jC . 

Let γ be one of the longest paths consisting of the common 

edges of 1C  and 2C . Without loss of generality, we assume 

that γδ=1C  and γβ=1C . According to Lemmas 3 and 4, 

we see that 
1−γβ  is a cycle. Clearly, there are paths 

2121 ,,, ββδδ  with 21δδδ = , 21βββ =  such that 
1

11

−βδ  

1is a simple cycle. Then, { } 0,min 11 >βδ  and 21βγδ  is 

also a simple cycle. If { } 0,max 22 >βδ , then we must have 

22 βδ = . Let i  be the integer such that 21βγδ≡iC . Then, 

{ }2,1∉i  and 12,121,11 β−−+=−+ lCClCC jj , 

contradicts 01 >β  and (14). Hence, δδ =1 , ββ =1  and 

thus the paths βδγ ,,1−
correspond a minimal-*

CB  matrix 

R  which is covered by W . Since W  is not minimal-*

CB , 
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we see RW ≠  and βδγ ++=> )()( REWE  Hence, 

)(2)(2)()( WERgWg BB <++=≤ βδγ ,contradict

s (13). 

Now we assume that ji CC ,  have no overlaps for any 

integers ji, with kji ≤<≤1 . 

If there are three simple cycles, say 321 ,, CCC , which are 

connected by γ  andδ  in series as depicted as in Figure 5. 

From the former two cycles, we get a cycle-),,( 221 γCC  

and thus γ4)(2)( 21 ++≤ CCWgB . Similarly, one can 

get δ4)(2)( 32 ++≤ CCWgB . Hence, 

)(2222)( 231 WECCCWgB <++++≤ δγ , 

contradicts (13). 

1C 2C 3C
γ δ

 
Three simple cycle are connected in series. 

Hence, the simple cycles kCCC ,,, 21 L  are connected by a 

tree. 

If 3=k , then all the edges in )(WT  are depicted in (a) of 

Figure 9. Clearly, 2

1

1 γγ −  is the shortest path which touches 1C  

and 2C . Hence, 2

1

1 γγ − , 1C  and 2C  correspond a 

minimal-*

CB  matrix R  with 

)(4)(2)( 2121 γγ +++= CCRgB . Clearly, there is a 

balanced cycle C  in )(WΘ  with )(WgC B=  such that 

any edges in )(WE  is on C . Since C  enters iC  at least two 

times, it crosses iγ  at least four times. Hence, 

>+++++≥= )(4)(2)( 321321 γγγCCCCWgB

)()(4)(2 2121 RgCC B=+++ γγ , contradicts (13). 

If 4≥k , without loss of generality, we assume that the 

cycles 4321 ,,, CCCC  are connected as depicted in (b) of 

Figure 6. Clearly, 3

1

1 γγ −  is the shortest path which touches 1C  

and 3C . Hence, 

)(2)()(4)(2 3131 WEWgCC B ≥≥+++ γγ .     (15) 

Similarly, we have 

)(2)()(4)(2 4242 WEWgCC B ≥≥+++ γγ .   (16) 

1C 2C

3C

3γ

1γ 2γ

3C

1C
2C

4C

3γ 4γ

1γ 0γ 2γ

 

Simple cycle are connected by a tree. 

Then, from (15), (16) and 

∑ ≤≤
++≥

410 )()(
i iiCWE γγ , we have 

0)(2
410 ≤+∑ ≤≤i iCγ , which is impossible. 

The following theorem determines all the shortest balanced 

cycles in any given binary matrix. 

Theorem 5. Let M  be a matrix with +∞<)(WgB . If C  

is one of the shortest balanced cycles of M , then the least 

sub-matrix W  of M  with )(WC Θ∈  is equivalent to a 

matrix of form ),,( cbaS  with )(),,( Mgcbas B= . 

Proof. Suppose that C  is one of the shortest balanced cycles 

of M . Let W  be the least matrix covered by M  such that 

)(WE  is just the set of edges on C . According to Theorem 4, 

W is a minimal-*

CB  matrix covered by M  with the least 

girth-B . Then, from Theorem 3, W  is a sub-matrix of M . 

Clearly, W must be the least sub-matrix of M  with 

)(WC Θ∈  and equivalent to a matrix of form ),,( cbaS  

with )(),,( Mgcbas B= . 

According to Theorem 2, it is of interest to determine all the 

acyclic paths of any given matrix M . For each edge e in 

)(ME , let )(eΥ  be the greatest tree defined by follows: 

Each node is marked by an edge in )(ME . The mark of the 

root is e . 

For each pair of nodes connected by a branch, their marks 1e  

and 2e  satisfy 1)()( 21 =∩ ee σσ . 

For each node, the marks of its son nodes are distinct. 

For each node other than the root, the mark 1e  of any of its 

son nodes and the mark 2e  of any of its ancestor nodes 

satisfy φσσ =∩ )()( 21 ee . 

Clearly, in )(eΥ , the marks of the son nodes of the root are 

just the edges which are directly connected to e in )(MT . For 

each node P  other than the root, the mark of P  and those of 

its son nodes are in the same row if the mark of P  and that of its 

parent node are in the same column, and in the same column 

otherwise. 

Obviously, for any edge e in )(ME , each acyclic path with 



 

 21 

e  as the origin can be directly read in the tree )(eΥ  from the 

root. The tree )(eΥ  can be easily obtained by recursion. If the 

tree )(eΥ  are employed to determine the shortest balanced 

cycles of M , some of them are not necessary to be constructed 

integrally. For example, if a balanced cycle of length l2  has 

been found, according to Corollary 1 and Theorem 5, one needs 

only to check the acyclic paths of length between 4 and 2−l . 

The following presented all B-minimal matrices with the 

shortest balanced cycles of length no larger than 30 are given 

below. kS2 denotes a set of all B-minimal matrix with a shortest 

2k-balanced cycle. 
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
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
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,
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1010

1101

0110

0011

,

1010

1100

0111

0011

:18
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.

11000

01101

10110

00011

,

11000

01100

00111

10011

,

11000

01100
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00011

,

1100
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0111

0011

:20
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10010

11000

01101

00110

00011

,
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11000

01101

00110

00011

,
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01100

00111

00011
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011001
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100110
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,

10100
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11100

00111

00011
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,

100100

110000
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,
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000111

000011
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1100000
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VI. CONCLUDING REMARKS 

We discussed the girth limitation of QC-LDPC expanded 

from a mother matrix is the existence of balanced cycles. We 

present the necessary and sufficient conditions of balanced 

cycles and determinate the existence of balanced cycles and the 

shortest balanced cycles in the QC-LDPC codes matrix. Finally 

we presented all nonequivalent minimal matrices of the shortest 

balanced cycles. 
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