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Abstract—Globally, breast cancer is one of the major causes of 

cancer death in females. Of the available diagnostic methods for 

breast cancer, mammography is commonly used as a non-

invasive method for distinguishing malignant tumors from 

benign ones. However, its diagnosis accuracy varies widely; 

surgical biopsy, an expensive and invasive surgery, is typically 

needed to confirm a tumor’s state of malignancy. In this 

research, a mammographic diagnostic method is presented for 

breast cancer biopsy outcome predictions using support vector 

machine (SVM) learning classification. The developed SVM 

learning classification is a nonlinear classifier based on a 

Gaussian radial basis function (RBF) kernel, which allows more 

flexibility in dealing with any non-separable mammographic 

mass data. The developed SVM learning classification can 

provide a not only higher but also more reliable percentage of 

accuracy in diagnosing malignant breast cancer and benign 

disease for breast biopsy outcome predictions. The testing results 

showed that the developed SVM learning classification had a 

sensitivity (or recall) of 94.54% in diagnosing malignant breast 

cancer, a specificity of 93.44% in diagnosing benign disease, a 

precision of 93.15%, a F-score of 0.94, and an overall accuracy of 

93.98% in diagnosing both malignant breast cancers and benign 

disease. Furthermore, an estimated area of the receiver operating 

characteristic (ROC) curve analysis and its associated standard 

error was 0.9630±0.0516 for breast biopsy outcome predictions, 

which outperformed the diagnostic accuracies of previously 

reported methods. Therefore, the developed SVM learning 

classification with mammography can provide highly accurate 

and consistent diagnoses in distinguishing malignant and benign 

cases for breast cancer biopsy outcome predictions, thus reducing 

the number of unnecessary biopsies for patients. 

 
Index Terms—breast cancer, benign disease, biopsy, Gaussian 

radial basis function (RBF) kernel, malignant breast cancer, 

mammography, precision, receiver operating characteristic 

(ROC) curve, sensitivity, specificity, support vector machine 

(SVM) 
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I. INTRODUCTION 

VERY year, 14 million people are diagnosed with cancer, 

and 8 million people worldwide die from cancer 

according to the Center for Disease Control and Prevention 

[1]. In the United States, cancer is the second leading cause of 

death [2]. Specifically, among all cancer cases for females, 

breast cancer is ranked as the second leading causes of cancer 

death and new cancer cases [3]-[5]. 

Breast cancer usually forms lumps or masses referred to as 

tumors [3]. Most breast cancer tumors at early stages are 

benign, which are considered diseases that are not yet 

malignant and life-threatening [6]. Thus, before symptoms 

develop, early detection of breast cancer masses is one of the 

most important factors influencing patients’ chances of long-

term survival. 

Despite the sensitivity of mammography in detecting breast 

cancer, the positive predictive value of breast biopsy outcomes 

is low. Likewise, mammography lacks high diagnostic 

accuracy in distinguishing malignant breast cancer and benign 

disease. Its diagnostic accuracy is reported to range anywhere 

from 68% to 79% [7]. False-negative results (FNR) and false-

positive results (FPR) are also problems [8]. FNR occur when 

mammograms appear normal even though breast cancer is 

present, leading to delays in treatment for affected breast 

cancer patients. On the other hand, FPR occur when 

radiologists decide mammograms are abnormal, but no breast 

cancer is actually present.  

Consequently, when using mammography to detect a breast 

cancer tumor, surgical biopsy, which has a reported accuracy 

of breast cancer diagnosis close to 100% [7], is usually needed 

to confirm the state of its malignancy [9]; as a result, the low 

positive predictions of mammogram explanations lead to a 

high number of unnecessary biopsies for benign outcomes 

[10]. In fact, several hundreds of thousands of unnecessary 

biopsies are performed on benign rather than malignant cases 

each year [11], [12]. However, surgical biopsy is expensive 

and invasive, which can often not be suitable for the patient. 

To increase mammographic accuracy, various computer 

aided diagnosis (CAD) systems were developed to distinguish 

malignant breast cancer and benign disease to predict biopsy 

outcomes. A breast image reporting and database system 

(BIRADS), established by the American College of 

Radiology, is the most common way for radiologists to 
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describe mammogram findings and to make an assessment to 

support the decision of a physician to perform a breast biopsy 

[13]. Using BIRADS with various characteristics, such as 

mass shape, obtained from a mammogram, several CAD 

approaches were reported to predict breast cancer biopsy 

outcomes based on an intelligible decision process [10] and a 

case-based reasoning classifier using different similarity 

measures based on Euclidean and Hamming distances [12], 

[14]-[16]. Other CAD methods included an artificial neural 

network approach based on BIRADS descriptions [17], [18], a 

classification based on a decision tree approach [19], and a 

prediction model based on a distributed genetic programming 

approach [20]. Recently, one article reported mammographic 

diagnosis for breast cancer biopsy predictions using a neural 

network classification model [21]. These CAD methods were 

proposed to predict breast cancer biopsy outcomes and/or to 

classify malignant and benign lumps using mammogram data. 

Recently, another type of CAD method using a support 

vector machine [22] had been applied in short-term prognosis 

evaluation of breast cancer patients in terms of survival or 

recurrence outcomes after a given follow-up period. Another 

variation method, a relevance vector machine [23], was used 

in cancer classification, which is made according to the site of 

origin of the malignant cells. 

For this research, an enhanced statistical learning approach 

is developed for mammographic diagnosis of breast cancer 

biopsy outcome predictions utilizing support vector machine 

(SVM) learning classification. The developed SVM learning 

classification contained two separate models: a learning 

classification (or training) model and a diagnostic (or 

prediction) model. The learning classification model was a 

SVM nonlinear classifier based on a Gaussian radial basis 

function (RBF) kernel, which computed the inner product in 

feature space between two vector arguments. The diagnostic 

model distinguished and classified malignant breast cancers 

and benign diseases for breast cancer biopsy outcome 

predictions using new patient data. The probabilities of 

misclassification error and prediction accuracy as well as the 

performance of the developed SVM learning classification 

were evaluated using the model sensitivity, specificity, 

precision, F-score, and receiver operating characteristic 

(ROC) curve analysis. 

The test results of the developed SVM learning 

classification along with mammography can provide highly 

accurate and consistent diagnoses in distinguishing malignant 

and benign cases for breast cancer biopsy outcome 

predictions. Therefore, the developed SVM learning 

classification model with mammography can reduce the 

number of unnecessary breast biopsies for patients with 

benign outcomes. 

II. MATERIALS AND METHODS 

In this section, we first present the mammographic dataset 

of breast cancer tumors. Then, prediction methods of the 

developed SVM learning classification along with its 

sensitivity, specificity, precision, F-score, and ROC curve 

analysis are introduced in detail, including a nonlinear SVM 

learning classification using a Gaussian RBF kernel, a 

diagnostic (or prediction) model to distinguish and classify 

malignant breast cancers and benign diseases for breast biopsy 

outcome predictions, and their corresponding algorithms, 

approaches, and implementation architecture. 

A. Mammographic Mass Dataset 

The mammographic mass dataset was obtained from the 

Mammographic Mass Database, which is available in the UCI 

Machine Learning Repository [24]. There are a total of 961 

clinical instances including 516 benign and 445 malignant 

cases in the mammographic mass dataset. Among all of the 

clinical instances, 131 clinical instances have missing attribute 

values, which were removed from the dataset in this research. 

This resulted in a dataset of 830 clinical instances, in which 

427 clinical instances are benign disease cases and 403 clinical 

instances are malignant breast cancer cases. Each clinical 

instance in the mammographic mass dataset contains five 

input attributes, including BIRADS, age, mass shape, mass 

margin, and mass density, as well as one class attribute of 

severity. The class attribute of severity is a binary value of 0 

or 1, which indicates benign disease or malignant cancer 

diagnoses, respectively. 

B. Nonlinear SVM Learning Methods 

In this section, the mammographic diagnostic method to 

classify malignant breast cancers and benign diseases for 

breast biopsy outcome predictions is established using a 

nonlinear SVM learning classification. The nonlinear SVM 

learning classification and diagnostic (or prediction) models, 

associated with their algorithms, methods, and implementation 

architecture are presented in detail. The performances of the 

nonlinear SVM learning classification and diagnostic model 

were evaluated by using the model sensitivity, specificity, 

precision, F-score, and the model ROC curve analysis. 
 

The SVM Learning Classification and Diagnostic Models 

SVM is a kernel-based machine learning method derived 

from statistical learning theory [25], [26]. Since the 

publication of its algorithm and theory, SVM has become one 

of the most important tools for classification, prediction, and 

regression [27]. In particular, SVM has shown promise in a 

variety of medical and biological classifications on tumor 

types, such as brain and lung cancer [28], [29], leukemia [30], 

and lymphoma [31], as well as gene expression [32]. 

In binary classification problems, N training data {(x1, 

t1),…, (xN ,tN)} are given, where xi is a vector corresponding to 

an input sample data, including n input attributes, and ti is a 

binary class label with ±1. In this research, the n input 

attributes were 5 input attributes for the Mammographic Mass 

Dataset. In most cases, the N training data were often not 

linearly separable. To deal with this situation, a SVM learning 

classification model is used to find the function, 𝑓(𝒙) =

𝒘𝑻𝒙 + 𝑏, and 𝜉𝑖 by solving the following optimization 

problem [33]-[36]: 
 

min𝑤,𝑏,𝜉 {
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖𝑖 },  Subject to 𝑡𝑖(𝒘𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, (1) 

 



 

3 

 

where 𝜉𝑖 ≥ 0 for i = 1,2,…, N. The formulation in Equation 

(1) has a trade-off of two objectives: (1) finding a hyperplane 

with a large margin between two groups of data by 

minimizing the first term of 
1

2
‖𝒘‖2; and (2) finding a 

hyperplane that can separate the training data well by 

minimizing the second term of 𝐶 ∑ 𝜉𝑖𝑖 . The parameter C is 

used to control the trade-off. In other words, the second term 

of 𝐶 ∑ 𝜉𝑖𝑖  is used to reduce the number of training errors in the 

case of data that are nonlinearly separable. Equation (1) is also 

referred to as the soft margin SVM. Thus, the basic idea 

behind SVM is to search for a balance point between the 

regularization of the first term of 
1

2
‖𝒘‖2 and the 

regularization of the training errors. Through this balance, the 

SVM is thereby able to achieve a high accuracy of 

classification in an optimal sense. 

Using Lagrange multipliers of and , the previous 

constrained problem in Equation (1) can be expressed as 

follows:     

𝐿(𝒘, 𝒃, 𝜶) =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖

𝑁

𝑖=1

[𝑡𝑖(𝒘𝒙𝑖 + 𝑏) − 1 + 𝜉𝑖] − ∑ 𝜇𝑖

𝑁

𝑖=1

𝜉𝑖 

                                                                                            (2) 

where 𝛼𝑖 ≥ 0 and i ≥ 0 for i = 1,2,…, N. 

To establish a nonlinear separating surface, SVM performs 

a nonlinear mapping of transferred data from a lower 

dimensional space to a high dimensional space given by: 
 

𝒙 → ∅(𝒙),                                    (3) 
 

where ∅(𝒙) is a general transformation function. Then, SVM 

is applied based on a linear separating hyperplane in the 

feature space, which corresponds to a nonlinear surface in the 

original feature space. 

To optimize w, b, and 𝜉𝑖, derivatives are applied on 

Equation (2) by solving: 
𝜕𝐿

𝜕𝒘
= 0,

𝜕𝐿

𝜕𝒃
= 0, and  

𝜕𝐿

𝜕𝜉𝑖
= 0.  Then, 

the results are obtained: 
 

𝒘 = ∑ 𝛼𝑖
𝑁
𝑖=1 𝑡𝑖∅(𝑥𝑖),                            (4) 

∑ 𝛼𝑖
𝑁
𝑖=1 𝑡𝑖 = 0,                                  (5) 

𝛼𝑖 = 𝐶 − 𝜇𝑖.                                    (6) 
 

Using Equations (4), (5), and (6), a dual Lagrange is 

obtained in the following form: 
 

𝐿(𝜶) = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑡𝑖𝑡𝑗𝐾(𝑥𝑖 , 𝑥𝑗),         (7) 

                   

where 𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)∅(𝑥𝑗) is referred to as a kernel 

function. 

Substituting Equation (4) into f(x), we obtain the function: 
 

𝑓(𝒙) = ∑ 𝛼𝑖
𝑁
𝑖=1 𝑡𝑖𝐾(𝒙, 𝑥𝑖) + 𝑏.                      (8) 

 

Equation (8) is a statistical classification model, which can be 

used to predict new data points for each class. In this research, 

Equation (8) was called as a kernel-based diagnostic (or 

prediction) model for the mammographic mass data. If a 

subset of the data points has 𝛼𝑖 = 0, the data points do not 

contribute to the statistical classification model in this case. 

Thus, the remaining data points are called support vectors. 

These data points should have 𝛼𝑖 > 0, thereby leading to 

 

     𝑡𝑖𝑓(𝒙𝑖) = 1 − 𝜉𝑖.                                 (9) 
 

If 𝛼𝑖 < 𝐶, then Equation (6) indicates thati > 0, which 

requires 𝜉𝑖 = 0 since i𝜉𝑖 = 0 based on a constrained 

optimization of the Karush-Kuhn-Tucker (KKT) conditions 

[35]. Hence, these data points lie on the margin. If  𝜉𝑖 ≤ 1, the 

data point with 𝛼𝑖 = 𝐶, which is inside the margin, will  be 

classified correctly; if  𝜉𝑖 > 1, the data point with 𝛼𝑖 = 𝐶 will 

be classified incorrectly. 

For a diagnostic model of classifying malignant breast 

cancer and benign diseases for breast biopsy outcome 

predictions, Equation (8) was used to generate prediction 

results for new patient mammographic data. If the equation 

f(x) > 0, the results belonged to the category of benign 

disease. If the equation f(x) < 0, the results belonged to the 

category of malignant breast cancer. 

To determine the parameter b in Equation (8), those support 

vectors, with 0 < 𝛼𝑖 < 𝐶, have 𝜉𝑖 = 0. Thus, Equation (9) 

becomes 𝑡𝑖𝑓(𝒙𝑖) = 1 that will satisfy 
 

𝑡𝑖[∑ 𝛼𝑗𝑡𝑗𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏𝑗∈𝑆 ] = 1.                     (10) 
 

Therefore, by averaging, a numerically stable solution for the 

parameter b is given 

𝑏 =
1

𝑁𝑀
∑ [𝑡𝑖 − ∑ 𝛼𝑗𝑡𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑗∈𝑆 ]𝑖∈𝑀 ,                (11) 

where M denotes the indices of a subset of the data points in 

which 0 < 𝛼𝑖 < 𝐶. 
 

The Kernel Functions Used in SVM Models 

A SVM learning classification model can be considered as 

either a linear classifier or a nonlinear classifier, depending on 

the application of the type of kernel functions. However, in 

many cases, data are nonlinearly separable. Thus, nonlinear 

kernel functions are often used for the SVM learning 

classification model. The most widely used nonlinear kernel 

function is the Gaussian RBF kernel given by 
 

     𝐾(𝒙𝑖 , 𝒙𝒋) = 𝑒𝑥𝑝 (−
1

2𝜎2 ‖𝒙𝒊 − 𝒙𝒋‖
2

),             (12) 
 

where the bandwidth parameter  creates a large and flexible 

class model. By turning the bandwidth parameter well, the 

Gaussian RBF kernel is able to capture the underlying 

functions behind a wide variety of training data sets. 
 

The Methods of SVM Model Evaluation 

In order to evaluate the performances of the SVM learning 

classification model, one of the best methods is to analyze the 

model’s accuracy, sensitivity, specificity, precision, and F-

score as well as its ROC curve analysis. In this research, these 

analyses depended on the number of false positive and false 

negative instances of the mammographic mass data according 

to the reference [6], [21]. Table 1 shows the diagnostic results 

in terms of positive or negative for distinguishing malignant 

breast cancer and benign disease by using the developed SVM 

learning classification model. 

The sensitivity is defined as the probability of correctly 

identifying malignant breast cancers given by [21], 
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TABLE 1 

THE DEVELOPED SVM LEARNING CLASSIFICATION MODEL’S DIAGNOSTIC 

RESULTS FOR DISTINGUISHING MALIGNANT BREAST CANCER AND BENIGN 

DISEASE 

 Actual 
Malignant 

Actual  
Benign 

Total Number  

Predicted 
Malignant 

True Positive 
(TP) 

False Positive 
(FP) 

TP + FP 
 

 

Predicted 
Benign 

False 
Negative (FN) 

True  
Negative (TN) 

FN + TN 
 
 

Total Number TP + FN FP + TN TP + FP + FN + TN 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 .                           (13) 

 

The sensitivity is also referred to as the true positive rate, 

recall or capture rate in the area of machine learning.  

The specificity is defined as the probability of correctly 

identifying benign diseases given by, 
 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 .                           (14) 

 

The specificity is sometimes called the true negative rate. The 

difference of (1 – specificity) is known as the false positive 

rate.  

The precision or the positive predictive value is defined as 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 .                             (15) 

 

Notice that the recall in Equation (13) is a measure of quantity 

while the precision in Equation (15) is a measure of quality. 

Both the precision and recall are in a mutual relationship 

based on the understanding and measure of relevance.  

Thus, for the probability of the misclassification error 

(PME), it is obtained by 
            

𝑃𝑀𝐸 =
𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 ,                          (16) 

 

and for the model’s accuracy, it is defined by 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 ,                (17) 

 

where the model’s accuracy = (1 – PME). 

Additionally, based on the harmonic mean of precision and 

recall, the F-score is defined as 
 

𝐹_𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
),            (18) 

 

where the F-score can be used as a single measure of the 

performance of the test or a single measure of a model's 

accuracy of the test. The F-score can also be interpreted as a 

weighted average of the precision and recall. A F-score equal 

to 1 would signify the best score of a accuracy. A F-score of 0 

would be the worst score. 
 

The SVM-based ROC Curve Analysis 

A ROC curve analysis of the developed SVM learning 

classification model was based on a graph plot, which was 

generated by changing a set of trade-off points between the 

sensitivity and the difference of (1 – specificity) for cases 

classified as malignant breast cancer. A corresponding 

estimated area under the ROC curve analysis was considered 

as an effective measure of inherent validity of a diagnostic test 

[37] and an evaluation metric for the performance of 

classification and prediction models [20]. The estimated area 

under the ROC curve analysis of the developed SVM learning 

classification model was determined by using a trapezoidal 

approximation formula [21], [38]: 
       

 ∫ 𝑆(𝑥)𝑑𝑥
1

0
≅ ∑ (

𝑦𝑖+𝑦𝑖+1

2
) (𝑥𝑖+1 − 𝑥𝑖)

𝑁
𝑖=0 ,           (19) 

 

where S(x) denoted the function of the ROC curve analysis, yi 

and xi represented the sensitivity and (1-specificity) at the ith 

(i = 0, 1, 2, …, M) point, respectively. Additionally, a standard 

error (SE) of the area of the ROC curve analysis for the 

developed SVM learning classification model was obtained by 

[39]  

   𝑆𝐸 = √
𝑆(1−𝑆)+(𝑁1−1)(𝑄1−𝑆2)+(𝑁2−1)(2−𝑆2)

𝑁1𝑁2
 ,         (20) 

 

where S would be an estimated area of the ROC curve analysis 

for the SVM learning classification model, ranging from 0 to 

1; N1 and N2 denoted the number of clinical instances of 

malignant (positive) and benign (negative) cases in the 

mammographic mass dataset, respectively; 𝑄1 = 𝑆/(2 − 𝑆) 

and 𝑄2 = 2𝑆2/(1 + 𝑆). Assuming that the future breast cancer 

clinical instances are drawn from the same distribution, the 

estimated area of the ROC curve analysis and its standard 

error shows how well and accurately the developed SVM 

learning classification model will perform in diagnosing new 

clinical instances of mammographic mass data within a 

predictive confidence interval. 

The estimated area of the ROC curve analysis is statistically 

interpreted as the probability of the classification model to 

correctly classify malignant breast cancer and benign disease. 

Thus, the estimated area of the ROC curve analysis can be 

used to evaluate and rank the quality of the developed SVM 

learning classification models. When the estimated area of the 

ROC curve analysis is equal to 1, the learning classification 

model is a perfect modeling in terms of diagnostic accuracy in 

distinguishing malignant breast cancer from benign disease. 

Therefore, the higher the estimated area of the ROC curve 

analysis is, the better the learning classification model 

performs [21]. As a result, this subsequently leads to the least 

probability of misclassification error of distinguishing 

malignant and benign diagnoses for breast cancer biopsy 

outcome predictions. 

III. RESULTS 

In this research, a total of 830 clinical instances of the 

mammographic mass dataset was used: 427 (51.45%) benign 

diseases and 403 (48.55%) malignant breast cancers. The 

developed SVM learning classification model was trained and 

tested using all of the available clinical instances of the 

mammographic mass dataset. 

The SVM learning classification (or training) model is 

shown in Figure 1 part (a), which includes a scale function, a 

k-fold cross validation, a subset of data selection, a SVM 

learning classification, and a training error. All of the input 

attributes for the clinical instances were scaled to zero mean 

and unit variance by using  the  scale  function before these
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Fig. 1: The developed SVM learning classification contained two separate 

models: a learning classification (or training) model in part (a) and a 

diagnostic (or prediction) model in part (b). The learning classification model 
was a SVM nonlinear classifier based on a Gaussian RBF kernel. The 10-fold 

cross-validation was used to adjust hyper-parameters for the developed SVM 

learning classification models during the training periods. The training results, 
such as support vectors and bias, were fed into the SVM diagnosis model. The 

diagnostic model distinguished and classified malignant breast cancers and 
benign diseases for breast cancer biopsy outcome predictions when new 

patient data were used. 

 

clinical instances were fed into the developed SVM learning 

classification. 

To evaluate the performances of the developed SVM 

learning classification model, the probability of accuracy and 

the area of the ROC curve analysis were estimated using a 

nonparametric approach  based on a rotation method [40], also 

referred   to   as   a   k-fold   cross  validation [41].  The k-fold 

cross validation had less bias toward the model  training  and 

test results for calculating the probability of accuracy and the 

area of the ROC curve analysis. 

A. The SVM Learning Classification Model Results 

Training the SVM learning classification (or training) 

model depended on the selection of the regularization 

parameter C, which was used to control the trade-off in 

Equation (1), and the kernel parameters. In this research, a 

Gaussian RBF kernel as shown in Equation (12) was used for 

the developed SVM learning classification model. The 

parameter , a bandwidth parameter for the Gaussian RBF 

kernel, was the only kernel parameter to be determined for the 

developed SVM learning classification model. 

The 10-fold cross-validation, a method for adjusting hyper-

parameters (such as the regularization parameter C and the 

bandwidth parameter ) for the developed SVM learning 

classification models during the training periods, was also 

used. The 830 clinical instances of the mammographic mass 

dataset were first partitioned into 10 subsets of the data that 

were equally sized. Each data point from the 830 clinical 

instances was randomly assigned to one of the subsets of data. 

Then an individual SVM learning classification model was 

trained by applying SVM algorithms to 9 of the subsets of data 

(training data). This model was then evaluated using the one 

remaining subset of data (testing data). Furthermore, a cross-

validation error was computed by using an average of the 10 

outcomes of the developed SVM learning classification model 

evaluations, which were used to predict the performance of the 

developed SVM learning classification model algorithms 

when applied to the entire set of clinical instances. 

In order to choose the regularization parameter C and the 

Gaussian RBF kernel bandwidth parameter  using the 10-

fold cross-validation, the cross-validation error was computed 

for the developed SVM learning classification models based 

on different values for the parameters C and . The 

regularization parameters C and the bandwidth parameter 

were finally determined, based on the lowest cross-validation 

error, and were finally used to train the developed SVM 

learning classification model on the entire 830 clinical 

instances dataset. 

For the training results, the final parameter values for the 

developed SVM learning classification model were obtained: 

the regularization parameter C = 630, the bandwidth parameter 

for the Gaussian RBF kernel the model intercept value 

b = -0.01427455, and the number of support vectors was 541. 

The training error rate for the developed SVM learning 

classification model was 6.0241% when setting the tolerance 

of termination criterion to 0.0005. 

In dealing with multidimensional features, visualization and 

understanding are often aided by representing the observations 

in a lower-dimensional space. In particular, two-dimensional 

scatter plots based on principal component analysis [40] are 

helpful in exploring relationships between the malignant 

breast cancers and benign diseases groups, in assessing the 

group-conditional distributions, and in identifying a typical 

feature observation. Thus, Figure 2 shows a scatter plot of the 

830 clinical instances of the mammographic mass dataset, 

with the first principal component as the x-axis and the second 

principal component as the y-axis. In this figure, a red symbol 

of the “+” represented  malignant  breast  cancer and a blue

 
 

Fig. 2: A scatter plot of the 830 clinical instances of the mammographic mass 

dataset based on the first principal component as the x-axis and the second 

principal component as the y-axis, where a “+” (red) represented malignant 
breast cancer and a “o” (blue) indicated benign disease. As shown, there was a 

large overlaid area of intersection between the malignant breast cancers and 

benign diseases, clearly illustrating that the clinical instances of the 
mammographic mass dataset were not separable.  
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symbol of the “o” indicated benign disease. As shown, there 

was a large overlaid area of intersection between the 

malignant breast cancers and benign diseases, clearly 

illustrating that the clinical instances of the mammographic 

mass dataset were not separable. This observation thereby led 

to the use of a nonlinear Gaussian RBF kernel in this 

developed SVM learning classification model. 

B. The SVM Diagnostic Model Results 

In this section, we present the testing results of the kernel-

based SVM diagnostic (or prediction) model, as shown in part 

(b) of Figure 1, to estimate its probability of accuracy on 

distinguishing malignant breast cancer and benign disease for 

breast biopsy outcome predictions. 

After completing the training of the developed SVM 

learning classification model, the final support vectors and 

hyper-parameters obtained from the learning classification 

model were loaded into the kernel-based SVM diagnostic 

model. Using the same 830 clinical instances of the 

mammographic mass dataset, the kernel-based SVM 

diagnostic model was tested to estimate its probability of 

accuracy in distinguishing malignant breast cancer and benign 

disease for breast biopsy outcome predictions. 

For the kernel-based SVM diagnostic model, the testing 

accuracy in diagnosing and classifying malignant breast 

cancer and benign disease was 93.98%, with details shown in 

Table 2. Accordingly, using Equations (13), (14), (15) and 

(18), the sensitivity (recall), specificity, precision, and F-score 

results were 94.54%, 93.44%, 93.15%, and 0.94, respectively. 
 

TABLE 2 
THE TEST RESULT OF THE KERNEL-BASED SVM DIAGNOSTIC MODEL IN 

DIAGNOSING MALIGNANT BREAST CANCER AND BENIGN DISEASE  

 Actual 
Malignant 

Actual 
Benign 

Total 

Predicted Malignant 381 28 409 

Predicted Benign 22 399 421 

Total 403 427 830 

Probability of 

Misclassification Error 

5.45% 6.56% 6.02% 

  

C. The Area Under the ROC Curve Analysis Results 

The ROC curve analysis results of the developed SVM 

learning classification model were produced by varying a set 

of trade-off points between the model sensitivity on the y-axis 

and the difference value (1 – specificity) on the x-axis as 

shown in Figure 3. The estimated area under the ROC curve 

analysis was 0.9630. Correspondingly, the associated SE of 

the area under the ROC curve analysis obtained by using 

Equation (20) was 0.0516. Thus, the estimated area of the 

ROC curve analysis results implied that the proposed SVM 

learning classification model can provide a consistently high 

accuracy in diagnosing and classifying malignant breast 

cancer and benign disease for breast biopsy outcome 

predictions. 

In addition, Figure 4 shows a curve plot of the relationship

 
Fig. 3:  An estimated area of the ROC curve analysis of the developed SVM 

learning classification model for cases classified as malignant breast cancer 

and benign disease, where the true positive rate is sensitivity on the y-axis and 

the false positive rate is the difference (1 – specificity) on the x-axis. As 

shown, the estimated area under the ROC curve analysis was 0.9630. 

 

 
Fig. 4:  A curve plot of mutual relationship between the precision and recall, 

where the precision is on the y-axis and the recall is on the x-axis. As shown, 

this curve can be used to determine an optimal cutoff point for the recall and 

precision, which is the curve’s upper-right corner with minimized distance to 

the point of (1,1). 

 

 

between the precision and recall. The precision could be 

considered as a measure of exactness (or quality) and the 

recall as a measure of completeness (or quantity). Both the 

precision and recall in the curve plot were in a mutual 

relationship based on the understanding and measure of 

relevance. Thus, this curve plot allowed us to find an optimal 

solution for the model accuracy  by determining a set of trade-

off points based on the precision on the y-axis and the recall 

on the x-axis. 

IV. DISCUSSION 

The developed SVM learning classification model was 

utilized to diagnose and classify malignant breast cancer and 

benign disease for breast biopsy outcome predictions. It was 

trained to determine the model hyper-parameters using the  
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10-fold cross-validation and tested using the same 

mammographic mass dataset. The test accuracy of the 

developed SVM learning classification model was 93.98%. 

Furthermore, the model sensitivity (or recall) was 94.54%, the 

model specificity was 93.44%, the model precision was 

93.15%, and the model F-score was 0.94. The estimated area 

under the ROC curve analysis for the developed SVM learning 

classification model was 0.9630, and its corresponding SE was 

0.0516. Thus, based on these results, the diagnostic accuracy 

of the developed SVM learning classification model would be 

93.98% accurate in distinguishing between benign disease and 

malignant breast cancer for a new patient with mammographic 

mass data. Additionally, due to the high estimated area 

(0.9630±0.0516) of the ROC curve analysis along with the 

high recall and precision probabilities, the developed SVM 

learning classification model was able to achieve a 

consistently high accuracy in diagnosing malignant breast 

cancer and benign disease for breast biopsy outcome 

predictions. 

In comparison to related papers, there were several different 

methods developed using the same mammographic mass 

dataset including: an artificial neural network (ANN) classifier 

[18], [19], a case-based reasoning classifier (CBRC) [7], [12], 

[14]-[16], a distributed genetic programming approach-based 

prediction model (DGPA) [20], a decision tree approach 

(DTA) [19], and a neural network classification model 

(NNCM) [21]. Table 3 shows the testing results of the 

performances of the previously reported methods and the 

developed SVM learning classification model (SVMLCM) 

based on analysis of the estimated areas under the ROC 

curves. 

In this assessment, as seen in Table 3, the estimated area 

under the ROC curve analysis of the developed SVM learning 

classification model is comparably much higher than most of 

those of the previously published methods. Moreover, the 

developed SVM learning classification model used the 

Gaussian RBF kernel, which is a nonlinear kernel function 

with a large selection for the bandwidth parameter Thus, 

the developed SVM learning classification model had more 

flexibility, regardless of whether or not there were overlapping 

data (or clusters) between the malignant breast cancer and 

benign disease cases; moreover, the SVM model provided a 

more reliable and greater percentage of accuracy in 

distinguishing malignant breast cancer and benign disease for 

breast biopsy outcome predictions. Therefore, the proposed 

SVM learning classification model with mammography has 

significant potential in reducing the number of unnecessary, 

expensive, and invasive surgical breast biopsies in clinical 

practices. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we developed a SVM learning classification 

model and evaluated its recall, precision, specificity, F-score, 

and ROC curve analysis to diagnose and classify malignant 

breast cancer and benign disease for breast biopsy outcome 

predictions. The developed SVM learning classification model 
 

TABLE 3 

COMPARISON OF THE PERFORMANCES OF THE TEST RESULTS FROM 

PREVIOUSLY REPORTED METHODS AND THE DEVELOPED SVM LEARNING 

CLASSIFICATION MODEL (SVMLCM) BASED ON THE ESTIMATED AREAS OF 

THE ROC CURVES ANALYSIS 

Methods Area and Standard Error Under ROC Curve 

  

SVMLCM 0.9630±0.0516 
  

ANN 0.847±0.017 ~ 0.880±0.01 
 

CBRC 0.857±0.016 ~ 0.890±0.01 
 

DTA 0.838±0.017 ~ 0.870±0.01 
 

DGPA 0.859±0.032 ~ 0.860±0.03 
 

NNCM 0.9626±0.0069 
 

  

 

 

was trained using the 10-fold cross-validation technique and 

tested using all of the available 830 clinical instances of the 

mammographic mass dataset. The developed SVM learning 

classification model, based on the Gaussian RBF kernel, was a 

nonlinear classifier that had high flexibility in adjusting the 

model hyper-parameters for any non-separable 

mammographic mass data.  

The testing results showed that the developed SVM learning 

classification model had a sensitivity (or recall) of 94.54% in 

diagnosing malignant breast cancer, specificity of 93.44% in 

diagnosing benign disease, precision of 93.15%, model F-

score of 0.94, and overall accuracy of 93.98% in diagnosing 

both malignant breast cancer and benign disease. An estimated 

area of the ROC curve analysis and its associated SE for the 

proposed SVM learning classification model was 

0.9630±0.0516. Therefore, the developed SVM learning 

classification model along with mammography can provide 

highly accurate and consistent diagnoses for breast biopsy 

outcome predictions, allowing future patients to bypass 

unnecessary surgical biopsies. 

In future research, we would propose a set of enhanced 

classification and prediction models, including random forest 

approaches along with other types of classification models to 

form an ensemble learning classification and prediction 

(ELCP) model, which combines prediction results from 

different individual models using a weighting function. The 

ELCP model typically has better prediction results than those 

of the individual models, especially in dealing with non-linear 

separable clusters in data sets. Thus, the ELCP model is 

capable of further enhancing the diagnosis accuracy of breast 

cancer biopsy predictions.  

ACKNOWLEDGMENT 

The authors gratefully acknowledge that the mammographic 

mass dataset of clinical breast cancer cases was obtained from 

the Mammographic Mass Database available in the UCI 

Machine Learning Repository. This dataset, which contains 

mammographic information of breast cancer clinical instances, 

was contributed by Dr. Rüdiger Schulz-Wendtland from the 

Institute of Radiology, Gynaecological Radiology, University 

Erlangen-Nuremberg in Germany. 



 

8 

 

REFERENCES 

[1]   Department of Health and Human Services Centers for Disease Control 

and Prevention, World Cancer Day, February 3, 2015, Available 

http://www.cdc.gov/cancer/dcpc/resources/features/worldcancerday/.  

[2]   Department of Health and Human Services Centers for Disease Control 

and Prevention, United States Cancer Statistics, Technical Notes 2007, 
Available http://www.cdc.gov/cancer/npcr/uscs/2007/technical_notes/. 

[3]  American Cancer Society, Cancer Facts & Figures 2012, Atlanta, 

Georgia, American Cancer Society, pp. 1–63, 2012. 
[4]    American Cancer Society, Breast Cancer Facts and Figures 2011-2012, 

Atlanta, Georgia, American Cancer Society, pp. 1-32, 2011. 

[5]   National Cancer Institute, Cancer Trend Progress Report – 2011/2012 
Update, U.S. Depart. of Health & Human Services, National Institutes of 

Health, Available http://progressreport.cancer.gov/introduction.asp. 

[6]   G. J. Miao, K. H. Miao, and J. H. Miao, “Neural pattern recognition 
model for breast cancer diagnosis,” Multidisciplinary Journals in 

Science and Technology, Journal of Selected Areas in Bioinformatics 

(JBIO), August Edition, pp. 1–8, September 2012. 
[7]   S. W. Fletcher, W. Black, R. Harris, B. K. Rimer, and S. Shapiro, 

“Report of the international workshop on screening for breast cancer,” 

Journal of the National Cancer Institute, vol. 85, pp. 1644–1656, 1993. 
[8] National Cancer Institute at the National Institute of Health, 

Mammograms, U.S. Depart. of Health & Human Services,  Available  

http://www.cancer.gov/cancertopics/factsheet/detection/mammograms. 
[9]  M. Elter, R. Schulz-Wendtland, and T. Wittenberg, “The prediction of 

breast cancer biopsy outcomes using two CAD approaches that both 

emphasize an intelligible decision process,” Medical Physics, vol. 34, 
no. 11, pp. 4164–4172, 2007. 

[10]  M. S. Hung, M. Shanker, and M. Y. Hu, “Estimating breast cancer risks 

using neural netwroks,” Journal of Operational Research Society, vol. 
52, pp. 1–10, 2001. 

[11] D. B. Kopans, “The positive predictive value of mammography,” 

American Journal of Roentgenology, vol. 158, pp. 521–526, 1992. 
[12] C. E. Floyd, J. Y. Lo, and G. D. Tourassi, “Case-based reasoning 

computer algorithm that uses mammographic findings for breast biopsy 

decisions,” American Journal of Roentgenology, vol. 175, pp. 1347–
1352, November 2000. 

[13] American College of Radiology, BI-RADS Atlas, Available 

http://www.acr.org/Quality-Safety/Resources/BIRADS 
[14]  A. O. Bilska-Wolak and C. E. Floyd, "Investigating different similarity 

measures for a case-based reasoning classifier to predict breast cancer", 

Proceedings of SPIE, vol. 4322, pp. 1862–1866, 2001. 
[15]  A. O. Bilska-Wolak and C. E. Floyd, "Development and evaluation of a 

case-based reasoning classifier for prediction of breast biopsy outcome 

with BI-RADS lexicon", Medical Physics, vol. 29, pp. 2090–2100, 2002. 
[16]  A. O. Bilska-Wolak, C. E. Floyd, J. Y. Lo, and J. A. Baker, "Computer 

aid for decision to biopsy breast masses on mammography: validation on 

new cases," Academic Radiology, vol. 12, pp. 671–680, 2005. 
[17]  J. A. Baker, P. J. Kornguth, J. Y. Lo, M. E. Williford, and C. E. Floyd, 

"Breast cancer: Prediction with artificial neural network based on BI-

RADS standardized lexicon," Radiology, vol. 196, pp. 817–822, 1995. 
[18]  M. K. Markey, J. Y. Lo, R. Vargas-Voracek, G. D. Tourassi, and C. E. 

Floyd "Perception error surface analysis: A case study in breast cancer 
diagnosis," Computers in Biology and Medicine, vol. 32, pp. 99–109, 

2002. 

[19]  J. R. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, 
pp. 81–106, 1986. 

[20] S. A. Ludwig, “Prediction of breast cancer biopsy outcomes using a 

distributed genetic programming Approach,” Proceedings of the 1st 

ACM International Health Informatics Symposium, ACM, pp. 694–699, 

New York, 2010. 

[21]  K. H. Miao and G. J. Miao, “Mammographic diagnosis for breast cancer 
biopsy predictions using neural network classification model and 

receiver operating characteristic (ROC) curve evaluation,” 

Multidisciplinary Journals in Science and Technology, Journal of 
Selected Areas in Bioinformatics (JBIO), September Edition, Vol. 3, 

Issue 9, pp. 1–10, October 2013. 

[22]  D. Conforti, D. Costanzo, and R. Guido, “Cancer prognostic evaluation 
via support vector machines,” International Scientific Journal of 

Computing, Vol. 3, Issue 3, pp. 29–34, 2004. 

[23]  A. Bharathi and K. Anandakumar, “Cancer classification using relevance 
vector machine learning approach,” Journal of Medical Imaging and 

Health Informatics, Vol. 5, No. 3, pp. 630–634, June 2015. 

[24] UCI Machine Learning Repository, Mammographic Mass Data Set, 

Available http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass. 
[25]  V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998. 

[26] V. N. Vapnik, “An overview of statistical learning theory,” IEEE 

Transaction on Neural Network, Vol. 10, pp. 988–999, 1999. 
[27] A. Karatzoglou, Alex Smola, and Kurt Hornik, “Kernel-based machine 

learning lab,” R Repository: CRAN Package Kernlab, Version 0.9–19, 

pp. 1–108, November, 2013. 
[28]  S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, and M. 

Angelo, et al., “Prediction of central nervous system embryonaltumour 

outcome based on gene expression,” Nature, Vol. 415, No. 24, pp. 436–
442, 2002. 

[29]  A. Bhattacharjee, W. G Richards, J. Staunton, C. Li, and S. Monti, et al., 

“Classification of human lung carcinomas by mRNA expression 
profiling reveals distinct adenocarcinoma subclasses,” Proc. Natl. Acad. 

Sci. USA, Vol. 98,  pp. 13790–13795, 2001. 

[30]  T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, and M. Gaasenbeek, et 
al., “Molecular classification of cancer: class discovery and class 

prediction by gene expression monitoring,” Science, Vol. 286, No. 5439, 

pp. 531–537, 1999. 
[31]  M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, and J. L. Kutok, et al., 

“Diffuse large B-cell lymphoma outcome prediction by gene expression 

profiling and supervised machine learning,” Nat Med, Vol. 8, No. 1, pp. 
68–74, 2002. 

[32]  M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, and C. Sugnet, et 

al., “Knowledge-based analysis of microarray gene expression data 
using support vector machines,” Proc. Natl. Acad. Sci. USA, Vol. 97, 

No. 1, pp.  262–267, 2000. 
[33] S. Mukherjee, “Classifying microarray data using support vector 

machines,” Whitehead Institute for Genome Research and Center for 

Biological and Computational Learning at MIT, Chapter 9, pp. 1–20, 
August 2002. 

[34] C. W. Hsu, and C. J. Lim, “A comparison of methods for multiclass 

support vector machines,” IEEE Transactions on Neural Networks, Vol. 
13, No. 2, pp. 415–425, March 2002. 

[35] C. M. Bishop, Pattern Recognition and Machine Learning, Springer 

Science & Business Media, LLC, 2006. 
[36]  B. Clarke, E. Fokoue, and H. H. Zhang, Principles and Theory for Data 

Mining and Machine Learning, Springer Science & Business Media, 

LLC, 2009. 
[37]  R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) 

curve for medical researchers,” Indian Pediatrics, Vol. 48, pp. 277–287, 

April 2011. 
[38]  R. L. Finney, F. D. Demana, B. K. Waits, and D. Kennedy, Calculus: A 

Complete Course, Second Edition, Addison Wesley Longman, Inc., 

2000. 
[39]  J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a 

receiver operating characteristic (ROC) curve,” Radiology, Vol. 143, 

No. 1, pp. 29–36, April 1982. 
[40] G. J. Miao and M. A. Clements, Digital Signal Processing and Statistical 

Classification, Artech House, Inc., 2002. 

[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction, Second Edition, 

Springer Science & Business Media, LLC, 2009. 

 

 

 

 

Julia H. Miao is an undergraduate student at Cornell University, Ithaca, New 

York.  

She is a National AP Scholar, a National Elks Foundation Scholar, and a 
National Siemens Competition Semifinalist. She is the co-author of the peer-

reviewed journal paper “Neural Pattern Recognition Model for Breast Cancer 

Diagnosis.” She has received a number of academic, science, and technology 
awards, including the AP Scholar with Distinction Award, the Synopsys 

Silicon Valley Science & Technology Championship Second-Place and Third-

Place Awards, IEEE Award for Best Electro-Technology, National 
Mathematics Honor Society Mu Alpha Theta Winner Award, and Society of 

Women Engineers Santa Clara Valley Section Winner Award. She has also 

received the USA National Presidential Gold Level Volunteer Service Award. 
Julia received national, state, and local scholarships from the Elks National 

Foundation, including Most Valuable Student Achievement Scholarships from 

the National Lodge, California-Hawaii Elks Association Level Lodge, and 
Sunnyvale Lodge, respectively. She is the Co-Founder of The National 

Wishing Star Organization for the American Cancer Society, dedicated to 

http://www.cdc.gov/cancer/dcpc/resources/features/worldcancerday/
http://www.cdc.gov/cancer/npcr/uscs/2007/technical_notes/
http://progressreport.cancer.gov/introduction.asp
http://www.cancer.gov/cancertopics/factsheet/detection/mammograms
http://www.acr.org/Quality-Safety/Resources/BIRADS
http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass


 

9 

 

raising awareness of cancer and other illnesses in the global community. Her 

current research interests include biological sciences, cancer research, and 
medicine. 

 
Kathleen H. Miao is an undergraduate student at Cornell University, named 
to Dean’s List of the College of Arts and Sciences, and received a Cornell 

Tradition Fellowship from Cornell University, Ithaca, New York. 

She is a National AP Scholar and a USA Biology Olympiad Semifinalist. 
She is the co-author of several peer-reviewed international journal paper 

publications and is an undergraduate student researcher at Cornell University. 

Presently, she is an Associate Editor of Biological and Biomedical Sciences 
for the international research journal Journal of Young Investigators and a 

Managing Editor for The Research Paper at Cornell University. 

She received a number of academic, science, and technology awards 
including the AP Scholar with Distinction Award, the Elks National 

Foundation Most Valuable Student Achievement Scholarship awards, the Intel 

Science Talent Search Research Report Badge Award, Synopsys Silicon 
Valley Science & Technology Championship Honorable Mention (Third place 

Award), IEEE Award for Best Electro-Technology, National Mathematics 

Honor Society Mu Alpha Theta Winner Award, and Society of Women 
Engineers Santa Clara Valley Section Winner Award. She also received 

Stanford University Medical Center Auxiliary Volunteer Honors for valuable 

contributions in community service. 
Kathleen is the Co-Founder of The National Wishing Star Organization for 

the American Cancer Society and a Vice President of Community Service for 

the National Society of Collegiate Scholars at Cornell University. Her current 
research interests include cancer research and the medical sciences as well as 

multidisciplinary topics involving computational modeling of biological 

processes and medical diagnoses of cancer. 

 
George J. Miao received a B.Eng. joint degree from Shanghai University of 

Science and Technology (now Shanghai University) and Shanghai Second 
Medical University (now Shanghai Jiao Tong University School of Medicine), 

China; a M.S. in Statistics from Columbia University, New York, New York; 

and a Ph.D. in Electrical Engineering from the Georgia Institute of 
Technology, Atlanta, Georgia. 

He is a Vice President and a Chief Scientist at Flezi, LLC. He worked and 

consulted for a number of U.S. Fortune 500 companies, universities, research 
institutes, investment and asset management firms. He is the co-author of the 

textbook Digital Signal Processing and Statistical Classification (Artech 

House, 2002) and the author of the textbook Signal Processing in Digital 
Communications (Artech House, 2007). He holds 16 granted U.S. patents in 

the area of digital signal processing.  

Dr. Miao is a Senior Member of the IEEE and was a Chairman of the IEEE 
New Jersey Coast Chapter of Signal Processing (2003-2006). He has been a 

manager of the California Hedge Fund Association since 2012. He received a 

number of awards, including the IEEE Region-1 Technology Award, the IEEE 
Section Technical Achievement Award, the IEEE Chapter Distinguished 

Service Award, and the IEEE Signal Processing Society Certificate of 

Appreciation. His current research interests are in statistical learning theory, 
data mining and machine learning of sophisticated algorithm-based 

quantitative models, classification and prediction modeling, in conjunction 

with advanced and dynamic digital signal processing for trading strategies, 
trading signal detection, equity long and short strategies, equity pricing 

prediction and volatility forecasting, statistical and volatility arbitrage on 

alpha generation, cross-asset correlation trading as well as quantitative 
portfolio optimization and management in big data analytics. 

 


