

1

Abstract— Article describes the procedure of implementing

designed architecture used for streaming of protected content as

well as the process of application the protection itself on the

streaming video content. Paper presents some of the basic

components, as well as further advanced options of their use for

the creation of the video streaming architecture basis. This is

followed by the implementation of the architecture itself with the

use of formerly chosen components and technologies where the

explanation of the architecture components' functionality resides

with the description of the video content protection method.

Implementation consists of scenarios and applications for Apple

iOS and Google Android platforms with the goal to present

simple and low resources solution on server side and mobile

device.

Index Terms—streaming media, copyright protection,

multimedia communication, Android, iOS, HLS

I. INTRODUCTION

ith a growing trend of capturing video and creating new

applications for its spreading and playing on mobile

devices, internet blogs and local network streaming at home,

the importance of protection of this video against stealing

arises as well. There are many ways to protect the video that it

doesn't become a subject of stealing. Nowadays, simple but

also sophisticated methods of how to protect a video exists,

such as watermarking. By using this method, the overall

quality of the video is worse but on the other hand, the size of

the watermark itself will discourage the thief to steal the video,

because of the length of the process to erase the watermark, so

the video would be of a satisfied quality [1]. Another way to

Manuscript received August 10, 2014. This paper is the result of the

Project implementation: University Science Park TECHNICOM for

Innovation Applications Supported by Knowledge Technology, ITMS:

26220220182, supported by the Research & Development Operational

Programme funded by the ERDF.

M. Michalko. Author is with the Computer Networks Laboratory at

Department of Computers and Informatics, Faculty of Electrical Engineering

and Informatics, Technical University of Kosice, Letna 9, Kosice, Slovakia,

phone: +421(55)6027080; e-mail: miroslav.michalko@tuke.sk.

T. Bobko was with Department of Computers and Informatics, Faculty of

Electrical Engineering and Informatics, Technical University of Kosice, Letna

9, Kosice, Slovakia, phone: +421(55)6027075; e-mail: kalafun@gmail.com.

T. Bobko was with Department of Computers and Informatics, Faculty of

Electrical Engineering and Informatics, Technical University of Kosice, Letna

9, Kosice, Slovakia, phone: +421(55)6027071; e-mail:

avol.fogas@student.tuke.sk.

protect a video is to use steganography. A method that allows

to embed a hidden message within chosen frames of the video.

When the author would want to retrieve the message

afterwards, he can easily do so. This solution is ineffective

when applying video compression. The message from the

video is changed or completely erased. That would mean that a

thief could use only compression to get rid of the hidden

message in the video and the video would still be of a good

quality [12] [13]. Alternative of video protection described in

this article resides in using a unique user identifier. The user is

an authenticated subscriber, thus embedding this identifier

within a video would mark the video of its subscriber. [11]

The goal of this work is to design an architecture that would

let users stream videos protected against stealing with

subscriber's identification. [2] The architecture should allow

users to authenticate to a web server, store their sign in

information within a database, then choose a clip to stream,

embedding the subscriber's identification within the video and

then stream it to the user. Database should also contain

necessary information about video clips that are going to be

streamed. [10]

With designed architecture, implement it and test the

streaming of protected video content in browsers and an iOS

mobile device or simulator.

The second goal of this work is to design and create system

providing video on demand for client's Android mobile device.

[19] System providing multimedia content must fulfill several

requirements with regard to security. Provided content must be

protected from unintended usage, such as unauthorized

copying, and also this content must be protected from any

kinds of attacks, with the intention to obtain content or its

parts, during the transfer.

II. METHODS FOR SERVER SIDE CONTENT PROTECTION

It is difficult to find a way of protecting multimedia content

on the Internet. If the video can be played on a computer or

another device, it means that the video can be stolen. The only

steps that should be taken, is to try to make the video stealing

unpleasant for the thief. [3] There are a few methods which

worth consideration.

A. Digital Rights Management

A lot of digital content providers are selling their content

not only on physical media, but also through computer

networks. Without content protection and digital rights

Protected streaming of video content to mobile

devices

Miroslav Michalko, Tomáš Bobko, and Pavol Fogaš

W

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), 2014 Edition, Vol. 4, No. 14

2

management, can be this content easily copied, edited and

spread further to a wide audience [14] which would make a

hole in the profit. The DRM systems can be used to protect

valuable properties and management of their distribution and

usage. A right DRM system should provide protection against

unauthorized access to the digital content, limiting the access

only for those with proper authorization. The main DRM

component is the use of digital licenses. Instead of buying the

digital content, the subscriber only buys the license that will

grant him certain rights. A license is a digital file, which

determines certain rules how to use the digital content. [5]

B. Watermarking

A digital watermark is a signal that can be embed into a

digital content for various reasons for example subtitling,

copyright control. An important property of a watermark is

their robustness in common signal changes as the file filtering

and file compression. A next use of a watermark is embedding

notes into files and access control. These watermarks are

called "annotation watermarks". As an example, the rule of

using content, that defines allowed copies and replays, can be

embedded as an annotation watermark into every single copy

of the content. The usage check is implemented within the

user's player.

C. HTTP Live Streaming

For streaming and playing videos on and iOS device, the

HLS is used. It is a communication protocol for streaming

media based on HTTP, which was implemented by Apple [6].

HLS is sending audio and video a way that it splits the content

into multiple ten seconds parts also called media segment files.

Index file or a playlist gives users the URL of these segments.

The playlist can be regularly renewed so it contains the URLs

of the current media segment files. [21]

D. Steganography

The word "steganography" is of Greek origin, the words

"hidden writing" and means "hide for common sight". [4]

Steganography is science and an art communicate the way that

presence of the message can't be revealed. Some simple

techniques are used hundreds of year, but with growing use of

digital files, there are some new techniques for information

hiding. [7]

E. Streaming solution using Wowza Streaming Engine

Wowza Streaming Engine provides a new generation

software for streaming media that simplifies high quality live

streaming as well as streaming video on demand for all devices

connected to the internet. There are multiple advantages why

to use the Wowza Streaming Engine. Streaming for multiple

devices with high quality live streaming and video on demand

streaming. The configurability for various operating systems

and architectures, from one computer or a load-balanced

server or cloud. Extendable API in Java makes writing own

modules and extensions easier. [8]

III. SECURE SYSTEM FOR PROTECTED DELIVERY OVER

NETWORK

The label "secure system" involves numerous requirements.

We can say that the main components, in terms of ensuring the

transmission of content and content itself are conditional

access, authentication, copy protection, content watermarking

and secure transmission of content. [1]. One of the methods

ensuring security of any content transmission is encryption. It

is a process of transforming any information into form, from

which those information cannot be read or understand the

meaning of the information. The opposite process is called

decryption.

In this process, the person for whom are those data intended,

can obtain original information. For encryption and decryption

is usually used some key or password. Scheme showing

principle of usage encryption in communication between two

parts is shown in Fig. 1. There are multiple encryption

algorithms and we decided to use AES (Advanced Encryption

Standard) in our system. (AES is a block encryption algorithm.

It supports variable key lengths of 128, 192 and 256 bits. [2])

[27] AES is currently one the most commonly used encryption

algorithms in video streaming protocols, such as HLS (HTTP

live streaming), which we will use in our system. HLS is a

streaming protocol allowing providing video content, both live

and video on demand. [16] HLS consists of three main parts:

server part, distribution part and client software. Server part

handles video content, and prepares it for distribution.

Distribution part handles requests from users and delivers

requested video content. [6] Client part receives this video

content, processes it and displays to the user. Gábor Fehér in

his work [3] showed, that the mobile devices, used in his tests,

were able to smoothly handle and play video stream encrypted

with AES. In the results of measurements we could see that the

increase of CPU load, processing encrypted stream compared

to unencrypted stream only increased by 7.39 percent. This

measurement also showed that the video stream was more

limited by the network bandwidth than computational

processes carried out in a mobile device. [22]

Fig. 1 Encrypting content

IV. ARCHITECTURE FOR SERVER SIDE CONTENT MARKING

To implement content protection of streaming media, it is

necessary to design an architecture that will provide streaming

3

digital content which will carry the protection mark, thus the

unique identification of a subscriber. This architecture will

consist of these components:

Webserver - user interface to register, sign in, choose a

video clip to stream, and finally watch the stream within a

browser,

Database - a storage for all the user data including their

email address, hashed password, registration timestamp and

also the video clip data storage. Every clip should have its

name, a stream that he belongs to and some other optional data

too, like timestamp of last streaming or creation,

Digital content storage - physical storage to store the video

clips in. This storage will be required by the streaming server,

Streaming server - this is where the Wowza Media Engine

will reside with all its features. This server will receive and

handle all requests from users to stream protected content

according to user,

Mobile device - user's mobile device in this case with iOS

operating system. The architecture is defined in Fig. 2.

Fig. 2 Streaming architecture

Client sends a request from a web browser to register

himself. Webserver communicates with the user database and

the database will store user's email and password. If it’s a

mobile device, the registration will not be available, user can

sign up only through a browser. If the user will be already

registered and would want to sign in, he should do so using his

iOS application or a browser. The process will be similar to

registration, but instead of creating a row in the database, the

web server will only compare the data from user and database.

[15]

When the registration is successful, user will be redirected to

the page where he can choose which clip he wants to stream.

Data for the choose view will be fetched from the clips table

from database. After choosing which clip should be played, the

Wowza Streaming Engine will apply the function for

protecting the content and starts to stream the protected

content to the subscriber. The content protecting function is

defined in the Fig. 3.

The first thing to start can be the installation of the Wowza

Streaming Engine. An exact procedure how this should be

done can be found on the Wowza Streaming Engine User

Guide. After successfully installing Wowza, the Wowza

manager can be run via browser to set up new streams. The

Wowza scheduler needs to be implemented as well so the

stream could be segmented into pieces with the video content

and the subscriber's identification. Also the HTTPProvider

module should be implemented, that will respond to http

requests with a stream URL. When this is set, the

implementation of the user's database with two tables’ users

and clips, where appropriate columns will be set like email,

password, user hash for users table and clip name, stream

name for clips. Web server can be implemented in any known

language that can work with JSON [28].

The process of streaming will follow these simple steps:

1. Registration or authentication of the user,

2. After choosing a clip to stream, a request is sent to Wowza

Streaming Server with user hash, thus user's unique

identification

3. Wowza's HTTPProvider module fetches this request and

runs a script that will generate a video using the

mpeg tool with user hash in it and also a SMIL file [9], so the

scheduler will know how to mix the video clip with the video

of the user hash, the HTTPProviders returns a stream URL for

the client's device,

4. When the client fetches the respond, the stream player can

be initialized with the given URL and start to stream the

protected content.

Fig. 3 Content protecting function

V. SOLUTION FOR DELIVERY TO ANDROID POWERED DEVICES

A. The design of system providing multimedia content in

secure way

Results of the analysis lead us to design and implementation

of system providing content in secure way. Our system

consists of three main parts: Web application, Wowza part and

Android application. The purpose of web application is to

4

accomplish the following tasks:

 user and device management,

 multimedia content management,

 user requests processing and evaluation,

 user authentication,

 providing links to multimedia content.

The next component is Wowza server. Main purpose of this

component is to transfer multimedia content to client devices.

This content will be transferred via HLS. This protocol was

chosen for several reasons, mainly because the data is

transmitted via HTTP, also it is possible to use encryption

algorithm AES to encrypt video content. Streaming protocol

HLS is officially supported by Android platform, but in reality,

it is not working well. [17] [18] [20] HLS is mainly intended

for Apple devices, as it is developed by Apple, so another

challenge is to create reliable Android application that handles

encrypted HLS streaming. Multimedia framework Vitamio was

chosen for displaying video content to user. In the following

Fig. 5 is shown design of this scheme.

Using Petri nets it is possible to make formal defining of

structure and behavior of various systems. [24][25][26] Petri

net is a triplet

),,,(ATPN where

},...,,{ 21 npppP is a finite non-empty set of places,

},...,,{ 21 ntttT is a finite set of transitions,

A is the set of oriented edges, it being understood that the

edges may be associated only places with transitions, which

can be formally written as

S) × (T T) × (S F .

Petri net can be represented as a bipartite graph, which are

shown as circles of interest, the transitions are represented as

boxes and arrows as directed edges. In this case it is used for

system design described above. Petri net is shown on Fig. 4.

Fig. 4 Petri net representing delivery to Android based player

Numbers represents:

1. Initial state, the user chose video.

2. Requirements adopted and evaluated.

3. The list is created for playback. Also referred to as a

playlist.

4. The list of playback is adopted.

5. List for playback is processed.

6. Encryption-decryption key was created.

7. Encryption-decryption key was adopted.

8. Video segment was created.

9. Video segment was adopted.

10. Playing a video.

In our case, therefore, can be expressed as a set of places

P={1,2,3,4,5,6,7,8,9,10}

and since the transitions are labeled with the words, expressed

as a set of transitions

T = {playlist -request, creation of playlist, playlist sending,

playlist analysis,

key – request, verification of the authenticity, send key,

 video segment – request, preparation of video segment,

 send video segment, decrypting of video segment, end of

playing}.

The Petri net consists of two units, representing the client

side and the server side. Diagram shows the process that takes

place between how a user selects a video to be played and the

starting player. Left side shows the client side and the right

side shows the server side.

Fig. 5 System providing multimedia content in secure way.

B. The design of secure content transfer

After the client device, smartphone or tablet gets address of

multimedia content, it sends a request to the Wowza server.

This server returns playlist in .m3u8 format, which contains

information about required multimedia content segments.

Segments are downloaded one after one, and also the key, that

is needed to decrypt them, since these segments are in

encrypted form. Diagram in the following Fig. 6 illustrates this

process.

5

Fig. 6 The design of secure content transfer.

C. The design of Android application

The design involves the creation of a layer between the

player and the encrypted content delivery. This layer will

receive the list of encrypted .ts files and also corresponding

decryption key, which is downloaded from server in secure

way using HTTPS protocol. These encrypted video segments

are transferred to the player that will encrypt them and display

to the user. In the following Fig. 7 is shown design of this

scheme.

Fig. 7 Android application architecture.

VI. RESULTS

As result one server side FFmpeg based encoder and two

mobile applications were developed. End mobile users were

asked to test the solution in real conditions on their mobile

phones and to fill in simple questionnaire to map their

subjective remarks. The implemented application, which home

screen is shown in Fig. 5, was tested on seven different

devices. List of tested devices is in Table 1. In the Table 2 are

shown results of testing this application in the form of user's

reviews.

TABLE 1

TESTED DEVICES

Device Processor RAM
Screen

resolution

Samsung Galaxy

S4

quad core 1,9

GHz

2 GB 1080 x 1920 px

Samsung Galaxy

S4 mini

dual core 1,7 GHz 1,5 GB 540 x 960 px

Motorola Moto G quad core 1,2

GHz

1 GB 720 x 1 280 px

Motorola Fire 600 MHz 256 MB 240 x 320 px

ZTE Blade III 1 GHz 512 MB 480 x 800 px

Sony Xperia L dual core 1 GHz 1 GB 480 x 854 px

HTC Desire Z 800 MHz 512 MB 480 x 800 px

Fig. 8 HLS Player - Android application UI.

TABLE 2

USERS REVIEWS

Device
Application

Design

SD video

playback

HD video

playback

Samsung Galaxy

S4
satisfied without problem

Audio/Video not

synchronized

Samsung Galaxy

S4 mini
satisfied viewable viewable

Motorola Moto

G
satisfied without problem viewable

Motorola Fire unsatisfied viewable unviewable

ZTE Blade III satisfied without problem not tested

Sony Xperia L satisfied without problem viewable

HTC Desire Z unsatisfied without problem unviewable

As Android devices are so fragmented and various in

hardware specifications it is necessary to make further

development in the created mobile application. Some

automatic detection of supported screen resolutions and CPU

speed could be added. Overall satisfaction of users involved in

testing was good based on feedback provided.

6

Testing was done on 27 users with various mobile Android

OS powered devices, 55% of them were satisfied with

functionality provided by application, 30% lacks important

functionality but were positive or neutral to application and

15% were disappointed. Feature where application stores

position of paused video playback and synchronizes it between

other registered devices was mostly commended by all

participants involved in testing. None of user have seen some

watermarking or hidden identification stored to video stream

what was the goal of this work. Further testing will be focused

to comparison of resources needed on server side in compare

to similar market solutions.

VII. CONCLUSION

The goal of this work was to design an architecture that would

stream protected content to its mobile clients, using some of

the well-known technologies and standards.

Several conclusions could be made based on presented work:

 insertion of visible marking to video (one frame to

25fps video) is not visible to normal viewer but

provides satisfactory higher level of source

identification and protection due to time when real

time steganography will take place in real-time

streaming applications;

 problem oriented applications for mobile smartphones

provides practical platform as extra extension to secure

content delivery of multimedia;

 no extra processing resources or new streaming

technologies are needed to insert content providers

identification into stream due to utilization of user

oriented playlists;

 SMIL standard could be revised in order to provide

language profiles for secure content identification for

streaming servers;

 HLS should be implemented to wider number of

platforms as standard for secure streaming.

The design presented in this paper describes how a

streaming system could be built however, some other standards

could be used instead of SMIL or a different streaming server

instead of Wowza Streaming Engine. The advantages of using

this method are that most of the technologies used are for free

and can be interconnected. The FFmpeg tool [23] could be

replaced with another tool of similar functionality, to create a

short video with an embedded text. There could be some

automation in the HTTPProvider section, because of the need

of restarting the streaming server after each request for

streaming due to the Wowza Streaming Engine scheduler

module. This disadvantages will be improved by the next

development. In content delivery over IP network standard

procedures and techniques such as SSL, AES, etc. were used.

The challenge was to create a mobile app for Android platform

that would play encrypted content delivered via HLS. The

application has been tested by a group of users, using different

devices. Paper presents base for further development and

testing.

ACKNOWLEDGMENT

Paper is the result of the Project implementation: University

Science Park TECHNICOM for Innovation Applications

Supported by Knowledge Technology, ITMS: 26220220182,

supported by the Research & Development Operational

Programme funded by the ERDF.

REFERENCES

[1] M. Staněk. (2004, January 6). Cryptology Basics [Online]. Available:

https://fmfi-uk.hq.sk/Informatika/Kryptologia/prednasky/krypto.pdf

[2] Eugene T. Lin. An Overview of Security Issues in Streaming Video. In

Proceedings of the International Conference on Information Technology:

Coding and Computing (ITCC '01). IEEE Computer Society,

Washington, DC, USA, 2001, pp. 345

[3] Feher, G., "The Price of Secure Mobile Video Streaming," Advanced

Information Networking and Applications Workshops (WAINA), 2013

27th International Conference on , vol., no., pp.126,131, 25-28 March

2013

[4] J. Cummins,et al. "Steganography and digital watermarking." School

of Computer Science, The University of Birmingham 14, 2004.

[5] Q. Liu, S.N. Reihaneh, N.P. Sheppard. "Digital rights management for

content distribution." Proceedings of the Australasian information

security workshop conference on ACSW frontiers 2003-Volume 21.

Australian Computer Society, Inc., 2003. pp. 49-58.

[6] Apple Inc. (2014, February 11). HTTP Live Streaming Overview

[Online]. Available:

https://developer.apple.com/library/ios/documentation/networkingintern

et/conceptual/streamingmediaguide/StreamingMediaGuide.pdf

[7] S. Das, et al. "Steganography and Steganalysis: different approaches."

arXiv preprint arXiv:1111.3758, 2011.

[8] Wowza Media Systems. (2010, February 12). Wowza Streaming Engine

– Users Guide version 4. [Online]. Available:

http://www.wowza.com/forums/content.php?3-quick-start-guide

[9] P. Hoschka. (2011, April 19). SMIL – An Introduction [Online].

Available: http://www.w3.org/2002/05/siggraph-smil-abstract.pdf

[10] L. Yao, L. Fei, L. Guo, S. Bo, Ch. Songqing, "A server's perspective of

Internet streaming delivery to mobile devices," INFOCOM, 2012

Proceedings IEEE , vol., no., 1332,1340, March 2012, pp. 25-30

[11] D.M. Chen, S.S. Tsai, R. Vedantham, R. Grzeszczuk, B. Girod,

"Streaming mobile augmented reality on mobile phones," Mixed and

Augmented Reality, 2009. ISMAR 2009. 8th IEEE International

Symposium on , vol., no. 181,182, Oct. 2009, pp. 19-22

[12] L. Vokorokos, A. Pekar, P. Fecil'ak, "IPFIX Mediation framework of

the SLAmeter tool," Emerging eLearning Technologies and Applications

(ICETA), 2013 IEEE 11th International Conference on , vol., no.,

311,314, Oct. 2013, pp. 24-25

[13] M. Kriška, J. Janitor, P. Feciľak. “Dynamic routing of IP traffic based

on QoS parameters”, International Journal of Computer Networks &

Communications (IJCNC), Vol. 6, No. 4, July 2014, pp. 11-22

[14] R. Horak, J. Hrbacek, "Elearning and mobile devices - Technical

problems and possible solutions," Emerging eLearning Technologies

and Applications (ICETA), 2013 IEEE 11th International Conference on

, vol., no., 123,126, Oct. 2013, pp. 24-25

[15] D. Cymbalak, F. Jakab, M. Michalko, "Next generation IPTV solution

for educational purposes," Emerging eLearning Technologies and

Applications (ICETA), 2011 9th International Conference on , vol., no.,

41,46, Oct. 2011, pp. 27-28

[16] R.M. Schmitt, T.R. Muck, AA. Frohlich, "An Implementation of the

AES Cipher Using HLS," Computing Systems Engineering (SBESC),

2013 III Brazilian Symposium on , vol., no., 113,118, Dec. 2013, pp. 4-

8

[17] Z. Xueliang, T. Dan, "The architecture design of streaming media

applications for Android OS," Software Engineering and Service

Science (ICSESS), 2012 IEEE 3rd International Conference on , vol.,

no., 280,283, 22-24 June 2012, pp. 22-24

[18] T. Mantoro, M.A. Ayu, D. Jatikusumo, "Live video streaming for

mobile devices: An application on android platform," Uncertainty

Reasoning and Knowledge Engineering (URKE), 2012 2nd

International Conference on , vol., no., pp.119,122, 14-15 Aug. 2012

7

[19] D.T. Massandy, IR. Munir, "Secured video streaming development on

smartphones with Android platform," Telecommunication Systems,

Services, and Applications (TSSA), 2012 7th International Conference

on , vol., no., pp.339,344, 30-31 Oct. 2012

[20] D. Mrozek, B. Buk, B. Malysiak-Mrozek, "Some remarks on choosing

video stream encoding for remote video verification on Android mobile

devices," AFRICON, 2013 , vol., no., 1,6, Sept. 2013, pp. 9-12

[21] K. Lazic, M. Milosevic, G. Miljkovic, N. Ikonic, J. Kovacevic, "One

Implementation of Dynamic Adaptive Streaming over HTTP,"

Telecommunications Forum (TELFOR), 2012 20th , vol., no.,

pp.1496,1499, 20-22 Nov. 2012

[22] S. Verma, S.K. Pal, S.K. Muttoo, "A new tool for lightweight encryption

on android," Advance Computing Conference (IACC), 2014 IEEE

International , vol., no., pp.306,311, 21-22 Feb. 2014

[23] F. Bellard. (2004, December 19). FFmpeg project [Online]. Available:

https://www.ffmpeg.org

[24] W. Reisig, G. Rozenberg, eds. Lectures on Petri nets I: basic models:

advances in Petri nets. Vol. 1491. Springer, 1998.

[25] K. Jensen, L.M. Kristensen, L. Wells. "Coloured Petri Nets and CPN

Tools for modelling and validation of concurrent systems."

International Journal on Software Tools for Technology Transfer 9.3-4

(2007): 213-254.

[26] G. Rozenberg, P. S. Thiagarajan. "Petri nets: Basic notions, structure,

behaviour." Current trends in concurrency. Springer Berlin Heidelberg,

1986. 585-668.

[27] S. Frankel, R. Glenn, S. Kelly. The AES-CBC cipher algorithm and its

use with IPsec. RFC 3602, September, 2003.

[28] D. Crockford. "The application/json media type for javascript object

notation (json)." 2006.

Miroslav Michalko is an Assistant Professor at Technical University of

Košice. He obtained a PhD. (2010) in Informatics and the Masters Degree in

Computer Science at Technical University in Kosice. Now he lectures

Computer Networks and Application of Computer Networks. His research

areas interests are in multimedia technologies, streaming and content delivery

over IP, multimedia content creation and innovative teaching&learning

techniques.

Tomáš Bobko received Masters Degree at Technical University in Košice

(2014) in Computer Science. Now he works as software developer and

consultant for private SME. This article partially presents results of his

diploma work.

Pavol Fogaš received Masters Degree at Technical University in Košice

(2014) in Computer Science. Now he works as software developer and

consultant for private SME. This article partially presents results of his

diploma work.

